/* $Id: timerlr-generic.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */ /** @file * IPRT - Low Resolution Timers, Generic. * * This code is more or less identical to timer-generic.cpp, so * bugfixes goes into both files. */ /* * Copyright (C) 2006-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include "internal/iprt.h" #include #include #include #include #include #include #include #include #include "internal/magics.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * The internal representation of a timer handle. */ typedef struct RTTIMERLRINT { /** Magic. * This is RTTIMERRT_MAGIC, but changes to something else before the timer * is destroyed to indicate clearly that thread should exit. */ uint32_t volatile u32Magic; /** Flag indicating the timer is suspended. */ bool volatile fSuspended; /** Flag indicating that the timer has been destroyed. */ bool volatile fDestroyed; /** Callback. */ PFNRTTIMERLR pfnTimer; /** User argument. */ void *pvUser; /** The timer thread. */ RTTHREAD hThread; /** Event semaphore on which the thread is blocked. */ RTSEMEVENT hEvent; /** The timer interval. 0 if one-shot. */ uint64_t u64NanoInterval; /** The start of the current run (ns). * This is used to calculate when the timer ought to fire the next time. */ uint64_t volatile u64StartTS; /** The start of the current run (ns). * This is used to calculate when the timer ought to fire the next time. */ uint64_t volatile u64NextTS; /** The current tick number (since u64StartTS). */ uint64_t volatile iTick; } RTTIMERLRINT; typedef RTTIMERLRINT *PRTTIMERLRINT; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static DECLCALLBACK(int) rtTimerLRThread(RTTHREAD hThread, void *pvUser); RTDECL(int) RTTimerLRCreateEx(RTTIMERLR *phTimerLR, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMERLR pfnTimer, void *pvUser) { AssertPtr(phTimerLR); *phTimerLR = NIL_RTTIMERLR; /* * We don't support the fancy MP features, nor intervals lower than 100 ms. */ if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) return VERR_NOT_SUPPORTED; if (u64NanoInterval && u64NanoInterval < 100*1000*1000) return VERR_INVALID_PARAMETER; /* * Allocate and initialize the timer handle. */ PRTTIMERLRINT pThis = (PRTTIMERLRINT)RTMemAlloc(sizeof(*pThis)); if (!pThis) return VERR_NO_MEMORY; pThis->u32Magic = RTTIMERLR_MAGIC; pThis->fSuspended = true; pThis->fDestroyed = false; pThis->pfnTimer = pfnTimer; pThis->pvUser = pvUser; pThis->hThread = NIL_RTTHREAD; pThis->hEvent = NIL_RTSEMEVENT; pThis->u64NanoInterval = u64NanoInterval; pThis->u64StartTS = 0; int rc = RTSemEventCreate(&pThis->hEvent); if (RT_SUCCESS(rc)) { rc = RTThreadCreate(&pThis->hThread, rtTimerLRThread, pThis, 0, RTTHREADTYPE_TIMER, RTTHREADFLAGS_WAITABLE, "TimerLR"); if (RT_SUCCESS(rc)) { *phTimerLR = pThis; return VINF_SUCCESS; } pThis->u32Magic = 0; RTSemEventDestroy(pThis->hEvent); pThis->hEvent = NIL_RTSEMEVENT; } RTMemFree(pThis); return rc; } RT_EXPORT_SYMBOL(RTTimerLRCreateEx); RTDECL(int) RTTimerLRDestroy(RTTIMERLR hTimerLR) { /* * Validate input, NIL is fine though. */ if (hTimerLR == NIL_RTTIMERLR) return VINF_SUCCESS; PRTTIMERLRINT pThis = hTimerLR; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTTIMERLR_MAGIC, VERR_INVALID_HANDLE); AssertReturn(!pThis->fDestroyed, VERR_INVALID_HANDLE); /* * If the timer is active, we stop and destruct it in one go, to avoid * unnecessary waiting for the next tick. If it's suspended we can safely * set the destroy flag and signal it. */ RTTHREAD hThread = pThis->hThread; if (!pThis->fSuspended) ASMAtomicWriteBool(&pThis->fSuspended, true); ASMAtomicWriteBool(&pThis->fDestroyed, true); int rc = RTSemEventSignal(pThis->hEvent); if (rc == VERR_ALREADY_POSTED) rc = VINF_SUCCESS; AssertRC(rc); RTThreadWait(hThread, 250, NULL); return VINF_SUCCESS; } RT_EXPORT_SYMBOL(RTTimerLRDestroy); RTDECL(int) RTTimerLRStart(RTTIMERLR hTimerLR, uint64_t u64First) { /* * Validate input. */ PRTTIMERLRINT pThis = hTimerLR; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTTIMERLR_MAGIC, VERR_INVALID_HANDLE); AssertReturn(!pThis->fDestroyed, VERR_INVALID_HANDLE); if (u64First && u64First < 100*1000*1000) return VERR_INVALID_PARAMETER; if (!pThis->fSuspended) return VERR_TIMER_ACTIVE; /* * Calc when it should start firing and give the thread a kick so it get going. */ u64First += RTTimeNanoTS(); ASMAtomicWriteU64(&pThis->iTick, 0); ASMAtomicWriteU64(&pThis->u64StartTS, u64First); ASMAtomicWriteU64(&pThis->u64NextTS, u64First); ASMAtomicWriteBool(&pThis->fSuspended, false); int rc = RTSemEventSignal(pThis->hEvent); if (rc == VERR_ALREADY_POSTED) rc = VINF_SUCCESS; AssertRC(rc); return rc; } RT_EXPORT_SYMBOL(RTTimerLRStart); RTDECL(int) RTTimerLRStop(RTTIMERLR hTimerLR) { /* * Validate input. */ PRTTIMERLRINT pThis = hTimerLR; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTTIMERLR_MAGIC, VERR_INVALID_HANDLE); AssertReturn(!pThis->fDestroyed, VERR_INVALID_HANDLE); if (pThis->fSuspended) return VERR_TIMER_SUSPENDED; /* * Mark it as suspended and kick the thread. */ ASMAtomicWriteBool(&pThis->fSuspended, true); int rc = RTSemEventSignal(pThis->hEvent); if (rc == VERR_ALREADY_POSTED) rc = VINF_SUCCESS; AssertRC(rc); return rc; } RT_EXPORT_SYMBOL(RTTimerLRStop); RTDECL(int) RTTimerLRChangeInterval(RTTIMERLR hTimerLR, uint64_t u64NanoInterval) { PRTTIMERLRINT pThis = hTimerLR; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertReturn(pThis->u32Magic == RTTIMERLR_MAGIC, VERR_INVALID_HANDLE); AssertReturn(!pThis->fDestroyed, VERR_INVALID_HANDLE); if (u64NanoInterval && u64NanoInterval < 100*1000*1000) return VERR_INVALID_PARAMETER; #if 0 if (!pThis->fSuspended) { int rc = RTTimerLRStop(hTimerLR); if (RT_FAILURE(rc)) return rc; ASMAtomicWriteU64(&pThis->u64NanoInterval, u64NanoInterval); rc = RTTimerLRStart(hTimerLR, 0); if (RT_FAILURE(rc)) return rc; } else #endif { uint64_t u64Now = RTTimeNanoTS(); ASMAtomicWriteU64(&pThis->iTick, 0); ASMAtomicWriteU64(&pThis->u64StartTS, u64Now); ASMAtomicWriteU64(&pThis->u64NextTS, u64Now); ASMAtomicWriteU64(&pThis->u64NanoInterval, u64NanoInterval); RTSemEventSignal(pThis->hEvent); } return VINF_SUCCESS; } RT_EXPORT_SYMBOL(RTTimerLRChangeInterval); static DECLCALLBACK(int) rtTimerLRThread(RTTHREAD hThreadSelf, void *pvUser) { PRTTIMERLRINT pThis = (PRTTIMERLRINT)pvUser; NOREF(hThreadSelf); /* * The loop. */ while (!ASMAtomicUoReadBool(&pThis->fDestroyed)) { if (ASMAtomicUoReadBool(&pThis->fSuspended)) { int rc = RTSemEventWait(pThis->hEvent, RT_INDEFINITE_WAIT); if (RT_FAILURE(rc) && rc != VERR_INTERRUPTED) { AssertRC(rc); RTThreadSleep(1000); /* Don't cause trouble! */ } } else { uint64_t cNanoSeconds; const uint64_t u64NanoTS = RTTimeNanoTS(); if (u64NanoTS >= pThis->u64NextTS) { pThis->iTick++; pThis->pfnTimer(pThis, pThis->pvUser, pThis->iTick); /* status changed? */ if ( ASMAtomicUoReadBool(&pThis->fSuspended) || ASMAtomicUoReadBool(&pThis->fDestroyed)) continue; /* one shot? */ if (!pThis->u64NanoInterval) { ASMAtomicWriteBool(&pThis->fSuspended, true); continue; } /* * Calc the next time we should fire. * * If we're more than 60 intervals behind, just skip ahead. We * don't want the timer thread running wild just because the * clock changed in an unexpected way. As seen in @bugref{3611} this * does happen during suspend/resume, but it may also happen * if we're using a non-monotonic clock as time source. */ pThis->u64NextTS = pThis->u64StartTS + pThis->iTick * pThis->u64NanoInterval; if (RT_LIKELY(pThis->u64NextTS > u64NanoTS)) cNanoSeconds = pThis->u64NextTS - u64NanoTS; else { uint64_t iActualTick = (u64NanoTS - pThis->u64StartTS) / pThis->u64NanoInterval; if (iActualTick - pThis->iTick > 60) pThis->iTick = iActualTick - 1; #ifdef IN_RING0 cNanoSeconds = RTTimerGetSystemGranularity() / 2; #else cNanoSeconds = 1000000; /* 1ms */ #endif pThis->u64NextTS = u64NanoTS + cNanoSeconds; } } else cNanoSeconds = pThis->u64NextTS - u64NanoTS; /* block. */ int rc = RTSemEventWait(pThis->hEvent, (RTMSINTERVAL)(cNanoSeconds < 1000000 ? 1 : cNanoSeconds / 1000000)); if (RT_FAILURE(rc) && rc != VERR_INTERRUPTED && rc != VERR_TIMEOUT) { AssertRC(rc); RTThreadSleep(1000); /* Don't cause trouble! */ } } } /* * Release the timer resources. */ ASMAtomicWriteU32(&pThis->u32Magic, ~RTTIMERLR_MAGIC); /* make the handle invalid. */ int rc = RTSemEventDestroy(pThis->hEvent); AssertRC(rc); pThis->hEvent = NIL_RTSEMEVENT; pThis->hThread = NIL_RTTHREAD; RTMemFree(pThis); return VINF_SUCCESS; }