VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/time/time.cpp@ 10998

Last change on this file since 10998 was 8579, checked in by vboxsync, 17 years ago

AssertBreakVoid -> AssertBreak

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 30.4 KB
Line 
1/* $Id: time.cpp 8579 2008-05-05 13:54:26Z vboxsync $ */
2/** @file
3 * IPRT - Time.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 *
26 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
27 * Clara, CA 95054 USA or visit http://www.sun.com if you need
28 * additional information or have any questions.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#define LOG_GROUP RTLOGGROUP_TIME
36#include <iprt/time.h>
37#include <iprt/string.h>
38#include <iprt/assert.h>
39#include "internal/time.h"
40
41
42/*******************************************************************************
43* Defined Constants And Macros *
44*******************************************************************************/
45/** The max year we possibly could implode. */
46#define RTTIME_MAX_YEAR (292 + 1970)
47/** The min year we possibly could implode. */
48#define RTTIME_MIN_YEAR (-293 + 1970)
49
50/** The max day supported by our time representation. (2262-04-11T23-47-16.854775807) */
51#define RTTIME_MAX_DAY (365*292+71 + 101-1)
52/** The min day supported by our time representation. (1677-09-21T00-12-43.145224192) */
53#define RTTIME_MIN_DAY (365*-293-70 + 264-1)
54
55/** The max nano second into the max day. (2262-04-11T23-47-16.854775807) */
56#define RTTIME_MAX_DAY_NANO ( INT64_C(1000000000) * (23*3600 + 47*60 + 16) + 854775807 )
57/** The min nano second into the min day. (1677-09-21T00-12-43.145224192) */
58#define RTTIME_MIN_DAY_NANO ( INT64_C(1000000000) * (00*3600 + 12*60 + 43) + 145224192 )
59
60
61/*******************************************************************************
62* Global Variables *
63*******************************************************************************/
64/**
65 * Days per month in a common year.
66 */
67static const uint8_t g_acDaysInMonths[12] =
68{
69 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
70 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
71};
72
73/**
74 * Days per month in a leap year.
75 */
76static const uint8_t g_acDaysInMonthsLeap[12] =
77{
78 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
79 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
80};
81
82/**
83 * The day of year for each month in a common year.
84 */
85static const uint16_t g_aiDayOfYear[12 + 1] =
86{
87 1, /* Jan */
88 1+31, /* Feb */
89 1+31+28, /* Mar */
90 1+31+28+31, /* Apr */
91 1+31+28+31+30, /* May */
92 1+31+28+31+30+31, /* Jun */
93 1+31+28+31+30+31+30, /* Jul */
94 1+31+28+31+30+31+30+31, /* Aug */
95 1+31+28+31+30+31+30+31+31, /* Sep */
96 1+31+28+31+30+31+30+31+31+30, /* Oct */
97 1+31+28+31+30+31+30+31+31+30+31, /* Nov */
98 1+31+28+31+30+31+30+31+31+30+31+30, /* Dec */
99 1+31+28+31+30+31+30+31+31+30+31+30+31
100};
101
102/**
103 * The day of year for each month in a leap year.
104 */
105static const uint16_t g_aiDayOfYearLeap[12 + 1] =
106{
107 1, /* Jan */
108 1+31, /* Feb */
109 1+31+29, /* Mar */
110 1+31+29+31, /* Apr */
111 1+31+29+31+30, /* May */
112 1+31+29+31+30+31, /* Jun */
113 1+31+29+31+30+31+30, /* Jul */
114 1+31+29+31+30+31+30+31, /* Aug */
115 1+31+29+31+30+31+30+31+31, /* Sep */
116 1+31+29+31+30+31+30+31+31+30, /* Oct */
117 1+31+29+31+30+31+30+31+31+30+31, /* Nov */
118 1+31+29+31+30+31+30+31+31+30+31+30, /* Dec */
119 1+31+29+31+30+31+30+31+31+30+31+30+31
120};
121
122/** The index of 1970 in g_aoffYear */
123#define OFF_YEAR_IDX_EPOCH 300
124/** The year of the first index. */
125#define OFF_YEAR_IDX_0_YEAR 1670
126
127/**
128 * The number of days the 1st of january a year is offseted from 1970-01-01.
129 */
130static const int32_t g_aoffYear[] =
131{
132/*1670:*/ 365*-300+-72, 365*-299+-72, 365*-298+-72, 365*-297+-71, 365*-296+-71, 365*-295+-71, 365*-294+-71, 365*-293+-70, 365*-292+-70, 365*-291+-70,
133/*1680:*/ 365*-290+-70, 365*-289+-69, 365*-288+-69, 365*-287+-69, 365*-286+-69, 365*-285+-68, 365*-284+-68, 365*-283+-68, 365*-282+-68, 365*-281+-67,
134/*1690:*/ 365*-280+-67, 365*-279+-67, 365*-278+-67, 365*-277+-66, 365*-276+-66, 365*-275+-66, 365*-274+-66, 365*-273+-65, 365*-272+-65, 365*-271+-65,
135/*1700:*/ 365*-270+-65, 365*-269+-65, 365*-268+-65, 365*-267+-65, 365*-266+-65, 365*-265+-64, 365*-264+-64, 365*-263+-64, 365*-262+-64, 365*-261+-63,
136/*1710:*/ 365*-260+-63, 365*-259+-63, 365*-258+-63, 365*-257+-62, 365*-256+-62, 365*-255+-62, 365*-254+-62, 365*-253+-61, 365*-252+-61, 365*-251+-61,
137/*1720:*/ 365*-250+-61, 365*-249+-60, 365*-248+-60, 365*-247+-60, 365*-246+-60, 365*-245+-59, 365*-244+-59, 365*-243+-59, 365*-242+-59, 365*-241+-58,
138/*1730:*/ 365*-240+-58, 365*-239+-58, 365*-238+-58, 365*-237+-57, 365*-236+-57, 365*-235+-57, 365*-234+-57, 365*-233+-56, 365*-232+-56, 365*-231+-56,
139/*1740:*/ 365*-230+-56, 365*-229+-55, 365*-228+-55, 365*-227+-55, 365*-226+-55, 365*-225+-54, 365*-224+-54, 365*-223+-54, 365*-222+-54, 365*-221+-53,
140/*1750:*/ 365*-220+-53, 365*-219+-53, 365*-218+-53, 365*-217+-52, 365*-216+-52, 365*-215+-52, 365*-214+-52, 365*-213+-51, 365*-212+-51, 365*-211+-51,
141/*1760:*/ 365*-210+-51, 365*-209+-50, 365*-208+-50, 365*-207+-50, 365*-206+-50, 365*-205+-49, 365*-204+-49, 365*-203+-49, 365*-202+-49, 365*-201+-48,
142/*1770:*/ 365*-200+-48, 365*-199+-48, 365*-198+-48, 365*-197+-47, 365*-196+-47, 365*-195+-47, 365*-194+-47, 365*-193+-46, 365*-192+-46, 365*-191+-46,
143/*1780:*/ 365*-190+-46, 365*-189+-45, 365*-188+-45, 365*-187+-45, 365*-186+-45, 365*-185+-44, 365*-184+-44, 365*-183+-44, 365*-182+-44, 365*-181+-43,
144/*1790:*/ 365*-180+-43, 365*-179+-43, 365*-178+-43, 365*-177+-42, 365*-176+-42, 365*-175+-42, 365*-174+-42, 365*-173+-41, 365*-172+-41, 365*-171+-41,
145/*1800:*/ 365*-170+-41, 365*-169+-41, 365*-168+-41, 365*-167+-41, 365*-166+-41, 365*-165+-40, 365*-164+-40, 365*-163+-40, 365*-162+-40, 365*-161+-39,
146/*1810:*/ 365*-160+-39, 365*-159+-39, 365*-158+-39, 365*-157+-38, 365*-156+-38, 365*-155+-38, 365*-154+-38, 365*-153+-37, 365*-152+-37, 365*-151+-37,
147/*1820:*/ 365*-150+-37, 365*-149+-36, 365*-148+-36, 365*-147+-36, 365*-146+-36, 365*-145+-35, 365*-144+-35, 365*-143+-35, 365*-142+-35, 365*-141+-34,
148/*1830:*/ 365*-140+-34, 365*-139+-34, 365*-138+-34, 365*-137+-33, 365*-136+-33, 365*-135+-33, 365*-134+-33, 365*-133+-32, 365*-132+-32, 365*-131+-32,
149/*1840:*/ 365*-130+-32, 365*-129+-31, 365*-128+-31, 365*-127+-31, 365*-126+-31, 365*-125+-30, 365*-124+-30, 365*-123+-30, 365*-122+-30, 365*-121+-29,
150/*1850:*/ 365*-120+-29, 365*-119+-29, 365*-118+-29, 365*-117+-28, 365*-116+-28, 365*-115+-28, 365*-114+-28, 365*-113+-27, 365*-112+-27, 365*-111+-27,
151/*1860:*/ 365*-110+-27, 365*-109+-26, 365*-108+-26, 365*-107+-26, 365*-106+-26, 365*-105+-25, 365*-104+-25, 365*-103+-25, 365*-102+-25, 365*-101+-24,
152/*1870:*/ 365*-100+-24, 365* -99+-24, 365* -98+-24, 365* -97+-23, 365* -96+-23, 365* -95+-23, 365* -94+-23, 365* -93+-22, 365* -92+-22, 365* -91+-22,
153/*1880:*/ 365* -90+-22, 365* -89+-21, 365* -88+-21, 365* -87+-21, 365* -86+-21, 365* -85+-20, 365* -84+-20, 365* -83+-20, 365* -82+-20, 365* -81+-19,
154/*1890:*/ 365* -80+-19, 365* -79+-19, 365* -78+-19, 365* -77+-18, 365* -76+-18, 365* -75+-18, 365* -74+-18, 365* -73+-17, 365* -72+-17, 365* -71+-17,
155/*1900:*/ 365* -70+-17, 365* -69+-17, 365* -68+-17, 365* -67+-17, 365* -66+-17, 365* -65+-16, 365* -64+-16, 365* -63+-16, 365* -62+-16, 365* -61+-15,
156/*1910:*/ 365* -60+-15, 365* -59+-15, 365* -58+-15, 365* -57+-14, 365* -56+-14, 365* -55+-14, 365* -54+-14, 365* -53+-13, 365* -52+-13, 365* -51+-13,
157/*1920:*/ 365* -50+-13, 365* -49+-12, 365* -48+-12, 365* -47+-12, 365* -46+-12, 365* -45+-11, 365* -44+-11, 365* -43+-11, 365* -42+-11, 365* -41+-10,
158/*1930:*/ 365* -40+-10, 365* -39+-10, 365* -38+-10, 365* -37+-9 , 365* -36+-9 , 365* -35+-9 , 365* -34+-9 , 365* -33+-8 , 365* -32+-8 , 365* -31+-8 ,
159/*1940:*/ 365* -30+-8 , 365* -29+-7 , 365* -28+-7 , 365* -27+-7 , 365* -26+-7 , 365* -25+-6 , 365* -24+-6 , 365* -23+-6 , 365* -22+-6 , 365* -21+-5 ,
160/*1950:*/ 365* -20+-5 , 365* -19+-5 , 365* -18+-5 , 365* -17+-4 , 365* -16+-4 , 365* -15+-4 , 365* -14+-4 , 365* -13+-3 , 365* -12+-3 , 365* -11+-3 ,
161/*1960:*/ 365* -10+-3 , 365* -9+-2 , 365* -8+-2 , 365* -7+-2 , 365* -6+-2 , 365* -5+-1 , 365* -4+-1 , 365* -3+-1 , 365* -2+-1 , 365* -1+0 ,
162/*1970:*/ 365* 0+0 , 365* 1+0 , 365* 2+0 , 365* 3+1 , 365* 4+1 , 365* 5+1 , 365* 6+1 , 365* 7+2 , 365* 8+2 , 365* 9+2 ,
163/*1980:*/ 365* 10+2 , 365* 11+3 , 365* 12+3 , 365* 13+3 , 365* 14+3 , 365* 15+4 , 365* 16+4 , 365* 17+4 , 365* 18+4 , 365* 19+5 ,
164/*1990:*/ 365* 20+5 , 365* 21+5 , 365* 22+5 , 365* 23+6 , 365* 24+6 , 365* 25+6 , 365* 26+6 , 365* 27+7 , 365* 28+7 , 365* 29+7 ,
165/*2000:*/ 365* 30+7 , 365* 31+8 , 365* 32+8 , 365* 33+8 , 365* 34+8 , 365* 35+9 , 365* 36+9 , 365* 37+9 , 365* 38+9 , 365* 39+10 ,
166/*2010:*/ 365* 40+10 , 365* 41+10 , 365* 42+10 , 365* 43+11 , 365* 44+11 , 365* 45+11 , 365* 46+11 , 365* 47+12 , 365* 48+12 , 365* 49+12 ,
167/*2020:*/ 365* 50+12 , 365* 51+13 , 365* 52+13 , 365* 53+13 , 365* 54+13 , 365* 55+14 , 365* 56+14 , 365* 57+14 , 365* 58+14 , 365* 59+15 ,
168/*2030:*/ 365* 60+15 , 365* 61+15 , 365* 62+15 , 365* 63+16 , 365* 64+16 , 365* 65+16 , 365* 66+16 , 365* 67+17 , 365* 68+17 , 365* 69+17 ,
169/*2040:*/ 365* 70+17 , 365* 71+18 , 365* 72+18 , 365* 73+18 , 365* 74+18 , 365* 75+19 , 365* 76+19 , 365* 77+19 , 365* 78+19 , 365* 79+20 ,
170/*2050:*/ 365* 80+20 , 365* 81+20 , 365* 82+20 , 365* 83+21 , 365* 84+21 , 365* 85+21 , 365* 86+21 , 365* 87+22 , 365* 88+22 , 365* 89+22 ,
171/*2060:*/ 365* 90+22 , 365* 91+23 , 365* 92+23 , 365* 93+23 , 365* 94+23 , 365* 95+24 , 365* 96+24 , 365* 97+24 , 365* 98+24 , 365* 99+25 ,
172/*2070:*/ 365* 100+25 , 365* 101+25 , 365* 102+25 , 365* 103+26 , 365* 104+26 , 365* 105+26 , 365* 106+26 , 365* 107+27 , 365* 108+27 , 365* 109+27 ,
173/*2080:*/ 365* 110+27 , 365* 111+28 , 365* 112+28 , 365* 113+28 , 365* 114+28 , 365* 115+29 , 365* 116+29 , 365* 117+29 , 365* 118+29 , 365* 119+30 ,
174/*2090:*/ 365* 120+30 , 365* 121+30 , 365* 122+30 , 365* 123+31 , 365* 124+31 , 365* 125+31 , 365* 126+31 , 365* 127+32 , 365* 128+32 , 365* 129+32 ,
175/*2100:*/ 365* 130+32 , 365* 131+32 , 365* 132+32 , 365* 133+32 , 365* 134+32 , 365* 135+33 , 365* 136+33 , 365* 137+33 , 365* 138+33 , 365* 139+34 ,
176/*2110:*/ 365* 140+34 , 365* 141+34 , 365* 142+34 , 365* 143+35 , 365* 144+35 , 365* 145+35 , 365* 146+35 , 365* 147+36 , 365* 148+36 , 365* 149+36 ,
177/*2120:*/ 365* 150+36 , 365* 151+37 , 365* 152+37 , 365* 153+37 , 365* 154+37 , 365* 155+38 , 365* 156+38 , 365* 157+38 , 365* 158+38 , 365* 159+39 ,
178/*2130:*/ 365* 160+39 , 365* 161+39 , 365* 162+39 , 365* 163+40 , 365* 164+40 , 365* 165+40 , 365* 166+40 , 365* 167+41 , 365* 168+41 , 365* 169+41 ,
179/*2140:*/ 365* 170+41 , 365* 171+42 , 365* 172+42 , 365* 173+42 , 365* 174+42 , 365* 175+43 , 365* 176+43 , 365* 177+43 , 365* 178+43 , 365* 179+44 ,
180/*2150:*/ 365* 180+44 , 365* 181+44 , 365* 182+44 , 365* 183+45 , 365* 184+45 , 365* 185+45 , 365* 186+45 , 365* 187+46 , 365* 188+46 , 365* 189+46 ,
181/*2160:*/ 365* 190+46 , 365* 191+47 , 365* 192+47 , 365* 193+47 , 365* 194+47 , 365* 195+48 , 365* 196+48 , 365* 197+48 , 365* 198+48 , 365* 199+49 ,
182/*2170:*/ 365* 200+49 , 365* 201+49 , 365* 202+49 , 365* 203+50 , 365* 204+50 , 365* 205+50 , 365* 206+50 , 365* 207+51 , 365* 208+51 , 365* 209+51 ,
183/*2180:*/ 365* 210+51 , 365* 211+52 , 365* 212+52 , 365* 213+52 , 365* 214+52 , 365* 215+53 , 365* 216+53 , 365* 217+53 , 365* 218+53 , 365* 219+54 ,
184/*2190:*/ 365* 220+54 , 365* 221+54 , 365* 222+54 , 365* 223+55 , 365* 224+55 , 365* 225+55 , 365* 226+55 , 365* 227+56 , 365* 228+56 , 365* 229+56 ,
185/*2200:*/ 365* 230+56 , 365* 231+56 , 365* 232+56 , 365* 233+56 , 365* 234+56 , 365* 235+57 , 365* 236+57 , 365* 237+57 , 365* 238+57 , 365* 239+58 ,
186/*2210:*/ 365* 240+58 , 365* 241+58 , 365* 242+58 , 365* 243+59 , 365* 244+59 , 365* 245+59 , 365* 246+59 , 365* 247+60 , 365* 248+60 , 365* 249+60 ,
187/*2220:*/ 365* 250+60 , 365* 251+61 , 365* 252+61 , 365* 253+61 , 365* 254+61 , 365* 255+62 , 365* 256+62 , 365* 257+62 , 365* 258+62 , 365* 259+63 ,
188/*2230:*/ 365* 260+63 , 365* 261+63 , 365* 262+63 , 365* 263+64 , 365* 264+64 , 365* 265+64 , 365* 266+64 , 365* 267+65 , 365* 268+65 , 365* 269+65 ,
189/*2240:*/ 365* 270+65 , 365* 271+66 , 365* 272+66 , 365* 273+66 , 365* 274+66 , 365* 275+67 , 365* 276+67 , 365* 277+67 , 365* 278+67 , 365* 279+68 ,
190/*2250:*/ 365* 280+68 , 365* 281+68 , 365* 282+68 , 365* 283+69 , 365* 284+69 , 365* 285+69 , 365* 286+69 , 365* 287+70 , 365* 288+70 , 365* 289+70 ,
191/*2260:*/ 365* 290+70 , 365* 291+71 , 365* 292+71 , 365* 293+71 , 365* 294+71 , 365* 295+72 , 365* 296+72 , 365* 297+72 , 365* 298+72 , 365* 299+73
192};
193
194/* generator code:
195#include <stdio.h>
196bool isLeapYear(int iYear)
197{
198 return iYear % 4 == 0 && (iYear % 100 != 0 || iYear % 400 == 0);
199}
200void printYear(int iYear, int iLeap)
201{
202 if (!(iYear % 10))
203 printf("\n/" "*%d:*" "/", iYear + 1970);
204 printf(" 365*%4d+%-3d,", iYear, iLeap);
205}
206int main()
207{
208 int iYear = 0;
209 int iLeap = 0;
210 while (iYear > -300)
211 iLeap -= isLeapYear(1970 + --iYear);
212 while (iYear < 300)
213 {
214 printYear(iYear, iLeap);
215 iLeap += isLeapYear(1970 + iYear++);
216 }
217 printf("\n");
218 return 0;
219}
220*/
221
222
223/**
224 * Checks if a year is a leap year or not.
225 *
226 * @returns true if it's a leap year.
227 * @returns false if it's a common year.
228 * @param i32Year The year in question.
229 */
230DECLINLINE(bool) rtTimeIsLeapYear(int32_t i32Year)
231{
232 return i32Year % 4 == 0
233 && ( i32Year % 100 != 0
234 || i32Year % 400 == 0);
235}
236
237/**
238 * Checks if a year is a leap year or not.
239 *
240 * @returns true if it's a leap year.
241 * @returns false if it's a common year.
242 * @param i32Year The year in question.
243 */
244RTDECL(bool) RTTimeIsLeapYear(int32_t i32Year)
245{
246 return rtTimeIsLeapYear(i32Year);
247}
248
249
250/**
251 * Explodes a time spec (UTC).
252 *
253 * @returns pTime.
254 * @param pTime Where to store the exploded time.
255 * @param pTimeSpec The time spec to exploded.
256 */
257RTDECL(PRTTIME) RTTimeExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec)
258{
259 AssertMsg(VALID_PTR(pTime), ("%p\n", pTime));
260 AssertMsg(VALID_PTR(pTimeSpec), ("%p\n", pTime));
261
262 /*
263 * The simple stuff first.
264 */
265 pTime->fFlags = RTTIME_FLAGS_TYPE_UTC;
266 int64_t i64Div = pTimeSpec->i64NanosecondsRelativeToUnixEpoch;
267 int32_t i32Rem = (int32_t)(i64Div % 1000000000);
268 i64Div /= 1000000000;
269 if (i32Rem < 0)
270 {
271 i32Rem += 1000000000;
272 i64Div--;
273 }
274 pTime->u32Nanosecond = i32Rem;
275
276 /* second */
277 i32Rem = (int32_t)(i64Div % 60);
278 i64Div /= 60;
279 if (i32Rem < 0)
280 {
281 i32Rem += 60;
282 i64Div--;
283 }
284 pTime->u8Second = i32Rem;
285
286 /* minute */
287 int32_t i32Div = (int32_t)i64Div; /* 60,000,000,000 > 33bit, so 31bit suffices. */
288 i32Rem = i32Div % 60;
289 i32Div /= 60;
290 if (i32Rem < 0)
291 {
292 i32Rem += 60;
293 i32Div--;
294 }
295 pTime->u8Minute = i32Rem;
296
297 /* hour */
298 i32Rem = i32Div % 24;
299 i32Div /= 24; /* days relative to 1970-01-01 */
300 if (i32Rem < 0)
301 {
302 i32Rem += 24;
303 i32Div--;
304 }
305 pTime->u8Hour = i32Rem;
306
307 /* weekday - 1970-01-01 was a Thursday (3) */
308 pTime->u8WeekDay = ((int)(i32Div % 7) + 3 + 7) % 7;
309
310 /*
311 * We've now got a number of days relative to 1970-01-01.
312 * To get the correct year number we have to mess with leap years. Fortunatly,
313 * the represenation we've got only supports a few hundred years, so we can
314 * generate a table and perform a simple two way search from the modulus 365 derived.
315 */
316 unsigned iYear = OFF_YEAR_IDX_EPOCH + i32Div / 365;
317 while (g_aoffYear[iYear + 1] <= i32Div)
318 iYear++;
319 while (g_aoffYear[iYear] > i32Div)
320 iYear--;
321 pTime->i32Year = iYear + OFF_YEAR_IDX_0_YEAR;
322 i32Div -= g_aoffYear[iYear];
323 pTime->u16YearDay = i32Div + 1;
324
325 /*
326 * Figuring out the month is done in a manner similar to the year, only here we
327 * ensure that the index is matching or too small.
328 */
329 const uint16_t *paiDayOfYear;
330 if (rtTimeIsLeapYear(pTime->i32Year))
331 {
332 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
333 paiDayOfYear = &g_aiDayOfYearLeap[0];
334 }
335 else
336 {
337 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
338 paiDayOfYear = &g_aiDayOfYear[0];
339 }
340 int iMonth = i32Div / 32;
341 i32Div++;
342 while (paiDayOfYear[iMonth + 1] <= i32Div)
343 iMonth++;
344 pTime->u8Month = iMonth + 1;
345 i32Div -= paiDayOfYear[iMonth];
346 pTime->u8MonthDay = i32Div + 1;
347
348 /* This is for UTC timespecs, so, no offset. */
349 pTime->offUTC = 0;
350
351 return pTime;
352}
353
354
355/**
356 * Implodes exploded time to a time spec (UTC).
357 *
358 * @returns pTime on success.
359 * @returns NULL if the pTime data is invalid.
360 * @param pTimeSpec Where to store the imploded UTC time.
361 * If pTime specifies a time which outside the range, maximum or
362 * minimum values will be returned.
363 * @param pTime Pointer to the exploded time to implode.
364 * The fields u8Month, u8WeekDay and u8MonthDay are not used,
365 * and all the other fields are expected to be within their
366 * bounds. Use RTTimeNormalize() to calculate u16YearDay and
367 * normalize the ranges of the fields.
368 */
369RTDECL(PRTTIMESPEC) RTTimeImplode(PRTTIMESPEC pTimeSpec, PCRTTIME pTime)
370{
371 /*
372 * Validate input.
373 */
374 AssertReturn(VALID_PTR(pTimeSpec), NULL);
375 AssertReturn(VALID_PTR(pTime), NULL);
376 AssertReturn(pTime->u32Nanosecond < 1000000000, NULL);
377 AssertReturn(pTime->u8Second < 60, NULL);
378 AssertReturn(pTime->u8Minute < 60, NULL);
379 AssertReturn(pTime->u8Hour < 24, NULL);
380 AssertReturn(pTime->u16YearDay >= 1, NULL);
381 AssertReturn(pTime->u16YearDay <= (rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365), NULL);
382 AssertMsgReturn(pTime->i32Year <= RTTIME_MAX_YEAR && pTime->i32Year >= RTTIME_MIN_YEAR, ("%RI32\n", pTime->i32Year), NULL);
383
384 /*
385 * Do the conversion to nanoseconds.
386 */
387 int32_t i32Days = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
388 + pTime->u16YearDay - 1;
389 AssertMsgReturn(i32Days <= RTTIME_MAX_DAY && i32Days >= RTTIME_MIN_DAY, ("%RI32\n", i32Days), NULL);
390
391 uint32_t u32Secs = pTime->u8Second
392 + pTime->u8Minute * 60
393 + pTime->u8Hour * 3600;
394 int64_t i64Nanos = (uint64_t)pTime->u32Nanosecond
395 + u32Secs * UINT64_C(1000000000);
396 AssertMsgReturn(i32Days != RTTIME_MAX_DAY || i64Nanos <= RTTIME_MAX_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
397 AssertMsgReturn(i32Days != RTTIME_MIN_DAY || i64Nanos >= RTTIME_MIN_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
398
399 i64Nanos += i32Days * UINT64_C(86400000000000);
400
401 pTimeSpec->i64NanosecondsRelativeToUnixEpoch = i64Nanos;
402 return pTimeSpec;
403}
404
405
406/**
407 * Internal worker for RTTimeNormalize and RTTimeLocalNormalize.
408 * It doesn't adjust the UCT offset but leaves that for RTTimeLocalNormalize.
409 */
410PRTTIME rtTimeNormalizeInternal(PRTTIME pTime)
411{
412 /*
413 * Fix the YearDay and Month/MonthDay.
414 */
415 bool fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
416 if (!pTime->u16YearDay)
417 {
418 /*
419 * The Month+MonthDay must present, overflow adjust them and calc the year day.
420 */
421 AssertMsgReturn( pTime->u8Month
422 && pTime->u8MonthDay,
423 ("date=%d-%d-%d\n", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay),
424 NULL);
425 while (pTime->u8Month > 12)
426 {
427 pTime->u8Month -= 12;
428 pTime->i32Year++;
429 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
430 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
431 }
432
433 for (;;)
434 {
435 unsigned cDaysInMonth = fLeapYear
436 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
437 : g_acDaysInMonthsLeap[pTime->u8Month - 1];
438 if (pTime->u8MonthDay <= cDaysInMonth)
439 break;
440 pTime->u8MonthDay -= cDaysInMonth;
441 if (pTime->u8Month != 12)
442 pTime->u8Month++;
443 else
444 {
445 pTime->u8Month = 1;
446 pTime->i32Year++;
447 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
448 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
449 }
450 }
451
452 pTime->u16YearDay = pTime->u8MonthDay - 1
453 + (fLeapYear
454 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
455 : g_aiDayOfYear[pTime->u8Month - 1]);
456 }
457 else
458 {
459 /*
460 * Are both YearDay and Month/MonthDay valid?
461 * Check that they don't overflow and match, if not use YearDay (simpler).
462 */
463 bool fRecalc = true;
464 if ( pTime->u8Month
465 && pTime->u8MonthDay)
466 {
467 do
468 {
469 /* If you change one, zero the other to make clear what you mean. */
470 AssertBreak(pTime->u8Month <= 12);
471 AssertBreak(pTime->u8MonthDay <= (fLeapYear
472 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
473 : g_acDaysInMonths[pTime->u8Month - 1]));
474 uint16_t u16YearDay = pTime->u8MonthDay - 1
475 + (fLeapYear
476 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
477 : g_aiDayOfYear[pTime->u8Month - 1]);
478 AssertBreak(u16YearDay == pTime->u16YearDay);
479 fRecalc = false;
480 } while (0);
481 }
482 if (fRecalc)
483 {
484 /* overflow adjust YearDay */
485 while (pTime->u16YearDay > (fLeapYear ? 366 : 365))
486 {
487 pTime->u16YearDay -= fLeapYear ? 366 : 365;
488 pTime->i32Year++;
489 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
490 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
491 }
492
493 /* calc Month and MonthDay */
494 const uint16_t *paiDayOfYear = fLeapYear
495 ? &g_aiDayOfYearLeap[0]
496 : &g_aiDayOfYear[0];
497 pTime->u8Month = 1;
498 while (pTime->u16YearDay > paiDayOfYear[pTime->u8Month])
499 pTime->u8Month++;
500 Assert(pTime->u8Month >= 1 && pTime->u8Month <= 12);
501 pTime->u8MonthDay = pTime->u16YearDay - paiDayOfYear[pTime->u8Month - 1] + 1;
502 }
503 }
504
505 /*
506 * Fixup time overflows.
507 * Use unsigned int values internally to avoid overflows.
508 */
509 unsigned uSecond = pTime->u8Second;
510 unsigned uMinute = pTime->u8Minute;
511 unsigned uHour = pTime->u8Hour;
512
513 while (pTime->u32Nanosecond >= 1000000000)
514 {
515 pTime->u32Nanosecond -= 1000000000;
516 uSecond++;
517 }
518
519 while (uSecond >= 60)
520 {
521 uSecond -= 60;
522 uMinute++;
523 }
524
525 while (uMinute >= 60)
526 {
527 uMinute -= 60;
528 uHour++;
529 }
530
531 while (uHour >= 24)
532 {
533 uHour -= 24;
534
535 /* This is really a RTTimeIncDay kind of thing... */
536 if (pTime->u16YearDay + 1 != (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month] : g_aiDayOfYear[pTime->u8Month]))
537 {
538 pTime->u16YearDay++;
539 pTime->u8MonthDay++;
540 }
541 else if (pTime->u8Month != 12)
542 {
543 pTime->u16YearDay++;
544 pTime->u8Month++;
545 pTime->u8MonthDay = 1;
546 }
547 else
548 {
549 pTime->i32Year++;
550 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
551 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
552 pTime->u16YearDay = 1;
553 pTime->u8Month = 1;
554 pTime->u8MonthDay = 1;
555 }
556 }
557
558 pTime->u8Second = uSecond;
559 pTime->u8Minute = uMinute;
560 pTime->u8Hour = uHour;
561
562 /*
563 * Correct the leap year flag.
564 * Assert if it's wrong, but ignore if unset.
565 */
566 if (fLeapYear)
567 {
568 Assert(!(pTime->fFlags & RTTIME_FLAGS_COMMON_YEAR));
569 pTime->fFlags &= ~RTTIME_FLAGS_COMMON_YEAR;
570 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
571 }
572 else
573 {
574 Assert(!(pTime->fFlags & RTTIME_FLAGS_LEAP_YEAR));
575 pTime->fFlags &= ~RTTIME_FLAGS_LEAP_YEAR;
576 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
577 }
578
579
580 /*
581 * Calc week day.
582 *
583 * 1970-01-01 was a Thursday (3), so find the number of days relative to
584 * that point. We use the table when possible and a slow+stupid+brute-force
585 * algorithm for points outside it. Feel free to optimize the latter by
586 * using some clever formula.
587 */
588 if ( pTime->i32Year >= OFF_YEAR_IDX_0_YEAR
589 && pTime->i32Year < OFF_YEAR_IDX_0_YEAR + (int32_t)RT_ELEMENTS(g_aoffYear))
590 {
591 int32_t offDays = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
592 + pTime->u16YearDay -1;
593 pTime->u8WeekDay = ((offDays % 7) + 3 + 7) % 7;
594 }
595 else
596 {
597 int32_t i32Year = pTime->i32Year;
598 if (i32Year >= 1970)
599 {
600 uint64_t offDays = pTime->u16YearDay - 1;
601 while (--i32Year >= 1970)
602 offDays += rtTimeIsLeapYear(i32Year) ? 366 : 365;
603 pTime->u8WeekDay = (uint8_t)((offDays + 3) % 7);
604 }
605 else
606 {
607 int64_t offDays = (fLeapYear ? -366 - 1 : -365 - 1) + pTime->u16YearDay;
608 while (++i32Year < 1970)
609 offDays -= rtTimeIsLeapYear(i32Year) ? 366 : 365;
610 pTime->u8WeekDay = ((int)(offDays % 7) + 3 + 7) % 7;
611 }
612 }
613 return pTime;
614}
615
616
617/**
618 * Normalizes the fields of a time structure.
619 *
620 * It is possible to calculate year-day from month/day and vice
621 * versa. If you adjust any of of these, make sure to zero the
622 * other so you make it clear which of the fields to use. If
623 * it's ambiguous, the year-day field is used (and you get
624 * assertions in debug builds).
625 *
626 * All the time fields and the year-day or month/day fields will
627 * be adjusted for overflows. (Since all fields are unsigned, there
628 * is no underflows.) It is possible to exploit this for simple
629 * date math, though the recommended way of doing that to implode
630 * the time into a timespec and do the math on that.
631 *
632 * @returns pTime on success.
633 * @returns NULL if the data is invalid.
634 *
635 * @param pTime The time structure to normalize.
636 *
637 * @remarks This function doesn't work with local time, only with UTC time.
638 */
639RTDECL(PRTTIME) RTTimeNormalize(PRTTIME pTime)
640{
641 /*
642 * Validate that we've got the minium of stuff handy.
643 */
644 AssertReturn(VALID_PTR(pTime), NULL);
645 AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL);
646 AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_LOCAL, ("Use RTTimeLocalNormalize!\n"), NULL);
647 AssertMsgReturn(pTime->offUTC == 0, ("%d; Use RTTimeLocalNormalize!\n", pTime->offUTC), NULL);
648
649 pTime = rtTimeNormalizeInternal(pTime);
650 if (pTime)
651 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
652 return pTime;
653}
654
655
656/**
657 * Converts a time spec to a ISO date string.
658 *
659 * @returns psz on success.
660 * @returns NULL on buffer underflow.
661 * @param pTime The time. Caller should've normalized this.
662 * @param psz Where to store the string.
663 * @param cb The size of the buffer.
664 */
665RTDECL(char *) RTTimeToString(PCRTTIME pTime, char *psz, size_t cb)
666{
667 /* (Default to UTC if not specified) */
668 if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL
669 && pTime->offUTC)
670 {
671 Assert(pTime->offUTC <= 840 && pTime->offUTC >= -840);
672 int32_t offUTCHour = pTime->offUTC / 60;
673 int32_t offUTCMinute = pTime->offUTC % 60;
674 char chSign;
675 if (pTime->offUTC >= 0)
676 chSign = '+';
677 else
678 {
679 chSign = '-';
680 offUTCMinute = -offUTCMinute;
681 offUTCHour = -offUTCHour;
682 }
683 size_t cch = RTStrPrintf(psz, cb,
684 "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32%c%02%02",
685 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
686 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond,
687 chSign, offUTCHour, offUTCMinute);
688 if ( cch <= 15
689 || psz[cch - 5] != chSign)
690 return NULL;
691 }
692 else
693 {
694 size_t cch = RTStrPrintf(psz, cb, "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32Z",
695 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
696 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond);
697 if ( cch <= 15
698 || psz[cch - 1] != 'Z')
699 return NULL;
700 }
701 return psz;
702}
703
704
705/**
706 * Converts a time spec to a ISO date string.
707 *
708 * @returns psz on success.
709 * @returns NULL on buffer underflow.
710 * @param pTime The time spec.
711 * @param psz Where to store the string.
712 * @param cb The size of the buffer.
713 */
714RTDECL(char *) RTTimeSpecToString(PCRTTIMESPEC pTime, char *psz, size_t cb)
715{
716 RTTIME Time;
717 return RTTimeToString(RTTimeExplode(&Time, pTime), psz, cb);
718}
719
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette