VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/vfs/vfsmount.cpp@ 83291

Last change on this file since 83291 was 82968, checked in by vboxsync, 5 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 21.7 KB
Line 
1/* $Id: vfsmount.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */
2/** @file
3 * IPRT - Virtual File System, Mounting.
4 */
5
6/*
7 * Copyright (C) 2012-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP RTLOGGROUP_VFS
32#include <iprt/vfs.h>
33
34#include <iprt/asm.h>
35#include <iprt/assert.h>
36#include <iprt/err.h>
37#include <iprt/file.h>
38#include <iprt/fsvfs.h>
39#include <iprt/mem.h>
40#include <iprt/log.h>
41#include <iprt/string.h>
42#include <iprt/vfslowlevel.h>
43
44#include <iprt/formats/fat.h>
45#include <iprt/formats/iso9660.h>
46#include <iprt/formats/udf.h>
47#include <iprt/formats/ext.h>
48
49
50/*********************************************************************************************************************************
51* Structures and Typedefs *
52*********************************************************************************************************************************/
53/** Buffer structure for the detection routines. */
54typedef union RTVFSMOUNTBUF
55{
56 uint8_t ab[2048];
57 uint32_t au32[2048/4];
58 FATBOOTSECTOR Bootsector;
59 ISO9660VOLDESCHDR IsoHdr;
60} RTVFSMOUNTBUF;
61AssertCompileSize(RTVFSMOUNTBUF, 2048);
62typedef RTVFSMOUNTBUF *PRTVFSMOUNTBUF;
63
64
65
66/**
67 * Checks if the given 2K sector at offset 32KB looks like ISO-9660 or UDF.
68 *
69 * @returns true if likely ISO or UDF, otherwise false.
70 * @param pVolDescHdr Whatever is at offset 32KB. 2KB buffer.
71 */
72static bool rtVfsMountIsIsoFs(PCISO9660VOLDESCHDR pVolDescHdr)
73{
74 if ( memcmp(pVolDescHdr->achStdId, RT_STR_TUPLE(ISO9660VOLDESC_STD_ID)) == 0
75 && pVolDescHdr->bDescType <= ISO9660VOLDESC_TYPE_PARTITION
76 && pVolDescHdr->bDescVersion != 0
77 && pVolDescHdr->bDescVersion <= 3 /* don't be too picky, just increase the likelyhood */ )
78 return true;
79
80 if ( memcmp(pVolDescHdr->achStdId, RT_STR_TUPLE(UDF_EXT_VOL_DESC_STD_ID_BEGIN)) == 0
81 && pVolDescHdr->bDescType == UDF_EXT_VOL_DESC_TYPE
82 && pVolDescHdr->bDescVersion == UDF_EXT_VOL_DESC_VERSION)
83 return true;
84
85 return false;
86}
87
88
89/**
90 * Check if the given bootsector is a NTFS boot sector.
91 *
92 * @returns true if NTFS, false if not.
93 * @param pBootSector The boot sector to inspect.
94 */
95static bool rtVfsMountIsNtfs(PCFATBOOTSECTOR pBootSector)
96{
97 if (memcmp(pBootSector->achOemName, RT_STR_TUPLE("NTFS ")) != 0)
98 return false;
99
100 uint16_t cbSector = RT_LE2H_U16(pBootSector->Bpb.Bpb331.cbSector);
101 if ( cbSector < 0x100
102 || cbSector >= 0x1000
103 || (cbSector & 0xff) != 0)
104 {
105 Log2(("rtVfsMountIsNtfs: cbSector=%#x: out of range\n", cbSector));
106 return false;
107 }
108
109 if ( !RT_IS_POWER_OF_TWO(pBootSector->Bpb.Bpb331.cSectorsPerCluster)
110 || pBootSector->Bpb.Bpb331.cSectorsPerCluster == 0
111 || pBootSector->Bpb.Bpb331.cSectorsPerCluster > 128)
112 {
113 Log2(("rtVfsMountIsNtfs: cSectorsPerCluster=%#x: out of range\n", pBootSector->Bpb.Bpb331.cSectorsPerCluster));
114 return false;
115 }
116
117 if ((uint32_t)pBootSector->Bpb.Bpb331.cSectorsPerCluster * cbSector > _64K)
118 {
119 Log2(("rtVfsMountIsNtfs: cSectorsPerCluster=%#x * cbSector=%#x => %#x: out of range\n",
120 pBootSector->Bpb.Bpb331.cSectorsPerCluster, cbSector,
121 (uint32_t)pBootSector->Bpb.Bpb331.cSectorsPerCluster * cbSector));
122 return false;
123 }
124
125 if ( pBootSector->Bpb.Bpb331.cReservedSectors != 0
126 || pBootSector->Bpb.Bpb331.cMaxRootDirEntries != 0
127 || pBootSector->Bpb.Bpb331.cTotalSectors16 != 0
128 || pBootSector->Bpb.Bpb331.cTotalSectors32 != 0
129 || pBootSector->Bpb.Bpb331.cSectorsPerFat != 0
130 || pBootSector->Bpb.Bpb331.cFats != 0)
131 {
132 Log2(("rtVfsMountIsNtfs: cReservedSectors=%#x cMaxRootDirEntries=%#x cTotalSectors=%#x cTotalSectors32=%#x cSectorsPerFat=%#x cFats=%#x: should all be zero, but one or more aren't\n",
133 RT_LE2H_U16(pBootSector->Bpb.Bpb331.cReservedSectors),
134 RT_LE2H_U16(pBootSector->Bpb.Bpb331.cMaxRootDirEntries),
135 RT_LE2H_U16(pBootSector->Bpb.Bpb331.cTotalSectors16),
136 RT_LE2H_U32(pBootSector->Bpb.Bpb331.cTotalSectors32),
137 RT_LE2H_U16(pBootSector->Bpb.Bpb331.cSectorsPerFat),
138 pBootSector->Bpb.Bpb331.cFats));
139 return false;
140 }
141
142 /** @todo NTFS specific checks: MFT cluster number, cluster per index block. */
143
144 return true;
145}
146
147
148/**
149 * Check if the given bootsector is a HPFS boot sector.
150 *
151 * @returns true if NTFS, false if not.
152 * @param pBootSector The boot sector to inspect.
153 * @param hVfsFileIn The volume file.
154 * @param pBuf2 A 2nd buffer.
155 */
156static bool rtVfsMountIsHpfs(PCFATBOOTSECTOR pBootSector, RTVFSFILE hVfsFileIn, PRTVFSMOUNTBUF pBuf2)
157{
158 if (memcmp(pBootSector->Bpb.Ebpb.achType, RT_STR_TUPLE("HPFS ")) != 0)
159 return false;
160
161 /* Superblock is at sector 16, spare superblock at 17. */
162 int rc = RTVfsFileReadAt(hVfsFileIn, 16 * 512, pBuf2, 512 * 2, NULL);
163 if (RT_FAILURE(rc))
164 {
165 Log2(("rtVfsMountIsHpfs: Error reading superblock: %Rrc\n", rc));
166 return false;
167 }
168
169 if ( RT_LE2H_U32(pBuf2->au32[0]) != UINT32_C(0xf995e849)
170 || RT_LE2H_U32(pBuf2->au32[1]) != UINT32_C(0xfa53e9c5)
171 || RT_LE2H_U32(pBuf2->au32[512/4 + 0]) != UINT32_C(0xf9911849)
172 || RT_LE2H_U32(pBuf2->au32[512/4 + 1]) != UINT32_C(0xfa5229c5))
173 {
174 Log2(("rtVfsMountIsHpfs: Superblock or spare superblock signature mismatch: %#x %#x %#x %#x\n",
175 RT_LE2H_U32(pBuf2->au32[0]), RT_LE2H_U32(pBuf2->au32[1]),
176 RT_LE2H_U32(pBuf2->au32[512/4 + 0]), RT_LE2H_U32(pBuf2->au32[512/4 + 1]) ));
177 return false;
178 }
179
180 return true;
181}
182
183
184/**
185 * Check if the given bootsector is a FAT boot sector.
186 *
187 * @returns true if NTFS, false if not.
188 * @param pBootSector The boot sector to inspect.
189 * @param pbRaw Pointer to the raw boot sector buffer.
190 * @param cbRaw Number of bytes read starting with the boot
191 * sector (which @a pbRaw points to).
192 * @param hVfsFileIn The volume file.
193 * @param pBuf2 A 2nd buffer.
194 */
195static bool rtVfsMountIsFat(PCFATBOOTSECTOR pBootSector, uint8_t const *pbRaw, size_t cbRaw,
196 RTVFSFILE hVfsFileIn, PRTVFSMOUNTBUF pBuf2)
197{
198 Assert(cbRaw >= 1024);
199
200 /*
201 * Check the DOS signature first. The PC-DOS 1.0 boot floppy does not have
202 * a signature and we ASSUME this is the case for all floppies formated by it.
203 */
204 if (pBootSector->uSignature != FATBOOTSECTOR_SIGNATURE)
205 {
206 if (pBootSector->uSignature != 0)
207 return false;
208
209 /*
210 * PC-DOS 1.0 does a 2fh byte short jump w/o any NOP following it.
211 * Instead the following are three words and a 9 byte build date
212 * string. The remaining space is zero filled.
213 *
214 * Note! No idea how this would look like for 8" floppies, only got 5"1/4'.
215 *
216 * ASSUME all non-BPB disks are using this format.
217 */
218 if ( pBootSector->abJmp[0] != 0xeb /* jmp rel8 */
219 || pBootSector->abJmp[1] < 0x2f
220 || pBootSector->abJmp[1] >= 0x80
221 || pBootSector->abJmp[2] == 0x90 /* nop */)
222 {
223 Log2(("rtVfsMountIsFat: No DOS v1.0 bootsector either - invalid jmp: %.3Rhxs\n", pBootSector->abJmp));
224 return false;
225 }
226
227 /* Check the FAT ID so we can tell if this is double or single sided, as well as being a valid FAT12 start. */
228 if ( (pbRaw[512] != 0xfe && pbRaw[0] != 0xff)
229 || pbRaw[512 + 1] != 0xff
230 || pbRaw[512 + 2] != 0xff)
231 {
232 Log2(("rtVfsMountIsFat: No DOS v1.0 bootsector either - unexpected start of FAT: %.3Rhxs\n", &pbRaw[512]));
233 return false;
234 }
235
236 uint32_t const offJump = 2 + pBootSector->abJmp[1];
237 uint32_t const offFirstZero = 2 /*jmp */ + 3 * 2 /* words */ + 9 /* date string */;
238 Assert(offFirstZero >= RT_UOFFSETOF(FATBOOTSECTOR, Bpb));
239 uint32_t const cbZeroPad = RT_MIN(offJump - offFirstZero,
240 sizeof(pBootSector->Bpb.Bpb20) - (offFirstZero - RT_UOFFSETOF(FATBOOTSECTOR, Bpb)));
241
242 if (!ASMMemIsAllU8((uint8_t const *)pBootSector + offFirstZero, cbZeroPad, 0))
243 {
244 Log2(("rtVfsMountIsFat: No DOS v1.0 bootsector either - expected zero padding %#x LB %#x: %.*Rhxs\n",
245 offFirstZero, cbZeroPad, cbZeroPad, (uint8_t const *)pBootSector + offFirstZero));
246 return false;
247 }
248 }
249 else
250 {
251 /*
252 * DOS 2.0 or later.
253 *
254 * Start by checking if we've got a known jump instruction first, because
255 * that will give us a max (E)BPB size hint.
256 */
257 uint8_t offJmp = UINT8_MAX;
258 if ( pBootSector->abJmp[0] == 0xeb
259 && pBootSector->abJmp[1] <= 0x7f)
260 offJmp = pBootSector->abJmp[1] + 2;
261 else if ( pBootSector->abJmp[0] == 0x90
262 && pBootSector->abJmp[1] == 0xeb
263 && pBootSector->abJmp[2] <= 0x7f)
264 offJmp = pBootSector->abJmp[2] + 3;
265 else if ( pBootSector->abJmp[0] == 0xe9
266 && pBootSector->abJmp[2] <= 0x7f)
267 offJmp = RT_MIN(127, RT_MAKE_U16(pBootSector->abJmp[1], pBootSector->abJmp[2]));
268 uint8_t const cbMaxBpb = offJmp - RT_UOFFSETOF(FATBOOTSECTOR, Bpb);
269 if (cbMaxBpb < sizeof(FATBPB20))
270 {
271 Log2(("rtVfsMountIsFat: DOS signature, but jmp too short for any BPB: %#x (max %#x BPB)\n", offJmp, cbMaxBpb));
272 return false;
273 }
274
275 if ( pBootSector->Bpb.Bpb20.cFats == 0
276 || pBootSector->Bpb.Bpb20.cFats > 4)
277 {
278 if (pBootSector->Bpb.Bpb20.cFats == 0)
279 Log2(("rtVfsMountIsFat: DOS signature, number of FATs is zero, so not FAT file system\n"));
280 else
281 Log2(("rtVfsMountIsFat: DOS signature, too many FATs: %#x\n", pBootSector->Bpb.Bpb20.cFats));
282 return false;
283 }
284
285 if (!FATBPB_MEDIA_IS_VALID(pBootSector->Bpb.Bpb20.bMedia))
286 {
287 Log2(("rtVfsMountIsFat: DOS signature, invalid media byte: %#x\n", pBootSector->Bpb.Bpb20.bMedia));
288 return false;
289 }
290
291 uint16_t cbSector = RT_LE2H_U16(pBootSector->Bpb.Bpb20.cbSector);
292 if ( cbSector != 512
293 && cbSector != 4096
294 && cbSector != 1024
295 && cbSector != 128)
296 {
297 Log2(("rtVfsMountIsFat: DOS signature, unsupported sector size: %#x\n", cbSector));
298 return false;
299 }
300
301 if ( !RT_IS_POWER_OF_TWO(pBootSector->Bpb.Bpb20.cSectorsPerCluster)
302 || !pBootSector->Bpb.Bpb20.cSectorsPerCluster)
303 {
304 Log2(("rtVfsMountIsFat: DOS signature, cluster size not non-zero power of two: %#x",
305 pBootSector->Bpb.Bpb20.cSectorsPerCluster));
306 return false;
307 }
308
309 uint16_t const cReservedSectors = RT_LE2H_U16(pBootSector->Bpb.Bpb20.cReservedSectors);
310 if ( cReservedSectors == 0
311 || cReservedSectors >= _32K)
312 {
313 Log2(("rtVfsMountIsFat: DOS signature, bogus reserved sector count: %#x\n", cReservedSectors));
314 return false;
315 }
316
317 /*
318 * Match the media byte with the first FAT byte and check that the next
319 * 4 bits are set. (To match further bytes in the FAT we'd need to
320 * determin the FAT type, which is too much hazzle to do here.)
321 */
322 uint8_t const *pbFat;
323 if ((size_t)cReservedSectors * cbSector < cbRaw)
324 pbFat = &pbRaw[cReservedSectors * cbSector];
325 else
326 {
327 int rc = RTVfsFileReadAt(hVfsFileIn, cReservedSectors * cbSector, pBuf2, 512, NULL);
328 if (RT_FAILURE(rc))
329 {
330 Log2(("rtVfsMountIsFat: error reading first FAT sector at %#x: %Rrc\n", cReservedSectors * cbSector, rc));
331 return false;
332 }
333 pbFat = pBuf2->ab;
334 }
335 if (*pbFat != pBootSector->Bpb.Bpb20.bMedia)
336 {
337 Log2(("rtVfsMountIsFat: Media byte and FAT ID mismatch: %#x vs %#x (%.8Rhxs)\n",
338 pbFat[0], pBootSector->Bpb.Bpb20.bMedia, pbFat));
339 return false;
340 }
341 if ((pbFat[1] & 0xf) != 0xf)
342 {
343 Log2(("rtVfsMountIsFat: Media byte and FAT ID mismatch: %#x vs %#x (%.8Rhxs)\n",
344 pbFat[0], pBootSector->Bpb.Bpb20.bMedia, pbFat));
345 return false;
346 }
347 }
348
349 return true;
350}
351
352
353/**
354 * Check if the given bootsector is an ext2/3/4 super block.
355 *
356 * @returns true if NTFS, false if not.
357 * @param pSuperBlock The ext2 superblock.
358 */
359static bool rtVfsMountIsExt(PCEXTSUPERBLOCK pSuperBlock)
360{
361 if (RT_LE2H_U16(pSuperBlock->u16Signature) != EXT_SB_SIGNATURE)
362 return false;
363
364 uint32_t cShift = RT_LE2H_U32(pSuperBlock->cLogBlockSize);
365 if (cShift > 54)
366 {
367 Log2(("rtVfsMountIsExt: cLogBlockSize=%#x: out of range\n", cShift));
368 return false;
369 }
370
371 cShift = RT_LE2H_U32(pSuperBlock->cLogClusterSize);
372 if (cShift > 54)
373 {
374 Log2(("rtVfsMountIsExt: cLogClusterSize=%#x: out of range\n", cShift));
375 return false;
376 }
377
378 /* Some more checks here would be nice actually since a 16-bit word and a
379 couple of field limits doesn't feel all that conclusive. */
380
381 return true;
382}
383
384
385/**
386 * Does the file system detection and mounting.
387 *
388 * Since we only support a handful of file systems at the moment and the
389 * interface isn't yet extensible in any way, we combine the file system
390 * recognition code for all. This reduces the number of reads we need to do and
391 * avoids unnecessary processing.
392 *
393 * @returns IPRT status code.
394 * @param hVfsFileIn The volume file.
395 * @param fFlags RTVFSMTN_F_XXX.
396 * @param pBuf Pointer to the primary buffer
397 * @param pBuf2 Pointer to the secondary buffer.
398 * @param phVfs Where to return the .
399 * @param pErrInfo Where to return additional error information.
400 * Optional.
401 */
402static int rtVfsMountInner(RTVFSFILE hVfsFileIn, uint32_t fFlags, RTVFSMOUNTBUF *pBuf,
403 RTVFSMOUNTBUF *pBuf2, PRTVFS phVfs, PRTERRINFO pErrInfo)
404{
405 AssertCompile(sizeof(*pBuf) >= ISO9660_SECTOR_SIZE);
406
407 /* Start by checking for ISO-9660 and UDFS since these may have confusing
408 data at the start of the volume. */
409 int rc = RTVfsFileReadAt(hVfsFileIn, _32K, pBuf, ISO9660_SECTOR_SIZE, NULL);
410 if (RT_SUCCESS(rc))
411 {
412 if (rtVfsMountIsIsoFs(&pBuf->IsoHdr))
413 {
414 Log(("RTVfsMount: Detected ISO-9660 or UDF.\n"));
415 return RTFsIso9660VolOpen(hVfsFileIn, 0 /*fFlags*/, phVfs, pErrInfo);
416 }
417 }
418
419 /* Now read the boot sector and whatever the next 1536 bytes may contain.
420 With ext2 superblock at 1024, we can recognize quite a bit thru this read. */
421 rc = RTVfsFileReadAt(hVfsFileIn, 0, pBuf, sizeof(*pBuf), NULL);
422 if (RT_FAILURE(rc))
423 return RTErrInfoSet(pErrInfo, rc, "Error reading boot sector");
424
425 if (rtVfsMountIsNtfs(&pBuf->Bootsector))
426 return RTFsNtfsVolOpen(hVfsFileIn, fFlags, 0 /*fNtfsFlags*/, phVfs, pErrInfo);
427
428 if (rtVfsMountIsHpfs(&pBuf->Bootsector, hVfsFileIn, pBuf2))
429 return RTERRINFO_LOG_SET(pErrInfo, VERR_VFS_UNSUPPORTED_FORMAT, "HPFS not yet supported");
430
431 if (rtVfsMountIsFat(&pBuf->Bootsector, pBuf->ab, sizeof(*pBuf), hVfsFileIn, pBuf2))
432 {
433 Log(("RTVfsMount: Detected ISO-9660 or UDF.\n"));
434 return RTFsFatVolOpen(hVfsFileIn, RT_BOOL(fFlags & RTVFSMNT_F_READ_ONLY), 0 /*offBootSector*/, phVfs, pErrInfo);
435 }
436
437 AssertCompile(sizeof(*pBuf) >= 1024 + sizeof(EXTSUPERBLOCK));
438 if (rtVfsMountIsExt((PCEXTSUPERBLOCK)&pBuf->ab[1024]))
439 {
440 Log(("RTVfsMount: Detected EXT2/3/4.\n"));
441 return RTFsExtVolOpen(hVfsFileIn, fFlags, 0 /*fExt2Flags*/, phVfs, pErrInfo);
442 }
443
444 return VERR_VFS_UNSUPPORTED_FORMAT;
445}
446
447
448RTDECL(int) RTVfsMountVol(RTVFSFILE hVfsFileIn, uint32_t fFlags, PRTVFS phVfs, PRTERRINFO pErrInfo)
449{
450 AssertReturn(!(fFlags & ~RTVFSMNT_F_VALID_MASK), VERR_INVALID_FLAGS);
451 AssertPtrReturn(hVfsFileIn, VERR_INVALID_HANDLE);
452 AssertPtrReturn(phVfs, VERR_INVALID_HANDLE);
453
454 *phVfs = NIL_RTVFS;
455
456 RTVFSMOUNTBUF *pBufs = (RTVFSMOUNTBUF *)RTMemTmpAlloc(sizeof(*pBufs) * 2);
457 AssertReturn(pBufs, VERR_NO_TMP_MEMORY);
458
459 int rc = rtVfsMountInner(hVfsFileIn, fFlags, pBufs, pBufs + 1, phVfs, pErrInfo);
460
461 RTMemTmpFree(pBufs);
462
463 return rc;
464}
465
466
467/**
468 * @interface_method_impl{RTVFSCHAINELEMENTREG,pfnValidate}
469 */
470static DECLCALLBACK(int) rtVfsChainMountVol_Validate(PCRTVFSCHAINELEMENTREG pProviderReg, PRTVFSCHAINSPEC pSpec,
471 PRTVFSCHAINELEMSPEC pElement, uint32_t *poffError, PRTERRINFO pErrInfo)
472{
473 RT_NOREF(pProviderReg);
474
475 /*
476 * Basic checks.
477 */
478 if (pElement->enmTypeIn != RTVFSOBJTYPE_FILE)
479 return pElement->enmTypeIn == RTVFSOBJTYPE_INVALID ? VERR_VFS_CHAIN_CANNOT_BE_FIRST_ELEMENT : VERR_VFS_CHAIN_TAKES_FILE;
480 if ( pElement->enmType != RTVFSOBJTYPE_VFS
481 && pElement->enmType != RTVFSOBJTYPE_DIR)
482 return VERR_VFS_CHAIN_ONLY_DIR_OR_VFS;
483 if (pElement->cArgs > 1)
484 return VERR_VFS_CHAIN_AT_MOST_ONE_ARG;
485
486 /*
487 * Parse the flag if present, save in pElement->uProvider.
488 */
489 bool fReadOnly = (pSpec->fOpenFile & RTFILE_O_ACCESS_MASK) == RTFILE_O_READ;
490 if (pElement->cArgs > 0)
491 {
492 const char *psz = pElement->paArgs[0].psz;
493 if (*psz)
494 {
495 if (!strcmp(psz, "ro"))
496 fReadOnly = true;
497 else if (!strcmp(psz, "rw"))
498 fReadOnly = false;
499 else
500 {
501 *poffError = pElement->paArgs[0].offSpec;
502 return RTErrInfoSet(pErrInfo, VERR_VFS_CHAIN_INVALID_ARGUMENT, "Expected 'ro' or 'rw' as argument");
503 }
504 }
505 }
506
507 pElement->uProvider = fReadOnly ? RTVFSMNT_F_READ_ONLY : 0;
508 return VINF_SUCCESS;
509}
510
511
512/**
513 * @interface_method_impl{RTVFSCHAINELEMENTREG,pfnInstantiate}
514 */
515static DECLCALLBACK(int) rtVfsChainMountVol_Instantiate(PCRTVFSCHAINELEMENTREG pProviderReg, PCRTVFSCHAINSPEC pSpec,
516 PCRTVFSCHAINELEMSPEC pElement, RTVFSOBJ hPrevVfsObj,
517 PRTVFSOBJ phVfsObj, uint32_t *poffError, PRTERRINFO pErrInfo)
518{
519 RT_NOREF(pProviderReg, pSpec, poffError);
520
521 int rc;
522 RTVFSFILE hVfsFileIn = RTVfsObjToFile(hPrevVfsObj);
523 if (hVfsFileIn != NIL_RTVFSFILE)
524 {
525 RTVFS hVfs;
526 rc = RTVfsMountVol(hVfsFileIn, (uint32_t)pElement->uProvider, &hVfs, pErrInfo);
527 RTVfsFileRelease(hVfsFileIn);
528 if (RT_SUCCESS(rc))
529 {
530 *phVfsObj = RTVfsObjFromVfs(hVfs);
531 RTVfsRelease(hVfs);
532 if (*phVfsObj != NIL_RTVFSOBJ)
533 return VINF_SUCCESS;
534 rc = VERR_VFS_CHAIN_CAST_FAILED;
535 }
536 }
537 else
538 rc = VERR_VFS_CHAIN_CAST_FAILED;
539 return rc;
540}
541
542
543/**
544 * @interface_method_impl{RTVFSCHAINELEMENTREG,pfnCanReuseElement}
545 */
546static DECLCALLBACK(bool) rtVfsChainMountVol_CanReuseElement(PCRTVFSCHAINELEMENTREG pProviderReg,
547 PCRTVFSCHAINSPEC pSpec, PCRTVFSCHAINELEMSPEC pElement,
548 PCRTVFSCHAINSPEC pReuseSpec, PCRTVFSCHAINELEMSPEC pReuseElement)
549{
550 RT_NOREF(pProviderReg, pSpec, pReuseSpec);
551 if ( pElement->paArgs[0].uProvider == pReuseElement->paArgs[0].uProvider
552 || !pReuseElement->paArgs[0].uProvider)
553 return true;
554 return false;
555}
556
557
558/** VFS chain element 'file'. */
559static RTVFSCHAINELEMENTREG g_rtVfsChainMountVolReg =
560{
561 /* uVersion = */ RTVFSCHAINELEMENTREG_VERSION,
562 /* fReserved = */ 0,
563 /* pszName = */ "mount",
564 /* ListEntry = */ { NULL, NULL },
565 /* pszHelp = */ "Open a file system, requires a file object on the left side.\n"
566 "First argument is an optional 'ro' (read-only) or 'rw' (read-write) flag.\n",
567 /* pfnValidate = */ rtVfsChainMountVol_Validate,
568 /* pfnInstantiate = */ rtVfsChainMountVol_Instantiate,
569 /* pfnCanReuseElement = */ rtVfsChainMountVol_CanReuseElement,
570 /* uEndMarker = */ RTVFSCHAINELEMENTREG_VERSION
571};
572
573RTVFSCHAIN_AUTO_REGISTER_ELEMENT_PROVIDER(&g_rtVfsChainMountVolReg, rtVfsChainMountVolReg);
574
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette