VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/time/time.cpp@ 49456

Last change on this file since 49456 was 48935, checked in by vboxsync, 11 years ago

Runtime: Whitespace and svn:keyword cleanups by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 35.2 KB
Line 
1/* $Id: time.cpp 48935 2013-10-07 21:19:37Z vboxsync $ */
2/** @file
3 * IPRT - Time.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Header Files *
30*******************************************************************************/
31#define LOG_GROUP RTLOGGROUP_TIME
32#include <iprt/time.h>
33#include "internal/iprt.h"
34
35#include <iprt/ctype.h>
36#include <iprt/string.h>
37#include <iprt/assert.h>
38#include "internal/time.h"
39
40
41/*******************************************************************************
42* Defined Constants And Macros *
43*******************************************************************************/
44/** The max year we possibly could implode. */
45#define RTTIME_MAX_YEAR (292 + 1970)
46/** The min year we possibly could implode. */
47#define RTTIME_MIN_YEAR (-293 + 1970)
48
49/** The max day supported by our time representation. (2262-04-11T23-47-16.854775807) */
50#define RTTIME_MAX_DAY (365*292+71 + 101-1)
51/** The min day supported by our time representation. (1677-09-21T00-12-43.145224192) */
52#define RTTIME_MIN_DAY (365*-293-70 + 264-1)
53
54/** The max nano second into the max day. (2262-04-11T23-47-16.854775807) */
55#define RTTIME_MAX_DAY_NANO ( INT64_C(1000000000) * (23*3600 + 47*60 + 16) + 854775807 )
56/** The min nano second into the min day. (1677-09-21T00-12-43.145224192) */
57#define RTTIME_MIN_DAY_NANO ( INT64_C(1000000000) * (00*3600 + 12*60 + 43) + 145224192 )
58
59
60/*******************************************************************************
61* Global Variables *
62*******************************************************************************/
63/**
64 * Days per month in a common year.
65 */
66static const uint8_t g_acDaysInMonths[12] =
67{
68 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
69 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
70};
71
72/**
73 * Days per month in a leap year.
74 */
75static const uint8_t g_acDaysInMonthsLeap[12] =
76{
77 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
78 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
79};
80
81/**
82 * The day of year for each month in a common year.
83 */
84static const uint16_t g_aiDayOfYear[12 + 1] =
85{
86 1, /* Jan */
87 1+31, /* Feb */
88 1+31+28, /* Mar */
89 1+31+28+31, /* Apr */
90 1+31+28+31+30, /* May */
91 1+31+28+31+30+31, /* Jun */
92 1+31+28+31+30+31+30, /* Jul */
93 1+31+28+31+30+31+30+31, /* Aug */
94 1+31+28+31+30+31+30+31+31, /* Sep */
95 1+31+28+31+30+31+30+31+31+30, /* Oct */
96 1+31+28+31+30+31+30+31+31+30+31, /* Nov */
97 1+31+28+31+30+31+30+31+31+30+31+30, /* Dec */
98 1+31+28+31+30+31+30+31+31+30+31+30+31
99};
100
101/**
102 * The day of year for each month in a leap year.
103 */
104static const uint16_t g_aiDayOfYearLeap[12 + 1] =
105{
106 1, /* Jan */
107 1+31, /* Feb */
108 1+31+29, /* Mar */
109 1+31+29+31, /* Apr */
110 1+31+29+31+30, /* May */
111 1+31+29+31+30+31, /* Jun */
112 1+31+29+31+30+31+30, /* Jul */
113 1+31+29+31+30+31+30+31, /* Aug */
114 1+31+29+31+30+31+30+31+31, /* Sep */
115 1+31+29+31+30+31+30+31+31+30, /* Oct */
116 1+31+29+31+30+31+30+31+31+30+31, /* Nov */
117 1+31+29+31+30+31+30+31+31+30+31+30, /* Dec */
118 1+31+29+31+30+31+30+31+31+30+31+30+31
119};
120
121/** The index of 1970 in g_aoffYear */
122#define OFF_YEAR_IDX_EPOCH 300
123/** The year of the first index. */
124#define OFF_YEAR_IDX_0_YEAR 1670
125
126/**
127 * The number of days the 1st of January a year is offseted from 1970-01-01.
128 */
129static const int32_t g_aoffYear[] =
130{
131/*1670:*/ 365*-300+-72, 365*-299+-72, 365*-298+-72, 365*-297+-71, 365*-296+-71, 365*-295+-71, 365*-294+-71, 365*-293+-70, 365*-292+-70, 365*-291+-70,
132/*1680:*/ 365*-290+-70, 365*-289+-69, 365*-288+-69, 365*-287+-69, 365*-286+-69, 365*-285+-68, 365*-284+-68, 365*-283+-68, 365*-282+-68, 365*-281+-67,
133/*1690:*/ 365*-280+-67, 365*-279+-67, 365*-278+-67, 365*-277+-66, 365*-276+-66, 365*-275+-66, 365*-274+-66, 365*-273+-65, 365*-272+-65, 365*-271+-65,
134/*1700:*/ 365*-270+-65, 365*-269+-65, 365*-268+-65, 365*-267+-65, 365*-266+-65, 365*-265+-64, 365*-264+-64, 365*-263+-64, 365*-262+-64, 365*-261+-63,
135/*1710:*/ 365*-260+-63, 365*-259+-63, 365*-258+-63, 365*-257+-62, 365*-256+-62, 365*-255+-62, 365*-254+-62, 365*-253+-61, 365*-252+-61, 365*-251+-61,
136/*1720:*/ 365*-250+-61, 365*-249+-60, 365*-248+-60, 365*-247+-60, 365*-246+-60, 365*-245+-59, 365*-244+-59, 365*-243+-59, 365*-242+-59, 365*-241+-58,
137/*1730:*/ 365*-240+-58, 365*-239+-58, 365*-238+-58, 365*-237+-57, 365*-236+-57, 365*-235+-57, 365*-234+-57, 365*-233+-56, 365*-232+-56, 365*-231+-56,
138/*1740:*/ 365*-230+-56, 365*-229+-55, 365*-228+-55, 365*-227+-55, 365*-226+-55, 365*-225+-54, 365*-224+-54, 365*-223+-54, 365*-222+-54, 365*-221+-53,
139/*1750:*/ 365*-220+-53, 365*-219+-53, 365*-218+-53, 365*-217+-52, 365*-216+-52, 365*-215+-52, 365*-214+-52, 365*-213+-51, 365*-212+-51, 365*-211+-51,
140/*1760:*/ 365*-210+-51, 365*-209+-50, 365*-208+-50, 365*-207+-50, 365*-206+-50, 365*-205+-49, 365*-204+-49, 365*-203+-49, 365*-202+-49, 365*-201+-48,
141/*1770:*/ 365*-200+-48, 365*-199+-48, 365*-198+-48, 365*-197+-47, 365*-196+-47, 365*-195+-47, 365*-194+-47, 365*-193+-46, 365*-192+-46, 365*-191+-46,
142/*1780:*/ 365*-190+-46, 365*-189+-45, 365*-188+-45, 365*-187+-45, 365*-186+-45, 365*-185+-44, 365*-184+-44, 365*-183+-44, 365*-182+-44, 365*-181+-43,
143/*1790:*/ 365*-180+-43, 365*-179+-43, 365*-178+-43, 365*-177+-42, 365*-176+-42, 365*-175+-42, 365*-174+-42, 365*-173+-41, 365*-172+-41, 365*-171+-41,
144/*1800:*/ 365*-170+-41, 365*-169+-41, 365*-168+-41, 365*-167+-41, 365*-166+-41, 365*-165+-40, 365*-164+-40, 365*-163+-40, 365*-162+-40, 365*-161+-39,
145/*1810:*/ 365*-160+-39, 365*-159+-39, 365*-158+-39, 365*-157+-38, 365*-156+-38, 365*-155+-38, 365*-154+-38, 365*-153+-37, 365*-152+-37, 365*-151+-37,
146/*1820:*/ 365*-150+-37, 365*-149+-36, 365*-148+-36, 365*-147+-36, 365*-146+-36, 365*-145+-35, 365*-144+-35, 365*-143+-35, 365*-142+-35, 365*-141+-34,
147/*1830:*/ 365*-140+-34, 365*-139+-34, 365*-138+-34, 365*-137+-33, 365*-136+-33, 365*-135+-33, 365*-134+-33, 365*-133+-32, 365*-132+-32, 365*-131+-32,
148/*1840:*/ 365*-130+-32, 365*-129+-31, 365*-128+-31, 365*-127+-31, 365*-126+-31, 365*-125+-30, 365*-124+-30, 365*-123+-30, 365*-122+-30, 365*-121+-29,
149/*1850:*/ 365*-120+-29, 365*-119+-29, 365*-118+-29, 365*-117+-28, 365*-116+-28, 365*-115+-28, 365*-114+-28, 365*-113+-27, 365*-112+-27, 365*-111+-27,
150/*1860:*/ 365*-110+-27, 365*-109+-26, 365*-108+-26, 365*-107+-26, 365*-106+-26, 365*-105+-25, 365*-104+-25, 365*-103+-25, 365*-102+-25, 365*-101+-24,
151/*1870:*/ 365*-100+-24, 365* -99+-24, 365* -98+-24, 365* -97+-23, 365* -96+-23, 365* -95+-23, 365* -94+-23, 365* -93+-22, 365* -92+-22, 365* -91+-22,
152/*1880:*/ 365* -90+-22, 365* -89+-21, 365* -88+-21, 365* -87+-21, 365* -86+-21, 365* -85+-20, 365* -84+-20, 365* -83+-20, 365* -82+-20, 365* -81+-19,
153/*1890:*/ 365* -80+-19, 365* -79+-19, 365* -78+-19, 365* -77+-18, 365* -76+-18, 365* -75+-18, 365* -74+-18, 365* -73+-17, 365* -72+-17, 365* -71+-17,
154/*1900:*/ 365* -70+-17, 365* -69+-17, 365* -68+-17, 365* -67+-17, 365* -66+-17, 365* -65+-16, 365* -64+-16, 365* -63+-16, 365* -62+-16, 365* -61+-15,
155/*1910:*/ 365* -60+-15, 365* -59+-15, 365* -58+-15, 365* -57+-14, 365* -56+-14, 365* -55+-14, 365* -54+-14, 365* -53+-13, 365* -52+-13, 365* -51+-13,
156/*1920:*/ 365* -50+-13, 365* -49+-12, 365* -48+-12, 365* -47+-12, 365* -46+-12, 365* -45+-11, 365* -44+-11, 365* -43+-11, 365* -42+-11, 365* -41+-10,
157/*1930:*/ 365* -40+-10, 365* -39+-10, 365* -38+-10, 365* -37+-9 , 365* -36+-9 , 365* -35+-9 , 365* -34+-9 , 365* -33+-8 , 365* -32+-8 , 365* -31+-8 ,
158/*1940:*/ 365* -30+-8 , 365* -29+-7 , 365* -28+-7 , 365* -27+-7 , 365* -26+-7 , 365* -25+-6 , 365* -24+-6 , 365* -23+-6 , 365* -22+-6 , 365* -21+-5 ,
159/*1950:*/ 365* -20+-5 , 365* -19+-5 , 365* -18+-5 , 365* -17+-4 , 365* -16+-4 , 365* -15+-4 , 365* -14+-4 , 365* -13+-3 , 365* -12+-3 , 365* -11+-3 ,
160/*1960:*/ 365* -10+-3 , 365* -9+-2 , 365* -8+-2 , 365* -7+-2 , 365* -6+-2 , 365* -5+-1 , 365* -4+-1 , 365* -3+-1 , 365* -2+-1 , 365* -1+0 ,
161/*1970:*/ 365* 0+0 , 365* 1+0 , 365* 2+0 , 365* 3+1 , 365* 4+1 , 365* 5+1 , 365* 6+1 , 365* 7+2 , 365* 8+2 , 365* 9+2 ,
162/*1980:*/ 365* 10+2 , 365* 11+3 , 365* 12+3 , 365* 13+3 , 365* 14+3 , 365* 15+4 , 365* 16+4 , 365* 17+4 , 365* 18+4 , 365* 19+5 ,
163/*1990:*/ 365* 20+5 , 365* 21+5 , 365* 22+5 , 365* 23+6 , 365* 24+6 , 365* 25+6 , 365* 26+6 , 365* 27+7 , 365* 28+7 , 365* 29+7 ,
164/*2000:*/ 365* 30+7 , 365* 31+8 , 365* 32+8 , 365* 33+8 , 365* 34+8 , 365* 35+9 , 365* 36+9 , 365* 37+9 , 365* 38+9 , 365* 39+10 ,
165/*2010:*/ 365* 40+10 , 365* 41+10 , 365* 42+10 , 365* 43+11 , 365* 44+11 , 365* 45+11 , 365* 46+11 , 365* 47+12 , 365* 48+12 , 365* 49+12 ,
166/*2020:*/ 365* 50+12 , 365* 51+13 , 365* 52+13 , 365* 53+13 , 365* 54+13 , 365* 55+14 , 365* 56+14 , 365* 57+14 , 365* 58+14 , 365* 59+15 ,
167/*2030:*/ 365* 60+15 , 365* 61+15 , 365* 62+15 , 365* 63+16 , 365* 64+16 , 365* 65+16 , 365* 66+16 , 365* 67+17 , 365* 68+17 , 365* 69+17 ,
168/*2040:*/ 365* 70+17 , 365* 71+18 , 365* 72+18 , 365* 73+18 , 365* 74+18 , 365* 75+19 , 365* 76+19 , 365* 77+19 , 365* 78+19 , 365* 79+20 ,
169/*2050:*/ 365* 80+20 , 365* 81+20 , 365* 82+20 , 365* 83+21 , 365* 84+21 , 365* 85+21 , 365* 86+21 , 365* 87+22 , 365* 88+22 , 365* 89+22 ,
170/*2060:*/ 365* 90+22 , 365* 91+23 , 365* 92+23 , 365* 93+23 , 365* 94+23 , 365* 95+24 , 365* 96+24 , 365* 97+24 , 365* 98+24 , 365* 99+25 ,
171/*2070:*/ 365* 100+25 , 365* 101+25 , 365* 102+25 , 365* 103+26 , 365* 104+26 , 365* 105+26 , 365* 106+26 , 365* 107+27 , 365* 108+27 , 365* 109+27 ,
172/*2080:*/ 365* 110+27 , 365* 111+28 , 365* 112+28 , 365* 113+28 , 365* 114+28 , 365* 115+29 , 365* 116+29 , 365* 117+29 , 365* 118+29 , 365* 119+30 ,
173/*2090:*/ 365* 120+30 , 365* 121+30 , 365* 122+30 , 365* 123+31 , 365* 124+31 , 365* 125+31 , 365* 126+31 , 365* 127+32 , 365* 128+32 , 365* 129+32 ,
174/*2100:*/ 365* 130+32 , 365* 131+32 , 365* 132+32 , 365* 133+32 , 365* 134+32 , 365* 135+33 , 365* 136+33 , 365* 137+33 , 365* 138+33 , 365* 139+34 ,
175/*2110:*/ 365* 140+34 , 365* 141+34 , 365* 142+34 , 365* 143+35 , 365* 144+35 , 365* 145+35 , 365* 146+35 , 365* 147+36 , 365* 148+36 , 365* 149+36 ,
176/*2120:*/ 365* 150+36 , 365* 151+37 , 365* 152+37 , 365* 153+37 , 365* 154+37 , 365* 155+38 , 365* 156+38 , 365* 157+38 , 365* 158+38 , 365* 159+39 ,
177/*2130:*/ 365* 160+39 , 365* 161+39 , 365* 162+39 , 365* 163+40 , 365* 164+40 , 365* 165+40 , 365* 166+40 , 365* 167+41 , 365* 168+41 , 365* 169+41 ,
178/*2140:*/ 365* 170+41 , 365* 171+42 , 365* 172+42 , 365* 173+42 , 365* 174+42 , 365* 175+43 , 365* 176+43 , 365* 177+43 , 365* 178+43 , 365* 179+44 ,
179/*2150:*/ 365* 180+44 , 365* 181+44 , 365* 182+44 , 365* 183+45 , 365* 184+45 , 365* 185+45 , 365* 186+45 , 365* 187+46 , 365* 188+46 , 365* 189+46 ,
180/*2160:*/ 365* 190+46 , 365* 191+47 , 365* 192+47 , 365* 193+47 , 365* 194+47 , 365* 195+48 , 365* 196+48 , 365* 197+48 , 365* 198+48 , 365* 199+49 ,
181/*2170:*/ 365* 200+49 , 365* 201+49 , 365* 202+49 , 365* 203+50 , 365* 204+50 , 365* 205+50 , 365* 206+50 , 365* 207+51 , 365* 208+51 , 365* 209+51 ,
182/*2180:*/ 365* 210+51 , 365* 211+52 , 365* 212+52 , 365* 213+52 , 365* 214+52 , 365* 215+53 , 365* 216+53 , 365* 217+53 , 365* 218+53 , 365* 219+54 ,
183/*2190:*/ 365* 220+54 , 365* 221+54 , 365* 222+54 , 365* 223+55 , 365* 224+55 , 365* 225+55 , 365* 226+55 , 365* 227+56 , 365* 228+56 , 365* 229+56 ,
184/*2200:*/ 365* 230+56 , 365* 231+56 , 365* 232+56 , 365* 233+56 , 365* 234+56 , 365* 235+57 , 365* 236+57 , 365* 237+57 , 365* 238+57 , 365* 239+58 ,
185/*2210:*/ 365* 240+58 , 365* 241+58 , 365* 242+58 , 365* 243+59 , 365* 244+59 , 365* 245+59 , 365* 246+59 , 365* 247+60 , 365* 248+60 , 365* 249+60 ,
186/*2220:*/ 365* 250+60 , 365* 251+61 , 365* 252+61 , 365* 253+61 , 365* 254+61 , 365* 255+62 , 365* 256+62 , 365* 257+62 , 365* 258+62 , 365* 259+63 ,
187/*2230:*/ 365* 260+63 , 365* 261+63 , 365* 262+63 , 365* 263+64 , 365* 264+64 , 365* 265+64 , 365* 266+64 , 365* 267+65 , 365* 268+65 , 365* 269+65 ,
188/*2240:*/ 365* 270+65 , 365* 271+66 , 365* 272+66 , 365* 273+66 , 365* 274+66 , 365* 275+67 , 365* 276+67 , 365* 277+67 , 365* 278+67 , 365* 279+68 ,
189/*2250:*/ 365* 280+68 , 365* 281+68 , 365* 282+68 , 365* 283+69 , 365* 284+69 , 365* 285+69 , 365* 286+69 , 365* 287+70 , 365* 288+70 , 365* 289+70 ,
190/*2260:*/ 365* 290+70 , 365* 291+71 , 365* 292+71 , 365* 293+71 , 365* 294+71 , 365* 295+72 , 365* 296+72 , 365* 297+72 , 365* 298+72 , 365* 299+73
191};
192
193/* generator code:
194#include <stdio.h>
195bool isLeapYear(int iYear)
196{
197 return iYear % 4 == 0 && (iYear % 100 != 0 || iYear % 400 == 0);
198}
199void printYear(int iYear, int iLeap)
200{
201 if (!(iYear % 10))
202 printf("\n/" "*%d:*" "/", iYear + 1970);
203 printf(" 365*%4d+%-3d,", iYear, iLeap);
204}
205int main()
206{
207 int iYear = 0;
208 int iLeap = 0;
209 while (iYear > -300)
210 iLeap -= isLeapYear(1970 + --iYear);
211 while (iYear < 300)
212 {
213 printYear(iYear, iLeap);
214 iLeap += isLeapYear(1970 + iYear++);
215 }
216 printf("\n");
217 return 0;
218}
219*/
220
221
222/**
223 * Checks if a year is a leap year or not.
224 *
225 * @returns true if it's a leap year.
226 * @returns false if it's a common year.
227 * @param i32Year The year in question.
228 */
229DECLINLINE(bool) rtTimeIsLeapYear(int32_t i32Year)
230{
231 return i32Year % 4 == 0
232 && ( i32Year % 100 != 0
233 || i32Year % 400 == 0);
234}
235
236
237/**
238 * Checks if a year is a leap year or not.
239 *
240 * @returns true if it's a leap year.
241 * @returns false if it's a common year.
242 * @param i32Year The year in question.
243 */
244RTDECL(bool) RTTimeIsLeapYear(int32_t i32Year)
245{
246 return rtTimeIsLeapYear(i32Year);
247}
248RT_EXPORT_SYMBOL(RTTimeIsLeapYear);
249
250
251/**
252 * Explodes a time spec (UTC).
253 *
254 * @returns pTime.
255 * @param pTime Where to store the exploded time.
256 * @param pTimeSpec The time spec to exploded.
257 */
258RTDECL(PRTTIME) RTTimeExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec)
259{
260 int64_t i64Div;
261 int32_t i32Div;
262 int32_t i32Rem;
263 unsigned iYear;
264 const uint16_t *paiDayOfYear;
265 int iMonth;
266
267 AssertMsg(VALID_PTR(pTime), ("%p\n", pTime));
268 AssertMsg(VALID_PTR(pTimeSpec), ("%p\n", pTime));
269
270 /*
271 * The simple stuff first.
272 */
273 pTime->fFlags = RTTIME_FLAGS_TYPE_UTC;
274 i64Div = pTimeSpec->i64NanosecondsRelativeToUnixEpoch;
275 i32Rem = (int32_t)(i64Div % 1000000000);
276 i64Div /= 1000000000;
277 if (i32Rem < 0)
278 {
279 i32Rem += 1000000000;
280 i64Div--;
281 }
282 pTime->u32Nanosecond = i32Rem;
283
284 /* second */
285 i32Rem = (int32_t)(i64Div % 60);
286 i64Div /= 60;
287 if (i32Rem < 0)
288 {
289 i32Rem += 60;
290 i64Div--;
291 }
292 pTime->u8Second = i32Rem;
293
294 /* minute */
295 i32Div = (int32_t)i64Div; /* 60,000,000,000 > 33bit, so 31bit suffices. */
296 i32Rem = i32Div % 60;
297 i32Div /= 60;
298 if (i32Rem < 0)
299 {
300 i32Rem += 60;
301 i32Div--;
302 }
303 pTime->u8Minute = i32Rem;
304
305 /* hour */
306 i32Rem = i32Div % 24;
307 i32Div /= 24; /* days relative to 1970-01-01 */
308 if (i32Rem < 0)
309 {
310 i32Rem += 24;
311 i32Div--;
312 }
313 pTime->u8Hour = i32Rem;
314
315 /* weekday - 1970-01-01 was a Thursday (3) */
316 pTime->u8WeekDay = ((int)(i32Div % 7) + 3 + 7) % 7;
317
318 /*
319 * We've now got a number of days relative to 1970-01-01.
320 * To get the correct year number we have to mess with leap years. Fortunately,
321 * the representation we've got only supports a few hundred years, so we can
322 * generate a table and perform a simple two way search from the modulus 365 derived.
323 */
324 iYear = OFF_YEAR_IDX_EPOCH + i32Div / 365;
325 while (g_aoffYear[iYear + 1] <= i32Div)
326 iYear++;
327 while (g_aoffYear[iYear] > i32Div)
328 iYear--;
329 pTime->i32Year = iYear + OFF_YEAR_IDX_0_YEAR;
330 i32Div -= g_aoffYear[iYear];
331 pTime->u16YearDay = i32Div + 1;
332
333 /*
334 * Figuring out the month is done in a manner similar to the year, only here we
335 * ensure that the index is matching or too small.
336 */
337 if (rtTimeIsLeapYear(pTime->i32Year))
338 {
339 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
340 paiDayOfYear = &g_aiDayOfYearLeap[0];
341 }
342 else
343 {
344 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
345 paiDayOfYear = &g_aiDayOfYear[0];
346 }
347 iMonth = i32Div / 32;
348 i32Div++;
349 while (paiDayOfYear[iMonth + 1] <= i32Div)
350 iMonth++;
351 pTime->u8Month = iMonth + 1;
352 i32Div -= paiDayOfYear[iMonth];
353 pTime->u8MonthDay = i32Div + 1;
354
355 /* This is for UTC timespecs, so, no offset. */
356 pTime->offUTC = 0;
357
358 return pTime;
359}
360RT_EXPORT_SYMBOL(RTTimeExplode);
361
362
363/**
364 * Implodes exploded time to a time spec (UTC).
365 *
366 * @returns pTime on success.
367 * @returns NULL if the pTime data is invalid.
368 * @param pTimeSpec Where to store the imploded UTC time.
369 * If pTime specifies a time which outside the range, maximum or
370 * minimum values will be returned.
371 * @param pTime Pointer to the exploded time to implode.
372 * The fields u8Month, u8WeekDay and u8MonthDay are not used,
373 * and all the other fields are expected to be within their
374 * bounds. Use RTTimeNormalize() to calculate u16YearDay and
375 * normalize the ranges of the fields.
376 */
377RTDECL(PRTTIMESPEC) RTTimeImplode(PRTTIMESPEC pTimeSpec, PCRTTIME pTime)
378{
379 int32_t i32Days;
380 uint32_t u32Secs;
381 int64_t i64Nanos;
382
383 /*
384 * Validate input.
385 */
386 AssertReturn(VALID_PTR(pTimeSpec), NULL);
387 AssertReturn(VALID_PTR(pTime), NULL);
388 AssertReturn(pTime->u32Nanosecond < 1000000000, NULL);
389 AssertReturn(pTime->u8Second < 60, NULL);
390 AssertReturn(pTime->u8Minute < 60, NULL);
391 AssertReturn(pTime->u8Hour < 24, NULL);
392 AssertReturn(pTime->u16YearDay >= 1, NULL);
393 AssertReturn(pTime->u16YearDay <= (rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365), NULL);
394 AssertMsgReturn(pTime->i32Year <= RTTIME_MAX_YEAR && pTime->i32Year >= RTTIME_MIN_YEAR, ("%RI32\n", pTime->i32Year), NULL);
395
396 /*
397 * Do the conversion to nanoseconds.
398 */
399 i32Days = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
400 + pTime->u16YearDay - 1;
401 AssertMsgReturn(i32Days <= RTTIME_MAX_DAY && i32Days >= RTTIME_MIN_DAY, ("%RI32\n", i32Days), NULL);
402
403 u32Secs = pTime->u8Second
404 + pTime->u8Minute * 60
405 + pTime->u8Hour * 3600;
406 i64Nanos = (uint64_t)pTime->u32Nanosecond
407 + u32Secs * UINT64_C(1000000000);
408 AssertMsgReturn(i32Days != RTTIME_MAX_DAY || i64Nanos <= RTTIME_MAX_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
409 AssertMsgReturn(i32Days != RTTIME_MIN_DAY || i64Nanos >= RTTIME_MIN_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
410
411 i64Nanos += i32Days * UINT64_C(86400000000000);
412
413 pTimeSpec->i64NanosecondsRelativeToUnixEpoch = i64Nanos;
414 return pTimeSpec;
415}
416RT_EXPORT_SYMBOL(RTTimeImplode);
417
418
419/**
420 * Internal worker for RTTimeNormalize and RTTimeLocalNormalize.
421 * It doesn't adjust the UCT offset but leaves that for RTTimeLocalNormalize.
422 */
423static PRTTIME rtTimeNormalizeInternal(PRTTIME pTime)
424{
425 unsigned uSecond;
426 unsigned uMinute;
427 unsigned uHour;
428 bool fLeapYear;
429
430 /*
431 * Fix the YearDay and Month/MonthDay.
432 */
433 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
434 if (!pTime->u16YearDay)
435 {
436 /*
437 * The Month+MonthDay must present, overflow adjust them and calc the year day.
438 */
439 AssertMsgReturn( pTime->u8Month
440 && pTime->u8MonthDay,
441 ("date=%d-%d-%d\n", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay),
442 NULL);
443 while (pTime->u8Month > 12)
444 {
445 pTime->u8Month -= 12;
446 pTime->i32Year++;
447 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
448 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
449 }
450
451 for (;;)
452 {
453 unsigned cDaysInMonth = fLeapYear
454 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
455 : g_acDaysInMonthsLeap[pTime->u8Month - 1];
456 if (pTime->u8MonthDay <= cDaysInMonth)
457 break;
458 pTime->u8MonthDay -= cDaysInMonth;
459 if (pTime->u8Month != 12)
460 pTime->u8Month++;
461 else
462 {
463 pTime->u8Month = 1;
464 pTime->i32Year++;
465 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
466 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
467 }
468 }
469
470 pTime->u16YearDay = pTime->u8MonthDay - 1
471 + (fLeapYear
472 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
473 : g_aiDayOfYear[pTime->u8Month - 1]);
474 }
475 else
476 {
477 /*
478 * Are both YearDay and Month/MonthDay valid?
479 * Check that they don't overflow and match, if not use YearDay (simpler).
480 */
481 bool fRecalc = true;
482 if ( pTime->u8Month
483 && pTime->u8MonthDay)
484 {
485 do
486 {
487 uint16_t u16YearDay;
488
489 /* If you change one, zero the other to make clear what you mean. */
490 AssertBreak(pTime->u8Month <= 12);
491 AssertBreak(pTime->u8MonthDay <= (fLeapYear
492 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
493 : g_acDaysInMonths[pTime->u8Month - 1]));
494 u16YearDay = pTime->u8MonthDay - 1
495 + (fLeapYear
496 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
497 : g_aiDayOfYear[pTime->u8Month - 1]);
498 AssertBreak(u16YearDay == pTime->u16YearDay);
499 fRecalc = false;
500 } while (0);
501 }
502 if (fRecalc)
503 {
504 const uint16_t *paiDayOfYear;
505
506 /* overflow adjust YearDay */
507 while (pTime->u16YearDay > (fLeapYear ? 366 : 365))
508 {
509 pTime->u16YearDay -= fLeapYear ? 366 : 365;
510 pTime->i32Year++;
511 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
512 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
513 }
514
515 /* calc Month and MonthDay */
516 paiDayOfYear = fLeapYear
517 ? &g_aiDayOfYearLeap[0]
518 : &g_aiDayOfYear[0];
519 pTime->u8Month = 1;
520 while (pTime->u16YearDay > paiDayOfYear[pTime->u8Month])
521 pTime->u8Month++;
522 Assert(pTime->u8Month >= 1 && pTime->u8Month <= 12);
523 pTime->u8MonthDay = pTime->u16YearDay - paiDayOfYear[pTime->u8Month - 1] + 1;
524 }
525 }
526
527 /*
528 * Fixup time overflows.
529 * Use unsigned int values internally to avoid overflows.
530 */
531 uSecond = pTime->u8Second;
532 uMinute = pTime->u8Minute;
533 uHour = pTime->u8Hour;
534
535 while (pTime->u32Nanosecond >= 1000000000)
536 {
537 pTime->u32Nanosecond -= 1000000000;
538 uSecond++;
539 }
540
541 while (uSecond >= 60)
542 {
543 uSecond -= 60;
544 uMinute++;
545 }
546
547 while (uMinute >= 60)
548 {
549 uMinute -= 60;
550 uHour++;
551 }
552
553 while (uHour >= 24)
554 {
555 uHour -= 24;
556
557 /* This is really a RTTimeIncDay kind of thing... */
558 if (pTime->u16YearDay + 1 != (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month] : g_aiDayOfYear[pTime->u8Month]))
559 {
560 pTime->u16YearDay++;
561 pTime->u8MonthDay++;
562 }
563 else if (pTime->u8Month != 12)
564 {
565 pTime->u16YearDay++;
566 pTime->u8Month++;
567 pTime->u8MonthDay = 1;
568 }
569 else
570 {
571 pTime->i32Year++;
572 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
573 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
574 pTime->u16YearDay = 1;
575 pTime->u8Month = 1;
576 pTime->u8MonthDay = 1;
577 }
578 }
579
580 pTime->u8Second = uSecond;
581 pTime->u8Minute = uMinute;
582 pTime->u8Hour = uHour;
583
584 /*
585 * Correct the leap year flag.
586 * Assert if it's wrong, but ignore if unset.
587 */
588 if (fLeapYear)
589 {
590 Assert(!(pTime->fFlags & RTTIME_FLAGS_COMMON_YEAR));
591 pTime->fFlags &= ~RTTIME_FLAGS_COMMON_YEAR;
592 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
593 }
594 else
595 {
596 Assert(!(pTime->fFlags & RTTIME_FLAGS_LEAP_YEAR));
597 pTime->fFlags &= ~RTTIME_FLAGS_LEAP_YEAR;
598 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
599 }
600
601
602 /*
603 * Calc week day.
604 *
605 * 1970-01-01 was a Thursday (3), so find the number of days relative to
606 * that point. We use the table when possible and a slow+stupid+brute-force
607 * algorithm for points outside it. Feel free to optimize the latter by
608 * using some clever formula.
609 */
610 if ( pTime->i32Year >= OFF_YEAR_IDX_0_YEAR
611 && pTime->i32Year < OFF_YEAR_IDX_0_YEAR + (int32_t)RT_ELEMENTS(g_aoffYear))
612 {
613 int32_t offDays = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
614 + pTime->u16YearDay -1;
615 pTime->u8WeekDay = ((offDays % 7) + 3 + 7) % 7;
616 }
617 else
618 {
619 int32_t i32Year = pTime->i32Year;
620 if (i32Year >= 1970)
621 {
622 uint64_t offDays = pTime->u16YearDay - 1;
623 while (--i32Year >= 1970)
624 offDays += rtTimeIsLeapYear(i32Year) ? 366 : 365;
625 pTime->u8WeekDay = (uint8_t)((offDays + 3) % 7);
626 }
627 else
628 {
629 int64_t offDays = (fLeapYear ? -366 - 1 : -365 - 1) + pTime->u16YearDay;
630 while (++i32Year < 1970)
631 offDays -= rtTimeIsLeapYear(i32Year) ? 366 : 365;
632 pTime->u8WeekDay = ((int)(offDays % 7) + 3 + 7) % 7;
633 }
634 }
635 return pTime;
636}
637
638
639/**
640 * Normalizes the fields of a time structure.
641 *
642 * It is possible to calculate year-day from month/day and vice
643 * versa. If you adjust any of these, make sure to zero the
644 * other so you make it clear which of the fields to use. If
645 * it's ambiguous, the year-day field is used (and you get
646 * assertions in debug builds).
647 *
648 * All the time fields and the year-day or month/day fields will
649 * be adjusted for overflows. (Since all fields are unsigned, there
650 * is no underflows.) It is possible to exploit this for simple
651 * date math, though the recommended way of doing that to implode
652 * the time into a timespec and do the math on that.
653 *
654 * @returns pTime on success.
655 * @returns NULL if the data is invalid.
656 *
657 * @param pTime The time structure to normalize.
658 *
659 * @remarks This function doesn't work with local time, only with UTC time.
660 */
661RTDECL(PRTTIME) RTTimeNormalize(PRTTIME pTime)
662{
663 /*
664 * Validate that we've got the minimum of stuff handy.
665 */
666 AssertReturn(VALID_PTR(pTime), NULL);
667 AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL);
668 AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_LOCAL, ("Use RTTimeLocalNormalize!\n"), NULL);
669 AssertMsgReturn(pTime->offUTC == 0, ("%d; Use RTTimeLocalNormalize!\n", pTime->offUTC), NULL);
670
671 pTime = rtTimeNormalizeInternal(pTime);
672 if (pTime)
673 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
674 return pTime;
675}
676RT_EXPORT_SYMBOL(RTTimeNormalize);
677
678
679/**
680 * Converts a time spec to a ISO date string.
681 *
682 * @returns psz on success.
683 * @returns NULL on buffer underflow.
684 * @param pTime The time. Caller should've normalized this.
685 * @param psz Where to store the string.
686 * @param cb The size of the buffer.
687 */
688RTDECL(char *) RTTimeToString(PCRTTIME pTime, char *psz, size_t cb)
689{
690 size_t cch;
691
692 /* (Default to UTC if not specified) */
693 if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL
694 && pTime->offUTC)
695 {
696 int32_t offUTCHour = pTime->offUTC / 60;
697 int32_t offUTCMinute = pTime->offUTC % 60;
698 char chSign;
699 Assert(pTime->offUTC <= 840 && pTime->offUTC >= -840);
700 if (pTime->offUTC >= 0)
701 chSign = '+';
702 else
703 {
704 chSign = '-';
705 offUTCMinute = -offUTCMinute;
706 offUTCHour = -offUTCHour;
707 }
708 cch = RTStrPrintf(psz, cb,
709 "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32%c%02%02",
710 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
711 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond,
712 chSign, offUTCHour, offUTCMinute);
713 if ( cch <= 15
714 || psz[cch - 5] != chSign)
715 return NULL;
716 }
717 else
718 {
719 cch = RTStrPrintf(psz, cb, "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32Z",
720 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
721 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond);
722 if ( cch <= 15
723 || psz[cch - 1] != 'Z')
724 return NULL;
725 }
726 return psz;
727}
728RT_EXPORT_SYMBOL(RTTimeToString);
729
730
731/**
732 * Converts a time spec to a ISO date string.
733 *
734 * @returns psz on success.
735 * @returns NULL on buffer underflow.
736 * @param pTime The time spec.
737 * @param psz Where to store the string.
738 * @param cb The size of the buffer.
739 */
740RTDECL(char *) RTTimeSpecToString(PCRTTIMESPEC pTime, char *psz, size_t cb)
741{
742 RTTIME Time;
743 return RTTimeToString(RTTimeExplode(&Time, pTime), psz, cb);
744}
745RT_EXPORT_SYMBOL(RTTimeSpecToString);
746
747
748
749/**
750 * Attempts to convert an ISO date string to a time structure.
751 *
752 * We're a little forgiving with zero padding, unspecified parts, and leading
753 * and trailing spaces.
754 *
755 * @retval pTime on success,
756 * @retval NULL on failure.
757 * @param pTime Where to store the time on success.
758 * @param pszString The ISO date string to convert.
759 */
760RTDECL(PRTTIME) RTTimeFromString(PRTTIME pTime, const char *pszString)
761{
762 /* Ignore leading spaces. */
763 while (RT_C_IS_SPACE(*pszString))
764 pszString++;
765
766 /*
767 * Init non date & time parts.
768 */
769 pTime->fFlags = RTTIME_FLAGS_TYPE_LOCAL;
770 pTime->offUTC = 0;
771
772 /*
773 * The day part.
774 */
775
776 /* Year */
777 int rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->i32Year);
778 if (rc != VWRN_TRAILING_CHARS)
779 return NULL;
780
781 bool const fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
782 if (fLeapYear)
783 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
784
785 if (*pszString++ != '-')
786 return NULL;
787
788 /* Month of the year. */
789 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Month);
790 if (rc != VWRN_TRAILING_CHARS)
791 return NULL;
792 if (pTime->u8Month == 0 || pTime->u8Month > 12)
793 return NULL;
794 if (*pszString++ != '-')
795 return NULL;
796
797 /* Day of month.*/
798 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8MonthDay);
799 if (rc != VWRN_TRAILING_CHARS && rc != VINF_SUCCESS)
800 return NULL;
801 unsigned const cDaysInMonth = fLeapYear
802 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
803 : g_acDaysInMonthsLeap[pTime->u8Month - 1];
804 if (pTime->u8MonthDay == 0 || pTime->u8MonthDay > cDaysInMonth)
805 return NULL;
806
807 /* Calculate year day. */
808 pTime->u16YearDay = pTime->u8MonthDay - 1
809 + (fLeapYear
810 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
811 : g_aiDayOfYear[pTime->u8Month - 1]);
812
813 /*
814 * The time part.
815 */
816 if (*pszString++ != 'T')
817 return NULL;
818
819 /* Hour. */
820 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Hour);
821 if (rc != VWRN_TRAILING_CHARS)
822 return NULL;
823 if (pTime->u8Hour > 23)
824 return NULL;
825 if (*pszString++ != ':')
826 return NULL;
827
828 /* Minute. */
829 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute);
830 if (rc != VWRN_TRAILING_CHARS)
831 return NULL;
832 if (pTime->u8Minute > 59)
833 return NULL;
834 if (*pszString++ != ':')
835 return NULL;
836
837 /* Second. */
838 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute);
839 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
840 return NULL;
841 if (pTime->u8Second > 59)
842 return NULL;
843
844 /* Nanoseconds is optional and probably non-standard. */
845 if (*pszString == '.')
846 {
847 rc = RTStrToUInt32Ex(pszString + 1, (char **)&pszString, 10, &pTime->u32Nanosecond);
848 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
849 return NULL;
850 if (pTime->u32Nanosecond >= 1000000000)
851 return NULL;
852 }
853 else
854 pTime->u32Nanosecond = 0;
855
856 /*
857 * Time zone.
858 */
859 if (*pszString == 'Z')
860 {
861 pszString++;
862 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
863 pTime->fFlags |= ~RTTIME_FLAGS_TYPE_UTC;
864 pTime->offUTC = 0;
865 }
866 else if ( *pszString == '+'
867 || *pszString == '-')
868 {
869 rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->offUTC);
870 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
871 return NULL;
872 }
873 /* else: No time zone given, local with offUTC = 0. */
874
875 /*
876 * The rest of the string should be blanks.
877 */
878 char ch;
879 while ((ch = *pszString++) != '\0')
880 if (!RT_C_IS_BLANK(ch))
881 return NULL;
882
883 return pTime;
884}
885RT_EXPORT_SYMBOL(RTTimeFromString);
886
887
888/**
889 * Attempts to convert an ISO date string to a time structure.
890 *
891 * We're a little forgiving with zero padding, unspecified parts, and leading
892 * and trailing spaces.
893 *
894 * @retval pTime on success,
895 * @retval NULL on failure.
896 * @param pTime The time spec.
897 * @param pszString The ISO date string to convert.
898 */
899RTDECL(PRTTIMESPEC) RTTimeSpecFromString(PRTTIMESPEC pTime, const char *pszString)
900{
901 RTTIME Time;
902 if (RTTimeFromString(&Time, pszString))
903 return RTTimeImplode(pTime, &Time);
904 return NULL;
905}
906RT_EXPORT_SYMBOL(RTTimeSpecFromString);
907
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette