VirtualBox

source: vbox/trunk/src/VBox/Runtime/math/gcc/qdivrem.c@ 1296

Last change on this file since 1296 was 830, checked in by vboxsync, 18 years ago

Made it built (but currently disabled).

  • Property svn:eol-style set to native
File size: 7.9 KB
Line 
1/* $NetBSD: qdivrem.c,v 1.12 2005/12/11 12:24:37 christos Exp $ */
2
3/*-
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36/*#include <sys/cdefs.h>
37#if defined(LIBC_SCCS) && !defined(lint)
38#if 0
39static char sccsid[] = "@(#)qdivrem.c 8.1 (Berkeley) 6/4/93";
40#else
41__RCSID("$NetBSD: qdivrem.c,v 1.12 2005/12/11 12:24:37 christos Exp $");
42#endif
43#endif*/ /* LIBC_SCCS and not lint */
44
45/*
46 * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
47 * section 4.3.1, pp. 257--259.
48 */
49
50#include "quad.h"
51
52#define B ((int)1 << HALF_BITS) /* digit base */
53
54/* Combine two `digits' to make a single two-digit number. */
55#define COMBINE(a, b) (((u_int)(a) << HALF_BITS) | (b))
56
57/* select a type for digits in base B: use unsigned short if they fit */
58#if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
59typedef unsigned short digit;
60#else
61typedef u_int digit;
62#endif
63
64static void shl __P((digit *p, int len, int sh));
65
66/*
67 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
68 *
69 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
70 * fit within u_int. As a consequence, the maximum length dividend and
71 * divisor are 4 `digits' in this base (they are shorter if they have
72 * leading zeros).
73 */
74u_quad_t
75__qdivrem(uq, vq, arq)
76 u_quad_t uq, vq, *arq;
77{
78 union uu tmp;
79 digit *u, *v, *q;
80 digit v1, v2;
81 u_int qhat, rhat, t;
82 int m, n, d, j, i;
83 digit uspace[5], vspace[5], qspace[5];
84
85 /*
86 * Take care of special cases: divide by zero, and u < v.
87 */
88 if (vq == 0) {
89 /* divide by zero. */
90 static volatile const unsigned int zero = 0;
91
92 tmp.ul[H] = tmp.ul[L] = 1 / zero;
93 if (arq)
94 *arq = uq;
95 return (tmp.q);
96 }
97 if (uq < vq) {
98 if (arq)
99 *arq = uq;
100 return (0);
101 }
102 u = &uspace[0];
103 v = &vspace[0];
104 q = &qspace[0];
105
106 /*
107 * Break dividend and divisor into digits in base B, then
108 * count leading zeros to determine m and n. When done, we
109 * will have:
110 * u = (u[1]u[2]...u[m+n]) sub B
111 * v = (v[1]v[2]...v[n]) sub B
112 * v[1] != 0
113 * 1 < n <= 4 (if n = 1, we use a different division algorithm)
114 * m >= 0 (otherwise u < v, which we already checked)
115 * m + n = 4
116 * and thus
117 * m = 4 - n <= 2
118 */
119 tmp.uq = uq;
120 u[0] = 0;
121 u[1] = (digit)HHALF(tmp.ul[H]);
122 u[2] = (digit)LHALF(tmp.ul[H]);
123 u[3] = (digit)HHALF(tmp.ul[L]);
124 u[4] = (digit)LHALF(tmp.ul[L]);
125 tmp.uq = vq;
126 v[1] = (digit)HHALF(tmp.ul[H]);
127 v[2] = (digit)LHALF(tmp.ul[H]);
128 v[3] = (digit)HHALF(tmp.ul[L]);
129 v[4] = (digit)LHALF(tmp.ul[L]);
130 for (n = 4; v[1] == 0; v++) {
131 if (--n == 1) {
132 u_int rbj; /* r*B+u[j] (not root boy jim) */
133 digit q1, q2, q3, q4;
134
135 /*
136 * Change of plan, per exercise 16.
137 * r = 0;
138 * for j = 1..4:
139 * q[j] = floor((r*B + u[j]) / v),
140 * r = (r*B + u[j]) % v;
141 * We unroll this completely here.
142 */
143 t = v[2]; /* nonzero, by definition */
144 q1 = (digit)(u[1] / t);
145 rbj = COMBINE(u[1] % t, u[2]);
146 q2 = (digit)(rbj / t);
147 rbj = COMBINE(rbj % t, u[3]);
148 q3 = (digit)(rbj / t);
149 rbj = COMBINE(rbj % t, u[4]);
150 q4 = (digit)(rbj / t);
151 if (arq)
152 *arq = rbj % t;
153 tmp.ul[H] = COMBINE(q1, q2);
154 tmp.ul[L] = COMBINE(q3, q4);
155 return (tmp.q);
156 }
157 }
158
159 /*
160 * By adjusting q once we determine m, we can guarantee that
161 * there is a complete four-digit quotient at &qspace[1] when
162 * we finally stop.
163 */
164 for (m = 4 - n; u[1] == 0; u++)
165 m--;
166 for (i = 4 - m; --i >= 0;)
167 q[i] = 0;
168 q += 4 - m;
169
170 /*
171 * Here we run Program D, translated from MIX to C and acquiring
172 * a few minor changes.
173 *
174 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
175 */
176 d = 0;
177 for (t = v[1]; t < B / 2; t <<= 1)
178 d++;
179 if (d > 0) {
180 shl(&u[0], m + n, d); /* u <<= d */
181 shl(&v[1], n - 1, d); /* v <<= d */
182 }
183 /*
184 * D2: j = 0.
185 */
186 j = 0;
187 v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
188 v2 = v[2]; /* for D3 */
189 do {
190 digit uj0, uj1, uj2;
191
192 /*
193 * D3: Calculate qhat (\^q, in TeX notation).
194 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
195 * let rhat = (u[j]*B + u[j+1]) mod v[1].
196 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
197 * decrement qhat and increase rhat correspondingly.
198 * Note that if rhat >= B, v[2]*qhat < rhat*B.
199 */
200 uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
201 uj1 = u[j + 1]; /* for D3 only */
202 uj2 = u[j + 2]; /* for D3 only */
203 if (uj0 == v1) {
204 qhat = B;
205 rhat = uj1;
206 goto qhat_too_big;
207 } else {
208 u_int nn = COMBINE(uj0, uj1);
209 qhat = nn / v1;
210 rhat = nn % v1;
211 }
212 while (v2 * qhat > COMBINE(rhat, uj2)) {
213 qhat_too_big:
214 qhat--;
215 if ((rhat += v1) >= B)
216 break;
217 }
218 /*
219 * D4: Multiply and subtract.
220 * The variable `t' holds any borrows across the loop.
221 * We split this up so that we do not require v[0] = 0,
222 * and to eliminate a final special case.
223 */
224 for (t = 0, i = n; i > 0; i--) {
225 t = u[i + j] - v[i] * qhat - t;
226 u[i + j] = (digit)LHALF(t);
227 t = (B - HHALF(t)) & (B - 1);
228 }
229 t = u[j] - t;
230 u[j] = (digit)LHALF(t);
231 /*
232 * D5: test remainder.
233 * There is a borrow if and only if HHALF(t) is nonzero;
234 * in that (rare) case, qhat was too large (by exactly 1).
235 * Fix it by adding v[1..n] to u[j..j+n].
236 */
237 if (HHALF(t)) {
238 qhat--;
239 for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
240 t += u[i + j] + v[i];
241 u[i + j] = (digit)LHALF(t);
242 t = HHALF(t);
243 }
244 u[j] = (digit)LHALF(u[j] + t);
245 }
246 q[j] = (digit)qhat;
247 } while (++j <= m); /* D7: loop on j. */
248
249 /*
250 * If caller wants the remainder, we have to calculate it as
251 * u[m..m+n] >> d (this is at most n digits and thus fits in
252 * u[m+1..m+n], but we may need more source digits).
253 */
254 if (arq) {
255 if (d) {
256 for (i = m + n; i > m; --i)
257 u[i] = (digit)(((u_int)u[i] >> d) |
258 LHALF((u_int)u[i - 1] << (HALF_BITS - d)));
259 u[i] = 0;
260 }
261 tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
262 tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
263 *arq = tmp.q;
264 }
265
266 tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
267 tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
268 return (tmp.q);
269}
270
271/*
272 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
273 * `fall out' the left (there never will be any such anyway).
274 * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
275 */
276static void
277shl(digit *p, int len, int sh)
278{
279 int i;
280
281 for (i = 0; i < len; i++)
282 p[i] = (digit)(LHALF((u_int)p[i] << sh) |
283 ((u_int)p[i + 1] >> (HALF_BITS - sh)));
284 p[i] = (digit)(LHALF((u_int)p[i] << sh));
285}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette