VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/time/time.cpp@ 72150

Last change on this file since 72150 was 72150, checked in by vboxsync, 7 years ago

IPRT/time: fix condition for converting time to UTC in RTTimeImplode

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 44.5 KB
Line 
1/* $Id: time.cpp 72150 2018-05-07 15:57:55Z vboxsync $ */
2/** @file
3 * IPRT - Time.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP RTLOGGROUP_TIME
32#include <iprt/time.h>
33#include "internal/iprt.h"
34
35#include <iprt/ctype.h>
36#include <iprt/string.h>
37#include <iprt/assert.h>
38#include "internal/time.h"
39
40
41/*********************************************************************************************************************************
42* Defined Constants And Macros *
43*********************************************************************************************************************************/
44/** The max year we possibly could implode. */
45#define RTTIME_MAX_YEAR (292 + 1970)
46/** The min year we possibly could implode. */
47#define RTTIME_MIN_YEAR (-293 + 1970)
48
49/** The max day supported by our time representation. (2262-04-11T23-47-16.854775807) */
50#define RTTIME_MAX_DAY (365*292+71 + 101-1)
51/** The min day supported by our time representation. (1677-09-21T00-12-43.145224192) */
52#define RTTIME_MIN_DAY (365*-293-70 + 264-1)
53
54/** The max nano second into the max day. (2262-04-11T23-47-16.854775807) */
55#define RTTIME_MAX_DAY_NANO ( INT64_C(1000000000) * (23*3600 + 47*60 + 16) + 854775807 )
56/** The min nano second into the min day. (1677-09-21T00-12-43.145224192) */
57#define RTTIME_MIN_DAY_NANO ( INT64_C(1000000000) * (00*3600 + 12*60 + 43) + 145224192 )
58
59/**
60 * Asserts that a_pTime is normalized.
61 */
62#define RTTIME_ASSERT_NORMALIZED(a_pTime) \
63 do \
64 { \
65 Assert(RT_ABS((a_pTime)->offUTC) <= 840); \
66 Assert((a_pTime)->u32Nanosecond < 1000000000); \
67 Assert((a_pTime)->u8Second < 60); \
68 Assert((a_pTime)->u8Minute < 60); \
69 Assert((a_pTime)->u8Hour < 24); \
70 Assert((a_pTime)->u8Month >= 1 && (a_pTime)->u8Month <= 12); \
71 Assert((a_pTime)->u8WeekDay < 7); \
72 Assert((a_pTime)->u16YearDay >= 1); \
73 Assert((a_pTime)->u16YearDay <= (rtTimeIsLeapYear((a_pTime)->i32Year) ? 366 : 365)); \
74 Assert((a_pTime)->u8MonthDay >= 1 && (a_pTime)->u8MonthDay <= 31); \
75 } while (0)
76
77
78/*********************************************************************************************************************************
79* Global Variables *
80*********************************************************************************************************************************/
81/**
82 * Days per month in a common year.
83 */
84static const uint8_t g_acDaysInMonths[12] =
85{
86 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
87 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
88};
89
90/**
91 * Days per month in a leap year.
92 */
93static const uint8_t g_acDaysInMonthsLeap[12] =
94{
95 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
96 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
97};
98
99/**
100 * The day of year for each month in a common year.
101 */
102static const uint16_t g_aiDayOfYear[12 + 1] =
103{
104 1, /* Jan */
105 1+31, /* Feb */
106 1+31+28, /* Mar */
107 1+31+28+31, /* Apr */
108 1+31+28+31+30, /* May */
109 1+31+28+31+30+31, /* Jun */
110 1+31+28+31+30+31+30, /* Jul */
111 1+31+28+31+30+31+30+31, /* Aug */
112 1+31+28+31+30+31+30+31+31, /* Sep */
113 1+31+28+31+30+31+30+31+31+30, /* Oct */
114 1+31+28+31+30+31+30+31+31+30+31, /* Nov */
115 1+31+28+31+30+31+30+31+31+30+31+30, /* Dec */
116 1+31+28+31+30+31+30+31+31+30+31+30+31
117};
118
119/**
120 * The day of year for each month in a leap year.
121 */
122static const uint16_t g_aiDayOfYearLeap[12 + 1] =
123{
124 1, /* Jan */
125 1+31, /* Feb */
126 1+31+29, /* Mar */
127 1+31+29+31, /* Apr */
128 1+31+29+31+30, /* May */
129 1+31+29+31+30+31, /* Jun */
130 1+31+29+31+30+31+30, /* Jul */
131 1+31+29+31+30+31+30+31, /* Aug */
132 1+31+29+31+30+31+30+31+31, /* Sep */
133 1+31+29+31+30+31+30+31+31+30, /* Oct */
134 1+31+29+31+30+31+30+31+31+30+31, /* Nov */
135 1+31+29+31+30+31+30+31+31+30+31+30, /* Dec */
136 1+31+29+31+30+31+30+31+31+30+31+30+31
137};
138
139/** The index of 1970 in g_aoffYear */
140#define OFF_YEAR_IDX_EPOCH 300
141/** The year of the first index. */
142#define OFF_YEAR_IDX_0_YEAR 1670
143
144/**
145 * The number of days the 1st of January a year is offseted from 1970-01-01.
146 */
147static const int32_t g_aoffYear[] =
148{
149/*1670:*/ 365*-300+-72, 365*-299+-72, 365*-298+-72, 365*-297+-71, 365*-296+-71, 365*-295+-71, 365*-294+-71, 365*-293+-70, 365*-292+-70, 365*-291+-70,
150/*1680:*/ 365*-290+-70, 365*-289+-69, 365*-288+-69, 365*-287+-69, 365*-286+-69, 365*-285+-68, 365*-284+-68, 365*-283+-68, 365*-282+-68, 365*-281+-67,
151/*1690:*/ 365*-280+-67, 365*-279+-67, 365*-278+-67, 365*-277+-66, 365*-276+-66, 365*-275+-66, 365*-274+-66, 365*-273+-65, 365*-272+-65, 365*-271+-65,
152/*1700:*/ 365*-270+-65, 365*-269+-65, 365*-268+-65, 365*-267+-65, 365*-266+-65, 365*-265+-64, 365*-264+-64, 365*-263+-64, 365*-262+-64, 365*-261+-63,
153/*1710:*/ 365*-260+-63, 365*-259+-63, 365*-258+-63, 365*-257+-62, 365*-256+-62, 365*-255+-62, 365*-254+-62, 365*-253+-61, 365*-252+-61, 365*-251+-61,
154/*1720:*/ 365*-250+-61, 365*-249+-60, 365*-248+-60, 365*-247+-60, 365*-246+-60, 365*-245+-59, 365*-244+-59, 365*-243+-59, 365*-242+-59, 365*-241+-58,
155/*1730:*/ 365*-240+-58, 365*-239+-58, 365*-238+-58, 365*-237+-57, 365*-236+-57, 365*-235+-57, 365*-234+-57, 365*-233+-56, 365*-232+-56, 365*-231+-56,
156/*1740:*/ 365*-230+-56, 365*-229+-55, 365*-228+-55, 365*-227+-55, 365*-226+-55, 365*-225+-54, 365*-224+-54, 365*-223+-54, 365*-222+-54, 365*-221+-53,
157/*1750:*/ 365*-220+-53, 365*-219+-53, 365*-218+-53, 365*-217+-52, 365*-216+-52, 365*-215+-52, 365*-214+-52, 365*-213+-51, 365*-212+-51, 365*-211+-51,
158/*1760:*/ 365*-210+-51, 365*-209+-50, 365*-208+-50, 365*-207+-50, 365*-206+-50, 365*-205+-49, 365*-204+-49, 365*-203+-49, 365*-202+-49, 365*-201+-48,
159/*1770:*/ 365*-200+-48, 365*-199+-48, 365*-198+-48, 365*-197+-47, 365*-196+-47, 365*-195+-47, 365*-194+-47, 365*-193+-46, 365*-192+-46, 365*-191+-46,
160/*1780:*/ 365*-190+-46, 365*-189+-45, 365*-188+-45, 365*-187+-45, 365*-186+-45, 365*-185+-44, 365*-184+-44, 365*-183+-44, 365*-182+-44, 365*-181+-43,
161/*1790:*/ 365*-180+-43, 365*-179+-43, 365*-178+-43, 365*-177+-42, 365*-176+-42, 365*-175+-42, 365*-174+-42, 365*-173+-41, 365*-172+-41, 365*-171+-41,
162/*1800:*/ 365*-170+-41, 365*-169+-41, 365*-168+-41, 365*-167+-41, 365*-166+-41, 365*-165+-40, 365*-164+-40, 365*-163+-40, 365*-162+-40, 365*-161+-39,
163/*1810:*/ 365*-160+-39, 365*-159+-39, 365*-158+-39, 365*-157+-38, 365*-156+-38, 365*-155+-38, 365*-154+-38, 365*-153+-37, 365*-152+-37, 365*-151+-37,
164/*1820:*/ 365*-150+-37, 365*-149+-36, 365*-148+-36, 365*-147+-36, 365*-146+-36, 365*-145+-35, 365*-144+-35, 365*-143+-35, 365*-142+-35, 365*-141+-34,
165/*1830:*/ 365*-140+-34, 365*-139+-34, 365*-138+-34, 365*-137+-33, 365*-136+-33, 365*-135+-33, 365*-134+-33, 365*-133+-32, 365*-132+-32, 365*-131+-32,
166/*1840:*/ 365*-130+-32, 365*-129+-31, 365*-128+-31, 365*-127+-31, 365*-126+-31, 365*-125+-30, 365*-124+-30, 365*-123+-30, 365*-122+-30, 365*-121+-29,
167/*1850:*/ 365*-120+-29, 365*-119+-29, 365*-118+-29, 365*-117+-28, 365*-116+-28, 365*-115+-28, 365*-114+-28, 365*-113+-27, 365*-112+-27, 365*-111+-27,
168/*1860:*/ 365*-110+-27, 365*-109+-26, 365*-108+-26, 365*-107+-26, 365*-106+-26, 365*-105+-25, 365*-104+-25, 365*-103+-25, 365*-102+-25, 365*-101+-24,
169/*1870:*/ 365*-100+-24, 365* -99+-24, 365* -98+-24, 365* -97+-23, 365* -96+-23, 365* -95+-23, 365* -94+-23, 365* -93+-22, 365* -92+-22, 365* -91+-22,
170/*1880:*/ 365* -90+-22, 365* -89+-21, 365* -88+-21, 365* -87+-21, 365* -86+-21, 365* -85+-20, 365* -84+-20, 365* -83+-20, 365* -82+-20, 365* -81+-19,
171/*1890:*/ 365* -80+-19, 365* -79+-19, 365* -78+-19, 365* -77+-18, 365* -76+-18, 365* -75+-18, 365* -74+-18, 365* -73+-17, 365* -72+-17, 365* -71+-17,
172/*1900:*/ 365* -70+-17, 365* -69+-17, 365* -68+-17, 365* -67+-17, 365* -66+-17, 365* -65+-16, 365* -64+-16, 365* -63+-16, 365* -62+-16, 365* -61+-15,
173/*1910:*/ 365* -60+-15, 365* -59+-15, 365* -58+-15, 365* -57+-14, 365* -56+-14, 365* -55+-14, 365* -54+-14, 365* -53+-13, 365* -52+-13, 365* -51+-13,
174/*1920:*/ 365* -50+-13, 365* -49+-12, 365* -48+-12, 365* -47+-12, 365* -46+-12, 365* -45+-11, 365* -44+-11, 365* -43+-11, 365* -42+-11, 365* -41+-10,
175/*1930:*/ 365* -40+-10, 365* -39+-10, 365* -38+-10, 365* -37+-9 , 365* -36+-9 , 365* -35+-9 , 365* -34+-9 , 365* -33+-8 , 365* -32+-8 , 365* -31+-8 ,
176/*1940:*/ 365* -30+-8 , 365* -29+-7 , 365* -28+-7 , 365* -27+-7 , 365* -26+-7 , 365* -25+-6 , 365* -24+-6 , 365* -23+-6 , 365* -22+-6 , 365* -21+-5 ,
177/*1950:*/ 365* -20+-5 , 365* -19+-5 , 365* -18+-5 , 365* -17+-4 , 365* -16+-4 , 365* -15+-4 , 365* -14+-4 , 365* -13+-3 , 365* -12+-3 , 365* -11+-3 ,
178/*1960:*/ 365* -10+-3 , 365* -9+-2 , 365* -8+-2 , 365* -7+-2 , 365* -6+-2 , 365* -5+-1 , 365* -4+-1 , 365* -3+-1 , 365* -2+-1 , 365* -1+0 ,
179/*1970:*/ 365* 0+0 , 365* 1+0 , 365* 2+0 , 365* 3+1 , 365* 4+1 , 365* 5+1 , 365* 6+1 , 365* 7+2 , 365* 8+2 , 365* 9+2 ,
180/*1980:*/ 365* 10+2 , 365* 11+3 , 365* 12+3 , 365* 13+3 , 365* 14+3 , 365* 15+4 , 365* 16+4 , 365* 17+4 , 365* 18+4 , 365* 19+5 ,
181/*1990:*/ 365* 20+5 , 365* 21+5 , 365* 22+5 , 365* 23+6 , 365* 24+6 , 365* 25+6 , 365* 26+6 , 365* 27+7 , 365* 28+7 , 365* 29+7 ,
182/*2000:*/ 365* 30+7 , 365* 31+8 , 365* 32+8 , 365* 33+8 , 365* 34+8 , 365* 35+9 , 365* 36+9 , 365* 37+9 , 365* 38+9 , 365* 39+10 ,
183/*2010:*/ 365* 40+10 , 365* 41+10 , 365* 42+10 , 365* 43+11 , 365* 44+11 , 365* 45+11 , 365* 46+11 , 365* 47+12 , 365* 48+12 , 365* 49+12 ,
184/*2020:*/ 365* 50+12 , 365* 51+13 , 365* 52+13 , 365* 53+13 , 365* 54+13 , 365* 55+14 , 365* 56+14 , 365* 57+14 , 365* 58+14 , 365* 59+15 ,
185/*2030:*/ 365* 60+15 , 365* 61+15 , 365* 62+15 , 365* 63+16 , 365* 64+16 , 365* 65+16 , 365* 66+16 , 365* 67+17 , 365* 68+17 , 365* 69+17 ,
186/*2040:*/ 365* 70+17 , 365* 71+18 , 365* 72+18 , 365* 73+18 , 365* 74+18 , 365* 75+19 , 365* 76+19 , 365* 77+19 , 365* 78+19 , 365* 79+20 ,
187/*2050:*/ 365* 80+20 , 365* 81+20 , 365* 82+20 , 365* 83+21 , 365* 84+21 , 365* 85+21 , 365* 86+21 , 365* 87+22 , 365* 88+22 , 365* 89+22 ,
188/*2060:*/ 365* 90+22 , 365* 91+23 , 365* 92+23 , 365* 93+23 , 365* 94+23 , 365* 95+24 , 365* 96+24 , 365* 97+24 , 365* 98+24 , 365* 99+25 ,
189/*2070:*/ 365* 100+25 , 365* 101+25 , 365* 102+25 , 365* 103+26 , 365* 104+26 , 365* 105+26 , 365* 106+26 , 365* 107+27 , 365* 108+27 , 365* 109+27 ,
190/*2080:*/ 365* 110+27 , 365* 111+28 , 365* 112+28 , 365* 113+28 , 365* 114+28 , 365* 115+29 , 365* 116+29 , 365* 117+29 , 365* 118+29 , 365* 119+30 ,
191/*2090:*/ 365* 120+30 , 365* 121+30 , 365* 122+30 , 365* 123+31 , 365* 124+31 , 365* 125+31 , 365* 126+31 , 365* 127+32 , 365* 128+32 , 365* 129+32 ,
192/*2100:*/ 365* 130+32 , 365* 131+32 , 365* 132+32 , 365* 133+32 , 365* 134+32 , 365* 135+33 , 365* 136+33 , 365* 137+33 , 365* 138+33 , 365* 139+34 ,
193/*2110:*/ 365* 140+34 , 365* 141+34 , 365* 142+34 , 365* 143+35 , 365* 144+35 , 365* 145+35 , 365* 146+35 , 365* 147+36 , 365* 148+36 , 365* 149+36 ,
194/*2120:*/ 365* 150+36 , 365* 151+37 , 365* 152+37 , 365* 153+37 , 365* 154+37 , 365* 155+38 , 365* 156+38 , 365* 157+38 , 365* 158+38 , 365* 159+39 ,
195/*2130:*/ 365* 160+39 , 365* 161+39 , 365* 162+39 , 365* 163+40 , 365* 164+40 , 365* 165+40 , 365* 166+40 , 365* 167+41 , 365* 168+41 , 365* 169+41 ,
196/*2140:*/ 365* 170+41 , 365* 171+42 , 365* 172+42 , 365* 173+42 , 365* 174+42 , 365* 175+43 , 365* 176+43 , 365* 177+43 , 365* 178+43 , 365* 179+44 ,
197/*2150:*/ 365* 180+44 , 365* 181+44 , 365* 182+44 , 365* 183+45 , 365* 184+45 , 365* 185+45 , 365* 186+45 , 365* 187+46 , 365* 188+46 , 365* 189+46 ,
198/*2160:*/ 365* 190+46 , 365* 191+47 , 365* 192+47 , 365* 193+47 , 365* 194+47 , 365* 195+48 , 365* 196+48 , 365* 197+48 , 365* 198+48 , 365* 199+49 ,
199/*2170:*/ 365* 200+49 , 365* 201+49 , 365* 202+49 , 365* 203+50 , 365* 204+50 , 365* 205+50 , 365* 206+50 , 365* 207+51 , 365* 208+51 , 365* 209+51 ,
200/*2180:*/ 365* 210+51 , 365* 211+52 , 365* 212+52 , 365* 213+52 , 365* 214+52 , 365* 215+53 , 365* 216+53 , 365* 217+53 , 365* 218+53 , 365* 219+54 ,
201/*2190:*/ 365* 220+54 , 365* 221+54 , 365* 222+54 , 365* 223+55 , 365* 224+55 , 365* 225+55 , 365* 226+55 , 365* 227+56 , 365* 228+56 , 365* 229+56 ,
202/*2200:*/ 365* 230+56 , 365* 231+56 , 365* 232+56 , 365* 233+56 , 365* 234+56 , 365* 235+57 , 365* 236+57 , 365* 237+57 , 365* 238+57 , 365* 239+58 ,
203/*2210:*/ 365* 240+58 , 365* 241+58 , 365* 242+58 , 365* 243+59 , 365* 244+59 , 365* 245+59 , 365* 246+59 , 365* 247+60 , 365* 248+60 , 365* 249+60 ,
204/*2220:*/ 365* 250+60 , 365* 251+61 , 365* 252+61 , 365* 253+61 , 365* 254+61 , 365* 255+62 , 365* 256+62 , 365* 257+62 , 365* 258+62 , 365* 259+63 ,
205/*2230:*/ 365* 260+63 , 365* 261+63 , 365* 262+63 , 365* 263+64 , 365* 264+64 , 365* 265+64 , 365* 266+64 , 365* 267+65 , 365* 268+65 , 365* 269+65 ,
206/*2240:*/ 365* 270+65 , 365* 271+66 , 365* 272+66 , 365* 273+66 , 365* 274+66 , 365* 275+67 , 365* 276+67 , 365* 277+67 , 365* 278+67 , 365* 279+68 ,
207/*2250:*/ 365* 280+68 , 365* 281+68 , 365* 282+68 , 365* 283+69 , 365* 284+69 , 365* 285+69 , 365* 286+69 , 365* 287+70 , 365* 288+70 , 365* 289+70 ,
208/*2260:*/ 365* 290+70 , 365* 291+71 , 365* 292+71 , 365* 293+71 , 365* 294+71 , 365* 295+72 , 365* 296+72 , 365* 297+72 , 365* 298+72 , 365* 299+73
209};
210
211/* generator code:
212#include <stdio.h>
213bool isLeapYear(int iYear)
214{
215 return iYear % 4 == 0 && (iYear % 100 != 0 || iYear % 400 == 0);
216}
217void printYear(int iYear, int iLeap)
218{
219 if (!(iYear % 10))
220 printf("\n/" "*%d:*" "/", iYear + 1970);
221 printf(" 365*%4d+%-3d,", iYear, iLeap);
222}
223int main()
224{
225 int iYear = 0;
226 int iLeap = 0;
227 while (iYear > -300)
228 iLeap -= isLeapYear(1970 + --iYear);
229 while (iYear < 300)
230 {
231 printYear(iYear, iLeap);
232 iLeap += isLeapYear(1970 + iYear++);
233 }
234 printf("\n");
235 return 0;
236}
237*/
238
239/*********************************************************************************************************************************
240* Internal Functions *
241*********************************************************************************************************************************/
242static PRTTIME rtTimeConvertToZulu(PRTTIME pTime);
243
244
245/**
246 * Checks if a year is a leap year or not.
247 *
248 * @returns true if it's a leap year.
249 * @returns false if it's a common year.
250 * @param i32Year The year in question.
251 */
252DECLINLINE(bool) rtTimeIsLeapYear(int32_t i32Year)
253{
254 return i32Year % 4 == 0
255 && ( i32Year % 100 != 0
256 || i32Year % 400 == 0);
257}
258
259
260/**
261 * Checks if a year is a leap year or not.
262 *
263 * @returns true if it's a leap year.
264 * @returns false if it's a common year.
265 * @param i32Year The year in question.
266 */
267RTDECL(bool) RTTimeIsLeapYear(int32_t i32Year)
268{
269 return rtTimeIsLeapYear(i32Year);
270}
271RT_EXPORT_SYMBOL(RTTimeIsLeapYear);
272
273
274/**
275 * Explodes a time spec (UTC).
276 *
277 * @returns pTime.
278 * @param pTime Where to store the exploded time.
279 * @param pTimeSpec The time spec to exploded.
280 */
281RTDECL(PRTTIME) RTTimeExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec)
282{
283 int64_t i64Div;
284 int32_t i32Div;
285 int32_t i32Rem;
286 unsigned iYear;
287 const uint16_t *paiDayOfYear;
288 int iMonth;
289
290 AssertMsg(VALID_PTR(pTime), ("%p\n", pTime));
291 AssertMsg(VALID_PTR(pTimeSpec), ("%p\n", pTime));
292
293 /*
294 * The simple stuff first.
295 */
296 pTime->fFlags = RTTIME_FLAGS_TYPE_UTC;
297 i64Div = pTimeSpec->i64NanosecondsRelativeToUnixEpoch;
298 i32Rem = (int32_t)(i64Div % 1000000000);
299 i64Div /= 1000000000;
300 if (i32Rem < 0)
301 {
302 i32Rem += 1000000000;
303 i64Div--;
304 }
305 pTime->u32Nanosecond = i32Rem;
306
307 /* second */
308 i32Rem = (int32_t)(i64Div % 60);
309 i64Div /= 60;
310 if (i32Rem < 0)
311 {
312 i32Rem += 60;
313 i64Div--;
314 }
315 pTime->u8Second = i32Rem;
316
317 /* minute */
318 i32Div = (int32_t)i64Div; /* 60,000,000,000 > 33bit, so 31bit suffices. */
319 i32Rem = i32Div % 60;
320 i32Div /= 60;
321 if (i32Rem < 0)
322 {
323 i32Rem += 60;
324 i32Div--;
325 }
326 pTime->u8Minute = i32Rem;
327
328 /* hour */
329 i32Rem = i32Div % 24;
330 i32Div /= 24; /* days relative to 1970-01-01 */
331 if (i32Rem < 0)
332 {
333 i32Rem += 24;
334 i32Div--;
335 }
336 pTime->u8Hour = i32Rem;
337
338 /* weekday - 1970-01-01 was a Thursday (3) */
339 pTime->u8WeekDay = ((int)(i32Div % 7) + 3 + 7) % 7;
340
341 /*
342 * We've now got a number of days relative to 1970-01-01.
343 * To get the correct year number we have to mess with leap years. Fortunately,
344 * the representation we've got only supports a few hundred years, so we can
345 * generate a table and perform a simple two way search from the modulus 365 derived.
346 */
347 iYear = OFF_YEAR_IDX_EPOCH + i32Div / 365;
348 while (g_aoffYear[iYear + 1] <= i32Div)
349 iYear++;
350 while (g_aoffYear[iYear] > i32Div)
351 iYear--;
352 pTime->i32Year = iYear + OFF_YEAR_IDX_0_YEAR;
353 i32Div -= g_aoffYear[iYear];
354 pTime->u16YearDay = i32Div + 1;
355
356 /*
357 * Figuring out the month is done in a manner similar to the year, only here we
358 * ensure that the index is matching or too small.
359 */
360 if (rtTimeIsLeapYear(pTime->i32Year))
361 {
362 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
363 paiDayOfYear = &g_aiDayOfYearLeap[0];
364 }
365 else
366 {
367 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
368 paiDayOfYear = &g_aiDayOfYear[0];
369 }
370 iMonth = i32Div / 32;
371 i32Div++;
372 while (paiDayOfYear[iMonth + 1] <= i32Div)
373 iMonth++;
374 pTime->u8Month = iMonth + 1;
375 i32Div -= paiDayOfYear[iMonth];
376 pTime->u8MonthDay = i32Div + 1;
377
378 /* This is for UTC timespecs, so, no offset. */
379 pTime->offUTC = 0;
380
381 return pTime;
382}
383RT_EXPORT_SYMBOL(RTTimeExplode);
384
385
386/**
387 * Implodes exploded time to a time spec (UTC).
388 *
389 * @returns pTime on success.
390 * @returns NULL if the pTime data is invalid.
391 * @param pTimeSpec Where to store the imploded UTC time.
392 * If pTime specifies a time which outside the range, maximum or
393 * minimum values will be returned.
394 * @param pTime Pointer to the exploded time to implode.
395 * The fields u8Month, u8WeekDay and u8MonthDay are not used,
396 * and all the other fields are expected to be within their
397 * bounds. Use RTTimeNormalize() or RTTimeLocalNormalize() to
398 * calculate u16YearDay and normalize the ranges of the fields.
399 */
400RTDECL(PRTTIMESPEC) RTTimeImplode(PRTTIMESPEC pTimeSpec, PCRTTIME pTime)
401{
402 int32_t i32Days;
403 uint32_t u32Secs;
404 int64_t i64Nanos;
405
406 /*
407 * Validate input.
408 */
409 AssertReturn(VALID_PTR(pTimeSpec), NULL);
410 AssertReturn(VALID_PTR(pTime), NULL);
411 AssertReturn(pTime->u32Nanosecond < 1000000000, NULL);
412 AssertReturn(pTime->u8Second < 60, NULL);
413 AssertReturn(pTime->u8Minute < 60, NULL);
414 AssertReturn(pTime->u8Hour < 24, NULL);
415 AssertReturn(pTime->u16YearDay >= 1, NULL);
416 AssertReturn(pTime->u16YearDay <= (rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365), NULL);
417 AssertMsgReturn(pTime->i32Year <= RTTIME_MAX_YEAR && pTime->i32Year >= RTTIME_MIN_YEAR, ("%RI32\n", pTime->i32Year), NULL);
418
419 RTTIME TimeUTC;
420 if ((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL)
421 {
422 TimeUTC = *pTime;
423 pTime = rtTimeConvertToZulu(&TimeUTC);
424 }
425
426 /*
427 * Do the conversion to nanoseconds.
428 */
429 i32Days = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
430 + pTime->u16YearDay - 1;
431 AssertMsgReturn(i32Days <= RTTIME_MAX_DAY && i32Days >= RTTIME_MIN_DAY, ("%RI32\n", i32Days), NULL);
432
433 u32Secs = pTime->u8Second
434 + pTime->u8Minute * 60
435 + pTime->u8Hour * 3600;
436 i64Nanos = (uint64_t)pTime->u32Nanosecond
437 + u32Secs * UINT64_C(1000000000);
438 AssertMsgReturn(i32Days != RTTIME_MAX_DAY || i64Nanos <= RTTIME_MAX_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
439 AssertMsgReturn(i32Days != RTTIME_MIN_DAY || i64Nanos >= RTTIME_MIN_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
440
441 i64Nanos += i32Days * UINT64_C(86400000000000);
442
443 pTimeSpec->i64NanosecondsRelativeToUnixEpoch = i64Nanos;
444 return pTimeSpec;
445}
446RT_EXPORT_SYMBOL(RTTimeImplode);
447
448
449/**
450 * Internal worker for RTTimeNormalize and RTTimeLocalNormalize.
451 */
452static PRTTIME rtTimeNormalizeInternal(PRTTIME pTime)
453{
454 unsigned uSecond;
455 unsigned uMinute;
456 unsigned uHour;
457 bool fLeapYear;
458
459 /*
460 * Fix the YearDay and Month/MonthDay.
461 */
462 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
463 if (!pTime->u16YearDay)
464 {
465 /*
466 * The Month+MonthDay must present, overflow adjust them and calc the year day.
467 */
468 AssertMsgReturn( pTime->u8Month
469 && pTime->u8MonthDay,
470 ("date=%d-%d-%d\n", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay),
471 NULL);
472 while (pTime->u8Month > 12)
473 {
474 pTime->u8Month -= 12;
475 pTime->i32Year++;
476 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
477 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
478 }
479
480 for (;;)
481 {
482 unsigned cDaysInMonth = fLeapYear
483 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
484 : g_acDaysInMonths[pTime->u8Month - 1];
485 if (pTime->u8MonthDay <= cDaysInMonth)
486 break;
487 pTime->u8MonthDay -= cDaysInMonth;
488 if (pTime->u8Month != 12)
489 pTime->u8Month++;
490 else
491 {
492 pTime->u8Month = 1;
493 pTime->i32Year++;
494 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
495 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
496 }
497 }
498
499 pTime->u16YearDay = pTime->u8MonthDay - 1
500 + (fLeapYear
501 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
502 : g_aiDayOfYear[pTime->u8Month - 1]);
503 }
504 else
505 {
506 /*
507 * Are both YearDay and Month/MonthDay valid?
508 * Check that they don't overflow and match, if not use YearDay (simpler).
509 */
510 bool fRecalc = true;
511 if ( pTime->u8Month
512 && pTime->u8MonthDay)
513 {
514 do
515 {
516 uint16_t u16YearDay;
517
518 /* If you change one, zero the other to make clear what you mean. */
519 AssertBreak(pTime->u8Month <= 12);
520 AssertBreak(pTime->u8MonthDay <= (fLeapYear
521 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
522 : g_acDaysInMonths[pTime->u8Month - 1]));
523 u16YearDay = pTime->u8MonthDay - 1
524 + (fLeapYear
525 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
526 : g_aiDayOfYear[pTime->u8Month - 1]);
527 AssertBreak(u16YearDay == pTime->u16YearDay);
528 fRecalc = false;
529 } while (0);
530 }
531 if (fRecalc)
532 {
533 const uint16_t *paiDayOfYear;
534
535 /* overflow adjust YearDay */
536 while (pTime->u16YearDay > (fLeapYear ? 366 : 365))
537 {
538 pTime->u16YearDay -= fLeapYear ? 366 : 365;
539 pTime->i32Year++;
540 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
541 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
542 }
543
544 /* calc Month and MonthDay */
545 paiDayOfYear = fLeapYear
546 ? &g_aiDayOfYearLeap[0]
547 : &g_aiDayOfYear[0];
548 pTime->u8Month = 1;
549 while (pTime->u16YearDay >= paiDayOfYear[pTime->u8Month])
550 pTime->u8Month++;
551 Assert(pTime->u8Month >= 1 && pTime->u8Month <= 12);
552 pTime->u8MonthDay = pTime->u16YearDay - paiDayOfYear[pTime->u8Month - 1] + 1;
553 }
554 }
555
556 /*
557 * Fixup time overflows.
558 * Use unsigned int values internally to avoid overflows.
559 */
560 uSecond = pTime->u8Second;
561 uMinute = pTime->u8Minute;
562 uHour = pTime->u8Hour;
563
564 while (pTime->u32Nanosecond >= 1000000000)
565 {
566 pTime->u32Nanosecond -= 1000000000;
567 uSecond++;
568 }
569
570 while (uSecond >= 60)
571 {
572 uSecond -= 60;
573 uMinute++;
574 }
575
576 while (uMinute >= 60)
577 {
578 uMinute -= 60;
579 uHour++;
580 }
581
582 while (uHour >= 24)
583 {
584 uHour -= 24;
585
586 /* This is really a RTTimeIncDay kind of thing... */
587 if (pTime->u16YearDay + 1 != (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month] : g_aiDayOfYear[pTime->u8Month]))
588 {
589 pTime->u16YearDay++;
590 pTime->u8MonthDay++;
591 }
592 else if (pTime->u8Month != 12)
593 {
594 pTime->u16YearDay++;
595 pTime->u8Month++;
596 pTime->u8MonthDay = 1;
597 }
598 else
599 {
600 pTime->i32Year++;
601 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
602 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
603 pTime->u16YearDay = 1;
604 pTime->u8Month = 1;
605 pTime->u8MonthDay = 1;
606 }
607 }
608
609 pTime->u8Second = uSecond;
610 pTime->u8Minute = uMinute;
611 pTime->u8Hour = uHour;
612
613 /*
614 * Correct the leap year flag.
615 * Assert if it's wrong, but ignore if unset.
616 */
617 if (fLeapYear)
618 {
619 Assert(!(pTime->fFlags & RTTIME_FLAGS_COMMON_YEAR));
620 pTime->fFlags &= ~RTTIME_FLAGS_COMMON_YEAR;
621 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
622 }
623 else
624 {
625 Assert(!(pTime->fFlags & RTTIME_FLAGS_LEAP_YEAR));
626 pTime->fFlags &= ~RTTIME_FLAGS_LEAP_YEAR;
627 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
628 }
629
630
631 /*
632 * Calc week day.
633 *
634 * 1970-01-01 was a Thursday (3), so find the number of days relative to
635 * that point. We use the table when possible and a slow+stupid+brute-force
636 * algorithm for points outside it. Feel free to optimize the latter by
637 * using some clever formula.
638 */
639 if ( pTime->i32Year >= OFF_YEAR_IDX_0_YEAR
640 && pTime->i32Year < OFF_YEAR_IDX_0_YEAR + (int32_t)RT_ELEMENTS(g_aoffYear))
641 {
642 int32_t offDays = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
643 + pTime->u16YearDay -1;
644 pTime->u8WeekDay = ((offDays % 7) + 3 + 7) % 7;
645 }
646 else
647 {
648 int32_t i32Year = pTime->i32Year;
649 if (i32Year >= 1970)
650 {
651 uint64_t offDays = pTime->u16YearDay - 1;
652 while (--i32Year >= 1970)
653 offDays += rtTimeIsLeapYear(i32Year) ? 366 : 365;
654 pTime->u8WeekDay = (uint8_t)((offDays + 3) % 7);
655 }
656 else
657 {
658 int64_t offDays = (fLeapYear ? -366 - 1 : -365 - 1) + pTime->u16YearDay;
659 while (++i32Year < 1970)
660 offDays -= rtTimeIsLeapYear(i32Year) ? 366 : 365;
661 pTime->u8WeekDay = ((int)(offDays % 7) + 3 + 7) % 7;
662 }
663 }
664 return pTime;
665}
666
667
668/**
669 * Normalizes the fields of a time structure.
670 *
671 * It is possible to calculate year-day from month/day and vice
672 * versa. If you adjust any of these, make sure to zero the
673 * other so you make it clear which of the fields to use. If
674 * it's ambiguous, the year-day field is used (and you get
675 * assertions in debug builds).
676 *
677 * All the time fields and the year-day or month/day fields will
678 * be adjusted for overflows. (Since all fields are unsigned, there
679 * is no underflows.) It is possible to exploit this for simple
680 * date math, though the recommended way of doing that to implode
681 * the time into a timespec and do the math on that.
682 *
683 * @returns pTime on success.
684 * @returns NULL if the data is invalid.
685 *
686 * @param pTime The time structure to normalize.
687 *
688 * @remarks This function doesn't work with local time, only with UTC time.
689 */
690RTDECL(PRTTIME) RTTimeNormalize(PRTTIME pTime)
691{
692 /*
693 * Validate that we've got the minimum of stuff handy.
694 */
695 AssertReturn(VALID_PTR(pTime), NULL);
696 AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL);
697 AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_LOCAL, ("Use RTTimeLocalNormalize!\n"), NULL);
698 AssertMsgReturn(pTime->offUTC == 0, ("%d; Use RTTimeLocalNormalize!\n", pTime->offUTC), NULL);
699
700 pTime = rtTimeNormalizeInternal(pTime);
701 if (pTime)
702 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
703 return pTime;
704}
705RT_EXPORT_SYMBOL(RTTimeNormalize);
706
707
708/**
709 * Normalizes the fields of a time structure, assuming local time.
710 *
711 * It is possible to calculate year-day from month/day and vice
712 * versa. If you adjust any of these, make sure to zero the
713 * other so you make it clear which of the fields to use. If
714 * it's ambiguous, the year-day field is used (and you get
715 * assertions in debug builds).
716 *
717 * All the time fields and the year-day or month/day fields will
718 * be adjusted for overflows. (Since all fields are unsigned, there
719 * is no underflows.) It is possible to exploit this for simple
720 * date math, though the recommended way of doing that to implode
721 * the time into a timespec and do the math on that.
722 *
723 * @returns pTime on success.
724 * @returns NULL if the data is invalid.
725 *
726 * @param pTime The time structure to normalize.
727 *
728 * @remarks This function doesn't work with UTC time, only with local time.
729 */
730RTDECL(PRTTIME) RTTimeLocalNormalize(PRTTIME pTime)
731{
732 /*
733 * Validate that we've got the minimum of stuff handy.
734 */
735 AssertReturn(VALID_PTR(pTime), NULL);
736 AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL);
737 AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_UTC, ("Use RTTimeNormalize!\n"), NULL);
738
739 pTime = rtTimeNormalizeInternal(pTime);
740 if (pTime)
741 pTime->fFlags |= RTTIME_FLAGS_TYPE_LOCAL;
742 return pTime;
743}
744RT_EXPORT_SYMBOL(RTTimeLocalNormalize);
745
746
747/**
748 * Converts a time spec to a ISO date string.
749 *
750 * @returns psz on success.
751 * @returns NULL on buffer underflow.
752 * @param pTime The time. Caller should've normalized this.
753 * @param psz Where to store the string.
754 * @param cb The size of the buffer.
755 */
756RTDECL(char *) RTTimeToString(PCRTTIME pTime, char *psz, size_t cb)
757{
758 size_t cch;
759
760 /* (Default to UTC if not specified) */
761 if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL
762 && pTime->offUTC)
763 {
764 int32_t offUTC = pTime->offUTC;
765 Assert(offUTC <= 840 && offUTC >= -840);
766 char chSign;
767 if (offUTC >= 0)
768 chSign = '+';
769 else
770 {
771 chSign = '-';
772 offUTC = -offUTC;
773 }
774 uint32_t offUTCHour = (uint32_t)offUTC / 60;
775 uint32_t offUTCMinute = (uint32_t)offUTC % 60;
776 cch = RTStrPrintf(psz, cb,
777 "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32%c%02d%:02d",
778 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
779 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond,
780 chSign, offUTCHour, offUTCMinute);
781 if ( cch <= 15
782 || psz[cch - 6] != chSign)
783 return NULL;
784 }
785 else
786 {
787 cch = RTStrPrintf(psz, cb, "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32Z",
788 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
789 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond);
790 if ( cch <= 15
791 || psz[cch - 1] != 'Z')
792 return NULL;
793 }
794 return psz;
795}
796RT_EXPORT_SYMBOL(RTTimeToString);
797
798
799/**
800 * Converts a time spec to a ISO date string.
801 *
802 * @returns psz on success.
803 * @returns NULL on buffer underflow.
804 * @param pTime The time spec.
805 * @param psz Where to store the string.
806 * @param cb The size of the buffer.
807 */
808RTDECL(char *) RTTimeSpecToString(PCRTTIMESPEC pTime, char *psz, size_t cb)
809{
810 RTTIME Time;
811 return RTTimeToString(RTTimeExplode(&Time, pTime), psz, cb);
812}
813RT_EXPORT_SYMBOL(RTTimeSpecToString);
814
815
816
817/**
818 * Attempts to convert an ISO date string to a time structure.
819 *
820 * We're a little forgiving with zero padding, unspecified parts, and leading
821 * and trailing spaces.
822 *
823 * @retval pTime on success,
824 * @retval NULL on failure.
825 * @param pTime Where to store the time on success.
826 * @param pszString The ISO date string to convert.
827 */
828RTDECL(PRTTIME) RTTimeFromString(PRTTIME pTime, const char *pszString)
829{
830 /* Ignore leading spaces. */
831 while (RT_C_IS_SPACE(*pszString))
832 pszString++;
833
834 /*
835 * Init non date & time parts.
836 */
837 pTime->fFlags = RTTIME_FLAGS_TYPE_LOCAL;
838 pTime->offUTC = 0;
839
840 /*
841 * The day part.
842 */
843
844 /* Year */
845 int rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->i32Year);
846 if (rc != VWRN_TRAILING_CHARS)
847 return NULL;
848
849 bool const fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
850 if (fLeapYear)
851 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
852
853 if (*pszString++ != '-')
854 return NULL;
855
856 /* Month of the year. */
857 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Month);
858 if (rc != VWRN_TRAILING_CHARS)
859 return NULL;
860 if (pTime->u8Month == 0 || pTime->u8Month > 12)
861 return NULL;
862 if (*pszString++ != '-')
863 return NULL;
864
865 /* Day of month.*/
866 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8MonthDay);
867 if (rc != VWRN_TRAILING_CHARS && rc != VINF_SUCCESS)
868 return NULL;
869 unsigned const cDaysInMonth = fLeapYear
870 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
871 : g_acDaysInMonths[pTime->u8Month - 1];
872 if (pTime->u8MonthDay == 0 || pTime->u8MonthDay > cDaysInMonth)
873 return NULL;
874
875 /* Calculate year day. */
876 pTime->u16YearDay = pTime->u8MonthDay - 1
877 + (fLeapYear
878 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
879 : g_aiDayOfYear[pTime->u8Month - 1]);
880
881 /*
882 * The time part.
883 */
884 if (*pszString++ != 'T')
885 return NULL;
886
887 /* Hour. */
888 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Hour);
889 if (rc != VWRN_TRAILING_CHARS)
890 return NULL;
891 if (pTime->u8Hour > 23)
892 return NULL;
893 if (*pszString++ != ':')
894 return NULL;
895
896 /* Minute. */
897 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute);
898 if (rc != VWRN_TRAILING_CHARS)
899 return NULL;
900 if (pTime->u8Minute > 59)
901 return NULL;
902 if (*pszString++ != ':')
903 return NULL;
904
905 /* Second. */
906 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Second);
907 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
908 return NULL;
909 if (pTime->u8Second > 59)
910 return NULL;
911
912 /* Nanoseconds is optional and probably non-standard. */
913 if (*pszString == '.')
914 {
915 rc = RTStrToUInt32Ex(pszString + 1, (char **)&pszString, 10, &pTime->u32Nanosecond);
916 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
917 return NULL;
918 if (pTime->u32Nanosecond >= 1000000000)
919 return NULL;
920 }
921 else
922 pTime->u32Nanosecond = 0;
923
924 /*
925 * Time zone.
926 */
927 if (*pszString == 'Z')
928 {
929 pszString++;
930 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
931 pTime->fFlags |= ~RTTIME_FLAGS_TYPE_UTC;
932 pTime->offUTC = 0;
933 }
934 else if ( *pszString == '+'
935 || *pszString == '-')
936 {
937 int8_t cUtcHours = 0;
938 rc = RTStrToInt8Ex(pszString, (char **)&pszString, 10, &cUtcHours);
939 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
940 return NULL;
941 uint8_t cUtcMin = 0;
942 if (*pszString == ':')
943 {
944 rc = RTStrToUInt8Ex(pszString + 1, (char **)&pszString, 10, &cUtcMin);
945 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_SPACES)
946 return NULL;
947 }
948 else if (*pszString && !RT_C_IS_BLANK(*pszString))
949 return NULL;
950 if (cUtcHours >= 0)
951 pTime->offUTC = cUtcHours * 60 + cUtcMin;
952 else
953 pTime->offUTC = cUtcHours * 60 - cUtcMin;
954 if (RT_ABS(pTime->offUTC) > 840)
955 return NULL;
956 }
957 /* else: No time zone given, local with offUTC = 0. */
958
959 /*
960 * The rest of the string should be blanks.
961 */
962 char ch;
963 while ((ch = *pszString++) != '\0')
964 if (!RT_C_IS_BLANK(ch))
965 return NULL;
966
967 return pTime;
968}
969RT_EXPORT_SYMBOL(RTTimeFromString);
970
971
972/**
973 * Attempts to convert an ISO date string to a time structure.
974 *
975 * We're a little forgiving with zero padding, unspecified parts, and leading
976 * and trailing spaces.
977 *
978 * @retval pTime on success,
979 * @retval NULL on failure.
980 * @param pTime The time spec.
981 * @param pszString The ISO date string to convert.
982 */
983RTDECL(PRTTIMESPEC) RTTimeSpecFromString(PRTTIMESPEC pTime, const char *pszString)
984{
985 RTTIME Time;
986 if (RTTimeFromString(&Time, pszString))
987 return RTTimeImplode(pTime, &Time);
988 return NULL;
989}
990RT_EXPORT_SYMBOL(RTTimeSpecFromString);
991
992
993/**
994 * Adds one day to @a pTime.
995 *
996 * ASSUMES it is zulu time so DST can be ignored.
997 */
998static PRTTIME rtTimeAdd1Day(PRTTIME pTime)
999{
1000 Assert(!pTime->offUTC);
1001 rtTimeNormalizeInternal(pTime);
1002 pTime->u8MonthDay += 1;
1003 pTime->u16YearDay = 0;
1004 return rtTimeNormalizeInternal(pTime);
1005}
1006
1007
1008/**
1009 * Subtracts one day from @a pTime.
1010 *
1011 * ASSUMES it is zulu time so DST can be ignored.
1012 */
1013static PRTTIME rtTimeSub1Day(PRTTIME pTime)
1014{
1015 Assert(!pTime->offUTC);
1016 rtTimeNormalizeInternal(pTime);
1017 if (pTime->u16YearDay > 1)
1018 {
1019 pTime->u16YearDay -= 1;
1020 pTime->u8Month = 0;
1021 pTime->u8MonthDay = 0;
1022 }
1023 else
1024 {
1025 pTime->i32Year -= 1;
1026 pTime->u16YearDay = rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365;
1027 pTime->u8MonthDay = 31;
1028 pTime->u8Month = 12;
1029 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
1030 }
1031 return rtTimeNormalizeInternal(pTime);
1032}
1033
1034
1035/**
1036 * Adds a signed number of minutes to @a pTime.
1037 *
1038 * ASSUMES it is zulu time so DST can be ignored.
1039 *
1040 * @param pTime The time structure to work on.
1041 * @param cAddend Number of minutes to add.
1042 * ASSUMES the value isn't all that high!
1043 */
1044static PRTTIME rtTimeAddMinutes(PRTTIME pTime, int32_t cAddend)
1045{
1046 Assert(RT_ABS(cAddend) < 31 * 24 * 60);
1047
1048 /*
1049 * Work on minutes of the day.
1050 */
1051 int32_t const cMinutesInDay = 24 * 60;
1052 int32_t iDayMinute = (unsigned)pTime->u8Hour * 60 + pTime->u8Minute;
1053 iDayMinute += cAddend;
1054
1055 while (iDayMinute >= cMinutesInDay)
1056 {
1057 rtTimeAdd1Day(pTime);
1058 iDayMinute -= cMinutesInDay;
1059 }
1060
1061 while (iDayMinute < 0)
1062 {
1063 rtTimeSub1Day(pTime);
1064 iDayMinute += cMinutesInDay;
1065 }
1066
1067 pTime->u8Hour = iDayMinute / 60;
1068 pTime->u8Minute = iDayMinute % 60;
1069
1070 return pTime;
1071}
1072
1073
1074/**
1075 * Converts @a pTime to zulu time (UTC) if needed.
1076 *
1077 * @returns pTime.
1078 * @param pTime What to convert (in/out).
1079 */
1080static PRTTIME rtTimeConvertToZulu(PRTTIME pTime)
1081{
1082 RTTIME_ASSERT_NORMALIZED(pTime);
1083 if ((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_UTC)
1084 {
1085 int32_t offUTC = pTime->offUTC;
1086 pTime->offUTC = 0;
1087 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
1088 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
1089 if (offUTC != 0)
1090 rtTimeAddMinutes(pTime, -offUTC);
1091 }
1092 return pTime;
1093}
1094
1095
1096/**
1097 * Converts a time structure to UTC, relying on UTC offset information if it contains local time.
1098 *
1099 * @returns pTime on success.
1100 * @returns NULL if the data is invalid.
1101 * @param pTime The time structure to convert.
1102 */
1103RTDECL(PRTTIME) RTTimeConvertToZulu(PRTTIME pTime)
1104{
1105 /*
1106 * Validate that we've got the minimum of stuff handy.
1107 */
1108 AssertReturn(VALID_PTR(pTime), NULL);
1109 AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL);
1110
1111 return rtTimeConvertToZulu(rtTimeNormalizeInternal(pTime));
1112}
1113RT_EXPORT_SYMBOL(RTTimeConvertToZulu);
1114
1115
1116/**
1117 * Compares two normalized time structures.
1118 *
1119 * @retval 0 if equal.
1120 * @retval -1 if @a pLeft is earlier than @a pRight.
1121 * @retval 1 if @a pRight is earlier than @a pLeft.
1122 *
1123 * @param pLeft The left side time. NULL is accepted.
1124 * @param pRight The right side time. NULL is accepted.
1125 *
1126 * @note A NULL time is considered smaller than anything else. If both are
1127 * NULL, they are considered equal.
1128 */
1129RTDECL(int) RTTimeCompare(PCRTTIME pLeft, PCRTTIME pRight)
1130{
1131#ifdef RT_STRICT
1132 if (pLeft)
1133 RTTIME_ASSERT_NORMALIZED(pLeft);
1134 if (pRight)
1135 RTTIME_ASSERT_NORMALIZED(pRight);
1136#endif
1137
1138 int iRet;
1139 if (pLeft)
1140 {
1141 if (pRight)
1142 {
1143 /*
1144 * Only work with normalized zulu time.
1145 */
1146 RTTIME TmpLeft;
1147 if ( pLeft->offUTC != 0
1148 || pLeft->u16YearDay == 0
1149 || pLeft->u16YearDay > 366
1150 || pLeft->u8Hour >= 60
1151 || pLeft->u8Minute >= 60
1152 || pLeft->u8Second >= 60)
1153 {
1154 TmpLeft = *pLeft;
1155 pLeft = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpLeft));
1156 }
1157
1158 RTTIME TmpRight;
1159 if ( pRight->offUTC != 0
1160 || pRight->u16YearDay == 0
1161 || pRight->u16YearDay > 366
1162 || pRight->u8Hour >= 60
1163 || pRight->u8Minute >= 60
1164 || pRight->u8Second >= 60)
1165 {
1166 TmpRight = *pRight;
1167 pRight = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpRight));
1168 }
1169
1170 /*
1171 * Do the comparison.
1172 */
1173 if ( pLeft->i32Year != pRight->i32Year)
1174 iRet = pLeft->i32Year < pRight->i32Year ? -1 : 1;
1175 else if ( pLeft->u16YearDay != pRight->u16YearDay)
1176 iRet = pLeft->u16YearDay < pRight->u16YearDay ? -1 : 1;
1177 else if ( pLeft->u8Hour != pRight->u8Hour)
1178 iRet = pLeft->u8Hour < pRight->u8Hour ? -1 : 1;
1179 else if ( pLeft->u8Minute != pRight->u8Minute)
1180 iRet = pLeft->u8Minute < pRight->u8Minute ? -1 : 1;
1181 else if ( pLeft->u8Second != pRight->u8Second)
1182 iRet = pLeft->u8Second < pRight->u8Second ? -1 : 1;
1183 else if ( pLeft->u32Nanosecond != pRight->u32Nanosecond)
1184 iRet = pLeft->u32Nanosecond < pRight->u32Nanosecond ? -1 : 1;
1185 else
1186 iRet = 0;
1187 }
1188 else
1189 iRet = 1;
1190 }
1191 else
1192 iRet = pRight ? -1 : 0;
1193 return iRet;
1194}
1195RT_EXPORT_SYMBOL(RTTimeCompare);
1196
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette