VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/string/utf-8.cpp@ 31157

Last change on this file since 31157 was 31157, checked in by vboxsync, 15 years ago

iprt,++: Tag allocation in all builds with a string, defaulting to FILE.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 43.7 KB
Line 
1/* $Id: utf-8.cpp 31157 2010-07-28 03:15:35Z vboxsync $ */
2/** @file
3 * IPRT - UTF-8 Decoding.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Header Files *
30*******************************************************************************/
31#include <iprt/string.h>
32#include "internal/iprt.h"
33
34#include <iprt/uni.h>
35#include <iprt/alloc.h>
36#include <iprt/assert.h>
37#include <iprt/err.h>
38#include "internal/string.h"
39
40
41
42/**
43 * Get get length in code points of a UTF-8 encoded string.
44 * The string is validated while doing this.
45 *
46 * @returns IPRT status code.
47 * @param psz Pointer to the UTF-8 string.
48 * @param cch The max length of the string. (btw cch = cb)
49 * Use RTSTR_MAX if all of the string is to be examined.
50 * @param pcuc Where to store the length in unicode code points.
51 * @param pcchActual Where to store the actual size of the UTF-8 string
52 * on success (cch = cb again). Optional.
53 */
54int rtUtf8Length(const char *psz, size_t cch, size_t *pcuc, size_t *pcchActual)
55{
56 const unsigned char *puch = (const unsigned char *)psz;
57 size_t cCodePoints = 0;
58 while (cch > 0)
59 {
60 const unsigned char uch = *puch;
61 if (!uch)
62 break;
63 if (uch & RT_BIT(7))
64 {
65 /* figure sequence length and validate the first byte */
66 unsigned cb;
67 if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5))) == (RT_BIT(7) | RT_BIT(6)))
68 cb = 2;
69 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5)))
70 cb = 3;
71 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4)))
72 cb = 4;
73 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3)))
74 cb = 5;
75 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2) | RT_BIT(1))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2)))
76 cb = 6;
77 else
78 {
79 RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(cch, 10), puch));
80 return VERR_INVALID_UTF8_ENCODING;
81 }
82
83 /* check length */
84 if (cb > cch)
85 {
86 RTStrAssertMsgFailed(("Invalid UTF-8 length: cb=%d cch=%d (%.*Rhxs)\n", cb, cch, RT_MIN(cch, 10), puch));
87 return VERR_INVALID_UTF8_ENCODING;
88 }
89
90 /* validate the rest */
91 switch (cb)
92 {
93 case 6:
94 RTStrAssertMsgReturn((puch[5] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("6/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
95 case 5:
96 RTStrAssertMsgReturn((puch[4] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("5/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
97 case 4:
98 RTStrAssertMsgReturn((puch[3] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("4/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
99 case 3:
100 RTStrAssertMsgReturn((puch[2] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("3/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
101 case 2:
102 RTStrAssertMsgReturn((puch[1] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("2/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
103 break;
104 }
105
106 /* validate the code point. */
107 RTUNICP uc;
108 switch (cb)
109 {
110 case 6:
111 uc = (puch[5] & 0x3f)
112 | ((RTUNICP)(puch[4] & 0x3f) << 6)
113 | ((RTUNICP)(puch[3] & 0x3f) << 12)
114 | ((RTUNICP)(puch[2] & 0x3f) << 18)
115 | ((RTUNICP)(puch[1] & 0x3f) << 24)
116 | ((RTUNICP)(uch & 0x01) << 30);
117 RTStrAssertMsgReturn(uc >= 0x04000000 && uc <= 0x7fffffff,
118 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
119 break;
120 case 5:
121 uc = (puch[4] & 0x3f)
122 | ((RTUNICP)(puch[3] & 0x3f) << 6)
123 | ((RTUNICP)(puch[2] & 0x3f) << 12)
124 | ((RTUNICP)(puch[1] & 0x3f) << 18)
125 | ((RTUNICP)(uch & 0x03) << 24);
126 RTStrAssertMsgReturn(uc >= 0x00200000 && uc <= 0x03ffffff,
127 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
128 break;
129 case 4:
130 uc = (puch[3] & 0x3f)
131 | ((RTUNICP)(puch[2] & 0x3f) << 6)
132 | ((RTUNICP)(puch[1] & 0x3f) << 12)
133 | ((RTUNICP)(uch & 0x07) << 18);
134 RTStrAssertMsgReturn(uc >= 0x00010000 && uc <= 0x001fffff,
135 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
136 break;
137 case 3:
138 uc = (puch[2] & 0x3f)
139 | ((RTUNICP)(puch[1] & 0x3f) << 6)
140 | ((RTUNICP)(uch & 0x0f) << 12);
141 RTStrAssertMsgReturn(uc >= 0x00000800 && uc <= 0x0000fffd,
142 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch),
143 uc == 0xffff || uc == 0xfffe ? VERR_CODE_POINT_ENDIAN_INDICATOR : VERR_INVALID_UTF8_ENCODING);
144 RTStrAssertMsgReturn(uc < 0xd800 || uc > 0xdfff,
145 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_CODE_POINT_SURROGATE);
146 break;
147 case 2:
148 uc = (puch[1] & 0x3f)
149 | ((RTUNICP)(uch & 0x1f) << 6);
150 RTStrAssertMsgReturn(uc >= 0x00000080 && uc <= 0x000007ff,
151 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
152 break;
153 }
154
155 /* advance */
156 cch -= cb;
157 puch += cb;
158 }
159 else
160 {
161 /* one ASCII byte */
162 puch++;
163 cch--;
164 }
165 cCodePoints++;
166 }
167
168 /* done */
169 *pcuc = cCodePoints;
170 if (pcchActual)
171 *pcchActual = puch - (unsigned char const *)psz;
172 return VINF_SUCCESS;
173}
174
175
176/**
177 * Decodes and UTF-8 string into an array of unicode code point.
178 *
179 * Since we know the input is valid, we do *not* perform encoding or length checks.
180 *
181 * @returns iprt status code.
182 * @param psz The UTF-8 string to recode. This is a valid encoding.
183 * @param cch The number of chars (the type char, so bytes if you like) to process of the UTF-8 string.
184 * The recoding will stop when cch or '\\0' is reached. Pass RTSTR_MAX to process up to '\\0'.
185 * @param paCps Where to store the code points array.
186 * @param cCps The number of RTUNICP items the paCps buffer can hold, excluding the terminator ('\\0').
187 */
188static int rtUtf8Decode(const char *psz, size_t cch, PRTUNICP paCps, size_t cCps)
189{
190 int rc = VINF_SUCCESS;
191 const unsigned char *puch = (const unsigned char *)psz;
192 PRTUNICP pCp = paCps;
193 while (cch > 0)
194 {
195 /* read the next char and check for terminator. */
196 const unsigned char uch = *puch;
197 if (!uch)
198 break;
199
200 /* check for output overflow */
201 if (RT_UNLIKELY(cCps < 1))
202 {
203 rc = VERR_BUFFER_OVERFLOW;
204 break;
205 }
206 cCps--;
207
208 /* decode and recode the code point */
209 if (!(uch & RT_BIT(7)))
210 {
211 *pCp++ = uch;
212 puch++;
213 cch--;
214 }
215#ifdef RT_STRICT
216 else if (!(uch & RT_BIT(6)))
217 AssertMsgFailed(("Internal error!\n"));
218#endif
219 else if (!(uch & RT_BIT(5)))
220 {
221 *pCp++ = (puch[1] & 0x3f)
222 | ((uint16_t)(uch & 0x1f) << 6);
223 puch += 2;
224 cch -= 2;
225 }
226 else if (!(uch & RT_BIT(4)))
227 {
228 *pCp++ = (puch[2] & 0x3f)
229 | ((uint16_t)(puch[1] & 0x3f) << 6)
230 | ((uint16_t)(uch & 0x0f) << 12);
231 puch += 3;
232 cch -= 3;
233 }
234 else if (!(uch & RT_BIT(3)))
235 {
236 *pCp++ = (puch[3] & 0x3f)
237 | ((RTUNICP)(puch[2] & 0x3f) << 6)
238 | ((RTUNICP)(puch[1] & 0x3f) << 12)
239 | ((RTUNICP)(uch & 0x07) << 18);
240 puch += 4;
241 cch -= 4;
242 }
243 else if (!(uch & RT_BIT(2)))
244 {
245 *pCp++ = (puch[4] & 0x3f)
246 | ((RTUNICP)(puch[3] & 0x3f) << 6)
247 | ((RTUNICP)(puch[2] & 0x3f) << 12)
248 | ((RTUNICP)(puch[1] & 0x3f) << 18)
249 | ((RTUNICP)(uch & 0x03) << 24);
250 puch += 5;
251 cch -= 6;
252 }
253 else
254 {
255 Assert(!(uch & RT_BIT(1)));
256 *pCp++ = (puch[5] & 0x3f)
257 | ((RTUNICP)(puch[4] & 0x3f) << 6)
258 | ((RTUNICP)(puch[3] & 0x3f) << 12)
259 | ((RTUNICP)(puch[2] & 0x3f) << 18)
260 | ((RTUNICP)(puch[1] & 0x3f) << 24)
261 | ((RTUNICP)(uch & 0x01) << 30);
262 puch += 6;
263 cch -= 6;
264 }
265 }
266
267 /* done */
268 *pCp = 0;
269 return rc;
270}
271
272
273RTDECL(size_t) RTStrUniLen(const char *psz)
274{
275 size_t cCodePoints;
276 int rc = rtUtf8Length(psz, RTSTR_MAX, &cCodePoints, NULL);
277 return RT_SUCCESS(rc) ? cCodePoints : 0;
278}
279RT_EXPORT_SYMBOL(RTStrUniLen);
280
281
282RTDECL(int) RTStrUniLenEx(const char *psz, size_t cch, size_t *pcCps)
283{
284 size_t cCodePoints;
285 int rc = rtUtf8Length(psz, cch, &cCodePoints, NULL);
286 if (pcCps)
287 *pcCps = RT_SUCCESS(rc) ? cCodePoints : 0;
288 return rc;
289}
290RT_EXPORT_SYMBOL(RTStrUniLenEx);
291
292
293RTDECL(int) RTStrValidateEncoding(const char *psz)
294{
295 return RTStrValidateEncodingEx(psz, RTSTR_MAX, 0);
296}
297RT_EXPORT_SYMBOL(RTStrValidateEncoding);
298
299
300RTDECL(int) RTStrValidateEncodingEx(const char *psz, size_t cch, uint32_t fFlags)
301{
302 AssertReturn(!(fFlags & ~(RTSTR_VALIDATE_ENCODING_ZERO_TERMINATED)), VERR_INVALID_PARAMETER);
303 AssertPtr(psz);
304
305 /*
306 * Use rtUtf8Length for the job.
307 */
308 size_t cchActual;
309 size_t cCpsIgnored;
310 int rc = rtUtf8Length(psz, cch, &cCpsIgnored, &cchActual);
311 if (RT_SUCCESS(rc))
312 {
313 if ( (fFlags & RTSTR_VALIDATE_ENCODING_ZERO_TERMINATED)
314 && cchActual >= cch)
315 rc = VERR_BUFFER_OVERFLOW;
316 }
317 return rc;
318}
319RT_EXPORT_SYMBOL(RTStrValidateEncodingEx);
320
321
322RTDECL(bool) RTStrIsValidEncoding(const char *psz)
323{
324 int rc = RTStrValidateEncodingEx(psz, RTSTR_MAX, 0);
325 return RT_SUCCESS(rc);
326}
327RT_EXPORT_SYMBOL(RTStrIsValidEncoding);
328
329
330RTDECL(size_t) RTStrPurgeEncoding(char *psz)
331{
332 size_t cErrors = 0;
333 for (;;)
334 {
335 RTUNICP Cp;
336 int rc = RTStrGetCpEx((const char **)&psz, &Cp);
337 if (RT_SUCCESS(rc))
338 {
339 if (!Cp)
340 break;
341 }
342 else
343 {
344 psz[-1] = '?';
345 cErrors++;
346 }
347 }
348 return cErrors;
349}
350RT_EXPORT_SYMBOL(RTStrPurgeEncoding);
351
352
353RTDECL(int) RTStrToUni(const char *pszString, PRTUNICP *ppaCps)
354{
355 /*
356 * Validate input.
357 */
358 Assert(VALID_PTR(pszString));
359 Assert(VALID_PTR(ppaCps));
360 *ppaCps = NULL;
361
362 /*
363 * Validate the UTF-8 input and count its code points.
364 */
365 size_t cCps;
366 int rc = rtUtf8Length(pszString, RTSTR_MAX, &cCps, NULL);
367 if (RT_SUCCESS(rc))
368 {
369 /*
370 * Allocate buffer.
371 */
372 PRTUNICP paCps = (PRTUNICP)RTMemAlloc((cCps + 1) * sizeof(RTUNICP));
373 if (paCps)
374 {
375 /*
376 * Decode the string.
377 */
378 rc = rtUtf8Decode(pszString, RTSTR_MAX, paCps, cCps);
379 if (RT_SUCCESS(rc))
380 {
381 *ppaCps = paCps;
382 return rc;
383 }
384 RTMemFree(paCps);
385 }
386 else
387 rc = VERR_NO_CODE_POINT_MEMORY;
388 }
389 return rc;
390}
391RT_EXPORT_SYMBOL(RTStrToUni);
392
393
394RTDECL(int) RTStrToUniEx(const char *pszString, size_t cchString, PRTUNICP *ppaCps, size_t cCps, size_t *pcCps)
395{
396 /*
397 * Validate input.
398 */
399 Assert(VALID_PTR(pszString));
400 Assert(VALID_PTR(ppaCps));
401 Assert(!pcCps || VALID_PTR(pcCps));
402
403 /*
404 * Validate the UTF-8 input and count the code points.
405 */
406 size_t cCpsResult;
407 int rc = rtUtf8Length(pszString, cchString, &cCpsResult, NULL);
408 if (RT_SUCCESS(rc))
409 {
410 if (pcCps)
411 *pcCps = cCpsResult;
412
413 /*
414 * Check buffer size / Allocate buffer.
415 */
416 bool fShouldFree;
417 PRTUNICP paCpsResult;
418 if (cCps > 0 && *ppaCps)
419 {
420 fShouldFree = false;
421 if (cCps <= cCpsResult)
422 return VERR_BUFFER_OVERFLOW;
423 paCpsResult = *ppaCps;
424 }
425 else
426 {
427 *ppaCps = NULL;
428 fShouldFree = true;
429 cCps = RT_MAX(cCpsResult + 1, cCps);
430 paCpsResult = (PRTUNICP)RTMemAlloc(cCps * sizeof(RTUNICP));
431 }
432 if (paCpsResult)
433 {
434 /*
435 * Encode the UTF-16 string.
436 */
437 rc = rtUtf8Decode(pszString, cchString, paCpsResult, cCps - 1);
438 if (RT_SUCCESS(rc))
439 {
440 *ppaCps = paCpsResult;
441 return rc;
442 }
443 if (fShouldFree)
444 RTMemFree(paCpsResult);
445 }
446 else
447 rc = VERR_NO_CODE_POINT_MEMORY;
448 }
449 return rc;
450}
451RT_EXPORT_SYMBOL(RTStrToUniEx);
452
453
454/**
455 * Calculates the UTF-16 length of a string, validating the encoding while doing so.
456 *
457 * @returns IPRT status code.
458 * @param psz Pointer to the UTF-8 string.
459 * @param cch The max length of the string. (btw cch = cb)
460 * Use RTSTR_MAX if all of the string is to be examined.
461 * @param pcwc Where to store the length of the UTF-16 string as a number of RTUTF16 characters.
462 */
463static int rtUtf8CalcUtf16Length(const char *psz, size_t cch, size_t *pcwc)
464{
465 const unsigned char *puch = (const unsigned char *)psz;
466 size_t cwc = 0;
467 while (cch > 0)
468 {
469 const unsigned char uch = *puch;
470 if (!uch)
471 break;
472 if (!(uch & RT_BIT(7)))
473 {
474 /* one ASCII byte */
475 cwc++;
476 puch++;
477 cch--;
478 }
479 else
480 {
481 /* figure sequence length and validate the first byte */
482 unsigned cb;
483 if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5))) == (RT_BIT(7) | RT_BIT(6)))
484 cb = 2;
485 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5)))
486 cb = 3;
487 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4)))
488 cb = 4;
489 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3)))
490 cb = 5;
491 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2) | RT_BIT(1))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3) | RT_BIT(2)))
492 cb = 6;
493 else
494 {
495 RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(cch, 10), puch));
496 return VERR_INVALID_UTF8_ENCODING;
497 }
498
499 /* check length */
500 if (cb > cch)
501 {
502 RTStrAssertMsgFailed(("Invalid UTF-8 length: cb=%d cch=%d (%.*Rhxs)\n", cb, cch, RT_MIN(cch, 10), puch));
503 return VERR_INVALID_UTF8_ENCODING;
504 }
505
506 /* validate the rest */
507 switch (cb)
508 {
509 case 6:
510 RTStrAssertMsgReturn((puch[5] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("6/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
511 case 5:
512 RTStrAssertMsgReturn((puch[4] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("5/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
513 case 4:
514 RTStrAssertMsgReturn((puch[3] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("4/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
515 case 3:
516 RTStrAssertMsgReturn((puch[2] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("3/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
517 case 2:
518 RTStrAssertMsgReturn((puch[1] & (RT_BIT(7) | RT_BIT(6))) == RT_BIT(7), ("2/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
519 break;
520 }
521
522 /* validate the code point. */
523 RTUNICP uc;
524 switch (cb)
525 {
526 case 6:
527 uc = (puch[5] & 0x3f)
528 | ((RTUNICP)(puch[4] & 0x3f) << 6)
529 | ((RTUNICP)(puch[3] & 0x3f) << 12)
530 | ((RTUNICP)(puch[2] & 0x3f) << 18)
531 | ((RTUNICP)(puch[1] & 0x3f) << 24)
532 | ((RTUNICP)(uch & 0x01) << 30);
533 RTStrAssertMsgReturn(uc >= 0x04000000 && uc <= 0x7fffffff,
534 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
535 RTStrAssertMsgFailed(("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch));
536 return VERR_CANT_RECODE_AS_UTF16;
537 case 5:
538 uc = (puch[4] & 0x3f)
539 | ((RTUNICP)(puch[3] & 0x3f) << 6)
540 | ((RTUNICP)(puch[2] & 0x3f) << 12)
541 | ((RTUNICP)(puch[1] & 0x3f) << 18)
542 | ((RTUNICP)(uch & 0x03) << 24);
543 RTStrAssertMsgReturn(uc >= 0x00200000 && uc <= 0x03ffffff,
544 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
545 RTStrAssertMsgFailed(("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch));
546 return VERR_CANT_RECODE_AS_UTF16;
547 case 4:
548 uc = (puch[3] & 0x3f)
549 | ((RTUNICP)(puch[2] & 0x3f) << 6)
550 | ((RTUNICP)(puch[1] & 0x3f) << 12)
551 | ((RTUNICP)(uch & 0x07) << 18);
552 RTStrAssertMsgReturn(uc >= 0x00010000 && uc <= 0x001fffff,
553 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
554 RTStrAssertMsgReturn(uc <= 0x0010ffff,
555 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_CANT_RECODE_AS_UTF16);
556 cwc++;
557 break;
558 case 3:
559 uc = (puch[2] & 0x3f)
560 | ((RTUNICP)(puch[1] & 0x3f) << 6)
561 | ((RTUNICP)(uch & 0x0f) << 12);
562 RTStrAssertMsgReturn(uc >= 0x00000800 && uc <= 0x0000fffd,
563 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch),
564 uc == 0xffff || uc == 0xfffe ? VERR_CODE_POINT_ENDIAN_INDICATOR : VERR_INVALID_UTF8_ENCODING);
565 RTStrAssertMsgReturn(uc < 0xd800 || uc > 0xdfff,
566 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_CODE_POINT_SURROGATE);
567 break;
568 case 2:
569 uc = (puch[1] & 0x3f)
570 | ((RTUNICP)(uch & 0x1f) << 6);
571 RTStrAssertMsgReturn(uc >= 0x00000080 && uc <= 0x000007ff,
572 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, cch), puch), VERR_INVALID_UTF8_ENCODING);
573 break;
574 }
575
576 /* advance */
577 cch -= cb;
578 puch += cb;
579 cwc++;
580 }
581 }
582
583 /* done */
584 *pcwc = cwc;
585 return VINF_SUCCESS;
586}
587
588
589/**
590 * Recodes a valid UTF-8 string as UTF-16.
591 *
592 * Since we know the input is valid, we do *not* perform encoding or length checks.
593 *
594 * @returns iprt status code.
595 * @param psz The UTF-8 string to recode. This is a valid encoding.
596 * @param cch The number of chars (the type char, so bytes if you like) to process of the UTF-8 string.
597 * The recoding will stop when cch or '\\0' is reached. Pass RTSTR_MAX to process up to '\\0'.
598 * @param pwsz Where to store the UTF-16 string.
599 * @param cwc The number of RTUTF16 items the pwsz buffer can hold, excluding the terminator ('\\0').
600 */
601static int rtUtf8RecodeAsUtf16(const char *psz, size_t cch, PRTUTF16 pwsz, size_t cwc)
602{
603 int rc = VINF_SUCCESS;
604 const unsigned char *puch = (const unsigned char *)psz;
605 PRTUTF16 pwc = pwsz;
606 while (cch > 0)
607 {
608 /* read the next char and check for terminator. */
609 const unsigned char uch = *puch;
610 if (!uch)
611 break;
612
613 /* check for output overflow */
614 if (RT_UNLIKELY(cwc < 1))
615 {
616 rc = VERR_BUFFER_OVERFLOW;
617 break;
618 }
619 cwc--;
620
621 /* decode and recode the code point */
622 if (!(uch & RT_BIT(7)))
623 {
624 *pwc++ = uch;
625 puch++;
626 cch--;
627 }
628 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5))) == (RT_BIT(7) | RT_BIT(6)))
629 {
630 uint16_t uc = (puch[1] & 0x3f)
631 | ((uint16_t)(uch & 0x1f) << 6);
632 *pwc++ = uc;
633 puch += 2;
634 cch -= 2;
635 }
636 else if ((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5)))
637 {
638 uint16_t uc = (puch[2] & 0x3f)
639 | ((uint16_t)(puch[1] & 0x3f) << 6)
640 | ((uint16_t)(uch & 0x0f) << 12);
641 *pwc++ = uc;
642 puch += 3;
643 cch -= 3;
644 }
645 else
646 {
647 /* generate surrugate pair */
648 Assert((uch & (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4) | RT_BIT(3))) == (RT_BIT(7) | RT_BIT(6) | RT_BIT(5) | RT_BIT(4)));
649 RTUNICP uc = (puch[3] & 0x3f)
650 | ((RTUNICP)(puch[2] & 0x3f) << 6)
651 | ((RTUNICP)(puch[1] & 0x3f) << 12)
652 | ((RTUNICP)(uch & 0x07) << 18);
653 if (RT_UNLIKELY(cwc < 1))
654 {
655 rc = VERR_BUFFER_OVERFLOW;
656 break;
657 }
658 cwc--;
659
660 uc -= 0x10000;
661 *pwc++ = 0xd800 | (uc >> 10);
662 *pwc++ = 0xdc00 | (uc & 0x3ff);
663 puch += 4;
664 cch -= 4;
665 }
666 }
667
668 /* done */
669 *pwc = '\0';
670 return rc;
671}
672
673
674RTDECL(int) RTStrToUtf16Tag(const char *pszString, PRTUTF16 *ppwszString, const char *pszTag)
675{
676 /*
677 * Validate input.
678 */
679 Assert(VALID_PTR(ppwszString));
680 Assert(VALID_PTR(pszString));
681 *ppwszString = NULL;
682
683 /*
684 * Validate the UTF-8 input and calculate the length of the UTF-16 string.
685 */
686 size_t cwc;
687 int rc = rtUtf8CalcUtf16Length(pszString, RTSTR_MAX, &cwc);
688 if (RT_SUCCESS(rc))
689 {
690 /*
691 * Allocate buffer.
692 */
693 PRTUTF16 pwsz = (PRTUTF16)RTMemAllocTag((cwc + 1) * sizeof(RTUTF16), pszTag);
694 if (pwsz)
695 {
696 /*
697 * Encode the UTF-16 string.
698 */
699 rc = rtUtf8RecodeAsUtf16(pszString, RTSTR_MAX, pwsz, cwc);
700 if (RT_SUCCESS(rc))
701 {
702 *ppwszString = pwsz;
703 return rc;
704 }
705 RTMemFree(pwsz);
706 }
707 else
708 rc = VERR_NO_UTF16_MEMORY;
709 }
710 return rc;
711}
712RT_EXPORT_SYMBOL(RTStrToUtf16Tag);
713
714
715RTDECL(int) RTStrToUtf16ExTag(const char *pszString, size_t cchString,
716 PRTUTF16 *ppwsz, size_t cwc, size_t *pcwc, const char *pszTag)
717{
718 /*
719 * Validate input.
720 */
721 Assert(VALID_PTR(pszString));
722 Assert(VALID_PTR(ppwsz));
723 Assert(!pcwc || VALID_PTR(pcwc));
724
725 /*
726 * Validate the UTF-8 input and calculate the length of the UTF-16 string.
727 */
728 size_t cwcResult;
729 int rc = rtUtf8CalcUtf16Length(pszString, cchString, &cwcResult);
730 if (RT_SUCCESS(rc))
731 {
732 if (pcwc)
733 *pcwc = cwcResult;
734
735 /*
736 * Check buffer size / Allocate buffer.
737 */
738 bool fShouldFree;
739 PRTUTF16 pwszResult;
740 if (cwc > 0 && *ppwsz)
741 {
742 fShouldFree = false;
743 if (cwc <= cwcResult)
744 return VERR_BUFFER_OVERFLOW;
745 pwszResult = *ppwsz;
746 }
747 else
748 {
749 *ppwsz = NULL;
750 fShouldFree = true;
751 cwc = RT_MAX(cwcResult + 1, cwc);
752 pwszResult = (PRTUTF16)RTMemAllocTag(cwc * sizeof(RTUTF16), pszTag);
753 }
754 if (pwszResult)
755 {
756 /*
757 * Encode the UTF-16 string.
758 */
759 rc = rtUtf8RecodeAsUtf16(pszString, cchString, pwszResult, cwc - 1);
760 if (RT_SUCCESS(rc))
761 {
762 *ppwsz = pwszResult;
763 return rc;
764 }
765 if (fShouldFree)
766 RTMemFree(pwszResult);
767 }
768 else
769 rc = VERR_NO_UTF16_MEMORY;
770 }
771 return rc;
772}
773RT_EXPORT_SYMBOL(RTStrToUtf16ExTag);
774
775
776RTDECL(size_t) RTStrCalcUtf16Len(const char *psz)
777{
778 size_t cwc;
779 int rc = rtUtf8CalcUtf16Length(psz, RTSTR_MAX, &cwc);
780 return RT_SUCCESS(rc) ? cwc : 0;
781}
782RT_EXPORT_SYMBOL(RTStrCalcUtf16Len);
783
784
785RTDECL(int) RTStrCalcUtf16LenEx(const char *psz, size_t cch, size_t *pcwc)
786{
787 size_t cwc;
788 int rc = rtUtf8CalcUtf16Length(psz, cch, &cwc);
789 if (pcwc)
790 *pcwc = RT_SUCCESS(rc) ? cwc : ~(size_t)0;
791 return rc;
792}
793RT_EXPORT_SYMBOL(RTStrCalcUtf16LenEx);
794
795
796/**
797 * Handle invalid encodings passed to RTStrGetCp() and RTStrGetCpEx().
798 * @returns rc
799 * @param ppsz The pointer to the string position point.
800 * @param pCp Where to store RTUNICP_INVALID.
801 * @param rc The iprt error code.
802 */
803static int rtStrGetCpExFailure(const char **ppsz, PRTUNICP pCp, int rc)
804{
805 /*
806 * Try find a valid encoding.
807 */
808 (*ppsz)++; /** @todo code this! */
809 *pCp = RTUNICP_INVALID;
810 return rc;
811}
812
813
814RTDECL(RTUNICP) RTStrGetCpInternal(const char *psz)
815{
816 RTUNICP Cp;
817 RTStrGetCpExInternal(&psz, &Cp);
818 return Cp;
819}
820RT_EXPORT_SYMBOL(RTStrGetCpInternal);
821
822
823RTDECL(int) RTStrGetCpExInternal(const char **ppsz, PRTUNICP pCp)
824{
825 const unsigned char *puch = (const unsigned char *)*ppsz;
826 const unsigned char uch = *puch;
827 RTUNICP uc;
828
829 /* ASCII ? */
830 if (!(uch & RT_BIT(7)))
831 {
832 uc = uch;
833 puch++;
834 }
835 else if (uch & RT_BIT(6))
836 {
837 /* figure the length and validate the first octet. */
838 unsigned cb;
839 if (!(uch & RT_BIT(5)))
840 cb = 2;
841 else if (!(uch & RT_BIT(4)))
842 cb = 3;
843 else if (!(uch & RT_BIT(3)))
844 cb = 4;
845 else if (!(uch & RT_BIT(2)))
846 cb = 5;
847 else if (!(uch & RT_BIT(1)))
848 cb = 6;
849 else
850 {
851 RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(strlen((char *)puch), 10), puch));
852 return rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING);
853 }
854
855 /* validate the rest */
856 switch (cb)
857 {
858 case 6:
859 RTStrAssertMsgReturn((puch[5] & 0xc0) == 0x80, ("6/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
860 rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING));
861 case 5:
862 RTStrAssertMsgReturn((puch[4] & 0xc0) == 0x80, ("5/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
863 rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING));
864 case 4:
865 RTStrAssertMsgReturn((puch[3] & 0xc0) == 0x80, ("4/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
866 rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING));
867 case 3:
868 RTStrAssertMsgReturn((puch[2] & 0xc0) == 0x80, ("3/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
869 rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING));
870 case 2:
871 RTStrAssertMsgReturn((puch[1] & 0xc0) == 0x80, ("2/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
872 rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING));
873 break;
874 }
875
876 /* get and validate the code point. */
877 switch (cb)
878 {
879 case 6:
880 uc = (puch[5] & 0x3f)
881 | ((RTUNICP)(puch[4] & 0x3f) << 6)
882 | ((RTUNICP)(puch[3] & 0x3f) << 12)
883 | ((RTUNICP)(puch[2] & 0x3f) << 18)
884 | ((RTUNICP)(puch[1] & 0x3f) << 24)
885 | ((RTUNICP)(uch & 0x01) << 30);
886 RTStrAssertMsgReturn(uc >= 0x04000000 && uc <= 0x7fffffff,
887 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
888 rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING));
889 break;
890 case 5:
891 uc = (puch[4] & 0x3f)
892 | ((RTUNICP)(puch[3] & 0x3f) << 6)
893 | ((RTUNICP)(puch[2] & 0x3f) << 12)
894 | ((RTUNICP)(puch[1] & 0x3f) << 18)
895 | ((RTUNICP)(uch & 0x03) << 24);
896 RTStrAssertMsgReturn(uc >= 0x00200000 && uc <= 0x03ffffff,
897 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
898 rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING));
899 break;
900 case 4:
901 uc = (puch[3] & 0x3f)
902 | ((RTUNICP)(puch[2] & 0x3f) << 6)
903 | ((RTUNICP)(puch[1] & 0x3f) << 12)
904 | ((RTUNICP)(uch & 0x07) << 18);
905 RTStrAssertMsgReturn(uc >= 0x00010000 && uc <= 0x001fffff,
906 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
907 rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING));
908 break;
909 case 3:
910 uc = (puch[2] & 0x3f)
911 | ((RTUNICP)(puch[1] & 0x3f) << 6)
912 | ((RTUNICP)(uch & 0x0f) << 12);
913 RTStrAssertMsgReturn(uc >= 0x00000800 && uc <= 0x0000fffd,
914 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
915 rtStrGetCpExFailure(ppsz, pCp, uc == 0xffff || uc == 0xfffe ? VERR_CODE_POINT_ENDIAN_INDICATOR : VERR_INVALID_UTF8_ENCODING));
916 RTStrAssertMsgReturn(uc < 0xd800 || uc > 0xdfff,
917 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
918 rtStrGetCpExFailure(ppsz, pCp, VERR_CODE_POINT_SURROGATE));
919 break;
920 case 2:
921 uc = (puch[1] & 0x3f)
922 | ((RTUNICP)(uch & 0x1f) << 6);
923 RTStrAssertMsgReturn(uc >= 0x00000080 && uc <= 0x000007ff,
924 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
925 rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING));
926 break;
927 default: /* impossible, but GCC is bitching. */
928 uc = RTUNICP_INVALID;
929 break;
930 }
931 puch += cb;
932 }
933 else
934 {
935 /* 6th bit is always set. */
936 RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(strlen((char *)puch), 10), puch));
937 return rtStrGetCpExFailure(ppsz, pCp, VERR_INVALID_UTF8_ENCODING);
938 }
939 *pCp = uc;
940 *ppsz = (const char *)puch;
941 return VINF_SUCCESS;
942}
943RT_EXPORT_SYMBOL(RTStrGetCpExInternal);
944
945
946/**
947 * Handle invalid encodings passed to RTStrGetCpNEx().
948 * @returns rc
949 * @param ppsz The pointer to the string position point.
950 * @param pcch Pointer to the string length.
951 * @param pCp Where to store RTUNICP_INVALID.
952 * @param rc The iprt error code.
953 */
954static int rtStrGetCpNExFailure(const char **ppsz, size_t *pcch, PRTUNICP pCp, int rc)
955{
956 /*
957 * Try find a valid encoding.
958 */
959 (*ppsz)++; /** @todo code this! */
960 (*pcch)--;
961 *pCp = RTUNICP_INVALID;
962 return rc;
963}
964
965
966RTDECL(int) RTStrGetCpNExInternal(const char **ppsz, size_t *pcch, PRTUNICP pCp)
967{
968 const unsigned char *puch = (const unsigned char *)*ppsz;
969 const unsigned char uch = *puch;
970 size_t cch = *pcch;
971 RTUNICP uc;
972
973 if (cch == 0)
974 {
975 *pCp = RTUNICP_INVALID;
976 return VERR_END_OF_STRING;
977 }
978
979 /* ASCII ? */
980 if (!(uch & RT_BIT(7)))
981 {
982 uc = uch;
983 puch++;
984 cch--;
985 }
986 else if (uch & RT_BIT(6))
987 {
988 /* figure the length and validate the first octet. */
989 unsigned cb;
990 if (!(uch & RT_BIT(5)))
991 cb = 2;
992 else if (!(uch & RT_BIT(4)))
993 cb = 3;
994 else if (!(uch & RT_BIT(3)))
995 cb = 4;
996 else if (!(uch & RT_BIT(2)))
997 cb = 5;
998 else if (!(uch & RT_BIT(1)))
999 cb = 6;
1000 else
1001 {
1002 RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(strlen((char *)puch), 10), puch));
1003 return rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING);
1004 }
1005
1006 if (cb > cch)
1007 return rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING);
1008
1009 /* validate the rest */
1010 switch (cb)
1011 {
1012 case 6:
1013 RTStrAssertMsgReturn((puch[5] & 0xc0) == 0x80, ("6/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1014 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING));
1015 case 5:
1016 RTStrAssertMsgReturn((puch[4] & 0xc0) == 0x80, ("5/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1017 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING));
1018 case 4:
1019 RTStrAssertMsgReturn((puch[3] & 0xc0) == 0x80, ("4/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1020 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING));
1021 case 3:
1022 RTStrAssertMsgReturn((puch[2] & 0xc0) == 0x80, ("3/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1023 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING));
1024 case 2:
1025 RTStrAssertMsgReturn((puch[1] & 0xc0) == 0x80, ("2/%u: %.*Rhxs\n", cb, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1026 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING));
1027 break;
1028 }
1029
1030 /* get and validate the code point. */
1031 switch (cb)
1032 {
1033 case 6:
1034 uc = (puch[5] & 0x3f)
1035 | ((RTUNICP)(puch[4] & 0x3f) << 6)
1036 | ((RTUNICP)(puch[3] & 0x3f) << 12)
1037 | ((RTUNICP)(puch[2] & 0x3f) << 18)
1038 | ((RTUNICP)(puch[1] & 0x3f) << 24)
1039 | ((RTUNICP)(uch & 0x01) << 30);
1040 RTStrAssertMsgReturn(uc >= 0x04000000 && uc <= 0x7fffffff,
1041 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1042 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING));
1043 break;
1044 case 5:
1045 uc = (puch[4] & 0x3f)
1046 | ((RTUNICP)(puch[3] & 0x3f) << 6)
1047 | ((RTUNICP)(puch[2] & 0x3f) << 12)
1048 | ((RTUNICP)(puch[1] & 0x3f) << 18)
1049 | ((RTUNICP)(uch & 0x03) << 24);
1050 RTStrAssertMsgReturn(uc >= 0x00200000 && uc <= 0x03ffffff,
1051 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1052 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING));
1053 break;
1054 case 4:
1055 uc = (puch[3] & 0x3f)
1056 | ((RTUNICP)(puch[2] & 0x3f) << 6)
1057 | ((RTUNICP)(puch[1] & 0x3f) << 12)
1058 | ((RTUNICP)(uch & 0x07) << 18);
1059 RTStrAssertMsgReturn(uc >= 0x00010000 && uc <= 0x001fffff,
1060 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1061 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING));
1062 break;
1063 case 3:
1064 uc = (puch[2] & 0x3f)
1065 | ((RTUNICP)(puch[1] & 0x3f) << 6)
1066 | ((RTUNICP)(uch & 0x0f) << 12);
1067 RTStrAssertMsgReturn(uc >= 0x00000800 && uc <= 0x0000fffd,
1068 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1069 rtStrGetCpNExFailure(ppsz, pcch, pCp, uc == 0xffff || uc == 0xfffe ? VERR_CODE_POINT_ENDIAN_INDICATOR : VERR_INVALID_UTF8_ENCODING));
1070 RTStrAssertMsgReturn(uc < 0xd800 || uc > 0xdfff,
1071 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1072 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_CODE_POINT_SURROGATE));
1073 break;
1074 case 2:
1075 uc = (puch[1] & 0x3f)
1076 | ((RTUNICP)(uch & 0x1f) << 6);
1077 RTStrAssertMsgReturn(uc >= 0x00000080 && uc <= 0x000007ff,
1078 ("%u: cp=%#010RX32: %.*Rhxs\n", cb, uc, RT_MIN(cb + 10, strlen((char *)puch)), puch),
1079 rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING));
1080 break;
1081 default: /* impossible, but GCC is bitching. */
1082 uc = RTUNICP_INVALID;
1083 break;
1084 }
1085 puch += cb;
1086 cch -= cb;
1087 }
1088 else
1089 {
1090 /* 6th bit is always set. */
1091 RTStrAssertMsgFailed(("Invalid UTF-8 first byte: %.*Rhxs\n", RT_MIN(strlen((char *)puch), 10), puch));
1092 return rtStrGetCpNExFailure(ppsz, pcch, pCp, VERR_INVALID_UTF8_ENCODING);
1093 }
1094 *pCp = uc;
1095 *ppsz = (const char *)puch;
1096 (*pcch) = cch;
1097 return VINF_SUCCESS;
1098}
1099RT_EXPORT_SYMBOL(RTStrGetCpNExInternal);
1100
1101
1102RTDECL(char *) RTStrPutCpInternal(char *psz, RTUNICP uc)
1103{
1104 unsigned char *puch = (unsigned char *)psz;
1105 if (uc < 0x80)
1106 *puch++ = (unsigned char )uc;
1107 else if (uc < 0x00000800)
1108 {
1109 *puch++ = 0xc0 | (uc >> 6);
1110 *puch++ = 0x80 | (uc & 0x3f);
1111 }
1112 else if (uc < 0x00010000)
1113 {
1114 if ( uc < 0x0000d8000
1115 || ( uc > 0x0000dfff
1116 && uc < 0x0000fffe))
1117 {
1118 *puch++ = 0xe0 | (uc >> 12);
1119 *puch++ = 0x80 | ((uc >> 6) & 0x3f);
1120 *puch++ = 0x80 | (uc & 0x3f);
1121 }
1122 else
1123 {
1124 AssertMsgFailed(("Invalid code point U+%05x!\n", uc));
1125 *puch++ = 0x7f;
1126 }
1127 }
1128 else if (uc < 0x00200000)
1129 {
1130 *puch++ = 0xf0 | (uc >> 18);
1131 *puch++ = 0x80 | ((uc >> 12) & 0x3f);
1132 *puch++ = 0x80 | ((uc >> 6) & 0x3f);
1133 *puch++ = 0x80 | (uc & 0x3f);
1134 }
1135 else if (uc < 0x04000000)
1136 {
1137 *puch++ = 0xf8 | (uc >> 24);
1138 *puch++ = 0x80 | ((uc >> 18) & 0x3f);
1139 *puch++ = 0x80 | ((uc >> 12) & 0x3f);
1140 *puch++ = 0x80 | ((uc >> 6) & 0x3f);
1141 *puch++ = 0x80 | (uc & 0x3f);
1142 }
1143 else if (uc <= 0x7fffffff)
1144 {
1145 *puch++ = 0xfc | (uc >> 30);
1146 *puch++ = 0x80 | ((uc >> 24) & 0x3f);
1147 *puch++ = 0x80 | ((uc >> 18) & 0x3f);
1148 *puch++ = 0x80 | ((uc >> 12) & 0x3f);
1149 *puch++ = 0x80 | ((uc >> 6) & 0x3f);
1150 *puch++ = 0x80 | (uc & 0x3f);
1151 }
1152 else
1153 {
1154 AssertMsgFailed(("Invalid code point U+%08x!\n", uc));
1155 *puch++ = 0x7f;
1156 }
1157
1158 return (char *)puch;
1159}
1160RT_EXPORT_SYMBOL(RTStrPutCpInternal);
1161
1162
1163RTDECL(char *) RTStrPrevCp(const char *pszStart, const char *psz)
1164{
1165 if (pszStart < psz)
1166 {
1167 /* simple char? */
1168 const unsigned char *puch = (const unsigned char *)psz;
1169 unsigned uch = *--puch;
1170 if (!(uch & RT_BIT(7)))
1171 return (char *)puch;
1172 RTStrAssertMsgReturn(!(uch & RT_BIT(6)), ("uch=%#x\n", uch), (char *)pszStart);
1173
1174 /* two or more. */
1175 uint32_t uMask = 0xffffffc0;
1176 while ( (const unsigned char *)pszStart < puch
1177 && !(uMask & 1))
1178 {
1179 uch = *--puch;
1180 if ((uch & 0xc0) != 0x80)
1181 {
1182 RTStrAssertMsgReturn((uch & (uMask >> 1)) == (uMask & 0xff),
1183 ("Invalid UTF-8 encoding: %.*Rhxs puch=%p psz=%p\n", psz - (char *)puch, puch, psz),
1184 (char *)pszStart);
1185 return (char *)puch;
1186 }
1187 uMask >>= 1;
1188 }
1189 RTStrAssertMsgFailed(("Invalid UTF-8 encoding: %.*Rhxs puch=%p psz=%p\n", psz - (char *)puch, puch, psz));
1190 }
1191 return (char *)pszStart;
1192}
1193RT_EXPORT_SYMBOL(RTStrPrevCp);
1194
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette