VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/darwin/memobj-r0drv-darwin.cpp@ 24323

Last change on this file since 24323 was 23610, checked in by vboxsync, 15 years ago

IPRT,VMM,SUPDrv,VBGLR0: Added a parameter to RTR0MemObjLockUser/Kernel that indicates read/write intent so we can correctly lock readonly memory on Windows and OS/2. (Guest property strings, see #4238.)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 38.2 KB
Line 
1/* $Id: memobj-r0drv-darwin.cpp 23610 2009-10-07 21:22:10Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Darwin.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 *
26 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
27 * Clara, CA 95054 USA or visit http://www.sun.com if you need
28 * additional information or have any questions.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-darwin-kernel.h"
36#include "internal/iprt.h"
37#include <iprt/memobj.h>
38
39#include <iprt/alloc.h>
40#include <iprt/asm.h>
41#include <iprt/assert.h>
42#include <iprt/log.h>
43#include <iprt/param.h>
44#include <iprt/process.h>
45#include <iprt/string.h>
46#include <iprt/thread.h>
47#include "internal/memobj.h"
48
49/*#define USE_VM_MAP_WIRE - may re-enable later when non-mapped allocations are added. */
50
51
52/*******************************************************************************
53* Structures and Typedefs *
54*******************************************************************************/
55/**
56 * The Darwin version of the memory object structure.
57 */
58typedef struct RTR0MEMOBJDARWIN
59{
60 /** The core structure. */
61 RTR0MEMOBJINTERNAL Core;
62 /** Pointer to the memory descriptor created for allocated and locked memory. */
63 IOMemoryDescriptor *pMemDesc;
64 /** Pointer to the memory mapping object for mapped memory. */
65 IOMemoryMap *pMemMap;
66} RTR0MEMOBJDARWIN, *PRTR0MEMOBJDARWIN;
67
68
69/**
70 * HACK ALERT!
71 *
72 * Touch the pages to force the kernel to create the page
73 * table entries. This is necessary since the kernel gets
74 * upset if we take a page fault when preemption is disabled
75 * and/or we own a simple lock. It has no problems with us
76 * disabling interrupts when taking the traps, weird stuff.
77 *
78 * @param pv Pointer to the first page.
79 * @param cb The number of bytes.
80 */
81static void rtR0MemObjDarwinTouchPages(void *pv, size_t cb)
82{
83 uint32_t volatile *pu32 = (uint32_t volatile *)pv;
84 for (;;)
85 {
86 ASMAtomicCmpXchgU32(pu32, 0xdeadbeef, 0xdeadbeef);
87 if (cb <= PAGE_SIZE)
88 break;
89 cb -= PAGE_SIZE;
90 pu32 += PAGE_SIZE / sizeof(uint32_t);
91 }
92}
93
94
95/**
96 * Gets the virtual memory map the specified object is mapped into.
97 *
98 * @returns VM map handle on success, NULL if no map.
99 * @param pMem The memory object.
100 */
101DECLINLINE(vm_map_t) rtR0MemObjDarwinGetMap(PRTR0MEMOBJINTERNAL pMem)
102{
103 switch (pMem->enmType)
104 {
105 case RTR0MEMOBJTYPE_PAGE:
106 case RTR0MEMOBJTYPE_LOW:
107 case RTR0MEMOBJTYPE_CONT:
108 return kernel_map;
109
110 case RTR0MEMOBJTYPE_PHYS:
111 case RTR0MEMOBJTYPE_PHYS_NC:
112 return NULL; /* pretend these have no mapping atm. */
113
114 case RTR0MEMOBJTYPE_LOCK:
115 return pMem->u.Lock.R0Process == NIL_RTR0PROCESS
116 ? kernel_map
117 : get_task_map((task_t)pMem->u.Lock.R0Process);
118
119 case RTR0MEMOBJTYPE_RES_VIRT:
120 return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS
121 ? kernel_map
122 : get_task_map((task_t)pMem->u.ResVirt.R0Process);
123
124 case RTR0MEMOBJTYPE_MAPPING:
125 return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS
126 ? kernel_map
127 : get_task_map((task_t)pMem->u.Mapping.R0Process);
128
129 default:
130 return NULL;
131 }
132}
133
134#if 0 /* not necessary after all*/
135/* My vm_map mockup. */
136struct my_vm_map
137{
138 struct { char pad[8]; } lock;
139 struct my_vm_map_header
140 {
141 struct vm_map_links
142 {
143 void *prev;
144 void *next;
145 vm_map_offset_t start;
146 vm_map_offset_t end;
147 } links;
148 int nentries;
149 boolean_t entries_pageable;
150 } hdr;
151 pmap_t pmap;
152 vm_map_size_t size;
153};
154
155
156/**
157 * Gets the minimum map address, this is similar to get_map_min.
158 *
159 * @returns The start address of the map.
160 * @param pMap The map.
161 */
162static vm_map_offset_t rtR0MemObjDarwinGetMapMin(vm_map_t pMap)
163{
164 /* lazy discovery of the correct offset. The apple guys is a wonderfully secretive bunch. */
165 static int32_t volatile s_offAdjust = INT32_MAX;
166 int32_t off = s_offAdjust;
167 if (off == INT32_MAX)
168 {
169 for (off = 0; ; off += sizeof(pmap_t))
170 {
171 if (*(pmap_t *)((uint8_t *)kernel_map + off) == kernel_pmap)
172 break;
173 AssertReturn(off <= RT_MAX(RT_OFFSETOF(struct my_vm_map, pmap) * 4, 1024), 0x1000);
174 }
175 ASMAtomicWriteS32(&s_offAdjust, off - RT_OFFSETOF(struct my_vm_map, pmap));
176 }
177
178 /* calculate it. */
179 struct my_vm_map *pMyMap = (struct my_vm_map *)((uint8_t *)pMap + off);
180 return pMyMap->hdr.links.start;
181}
182#endif /* unused */
183
184#ifdef RT_STRICT
185
186/**
187 * Read from a physical page.
188 *
189 * @param HCPhys The address to start reading at.
190 * @param cb How many bytes to read.
191 * @param pvDst Where to put the bytes. This is zero'ed on failure.
192 */
193static void rtR0MemObjDarwinReadPhys(RTHCPHYS HCPhys, size_t cb, void *pvDst)
194{
195 memset(pvDst, '\0', cb);
196
197 IOAddressRange aRanges[1] = { { (mach_vm_address_t)HCPhys, RT_ALIGN(cb, PAGE_SIZE) } };
198 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddressRanges(&aRanges[0], RT_ELEMENTS(aRanges),
199 kIODirectionIn, NULL /*task*/);
200 if (pMemDesc)
201 {
202#if MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
203 IOMemoryMap *pMemMap = pMemDesc->createMappingInTask(kernel_task, 0, kIOMapAnywhere | kIOMapDefaultCache);
204#else
205 IOMemoryMap *pMemMap = pMemDesc->map(kernel_task, 0, kIOMapAnywhere | kIOMapDefaultCache);
206#endif
207 if (pMemMap)
208 {
209 void const *pvSrc = (void const *)(uintptr_t)pMemMap->getVirtualAddress();
210 memcpy(pvDst, pvSrc, cb);
211 pMemMap->release();
212 }
213 else
214 printf("rtR0MemObjDarwinReadPhys: createMappingInTask failed; HCPhys=%llx\n", HCPhys);
215
216 pMemDesc->release();
217 }
218 else
219 printf("rtR0MemObjDarwinReadPhys: withAddressRanges failed; HCPhys=%llx\n", HCPhys);
220}
221
222
223/**
224 * Gets the PTE for a page.
225 *
226 * @returns the PTE.
227 * @param pvPage The virtual address to get the PTE for.
228 */
229uint64_t rtR0MemObjDarwinGetPTE(void *pvPage)
230{
231 RTUINT64U u64;
232 RTCCUINTREG cr3 = ASMGetCR3();
233 RTCCUINTREG cr4 = ASMGetCR4();
234 bool fPAE = false;
235 bool fLMA = false;
236 if (cr4 & RT_BIT(5) /*X86_CR4_PAE*/)
237 {
238 fPAE = true;
239 uint32_t fAmdFeatures = ASMCpuId_EDX(0x80000001);
240 if (fAmdFeatures & RT_BIT(29) /*X86_CPUID_AMD_FEATURE_EDX_LONG_MODE*/)
241 {
242 uint64_t efer = ASMRdMsr(0xc0000080 /*MSR_K6_EFER*/);
243 if (efer & RT_BIT(10) /*MSR_K6_EFER_LMA*/)
244 fLMA = true;
245 }
246 }
247
248 if (fLMA)
249 {
250 /* PML4 */
251 rtR0MemObjDarwinReadPhys((cr3 & ~(RTCCUINTREG)PAGE_OFFSET_MASK) | (((uint64_t)(uintptr_t)pvPage >> 39) & 0x1ff) * 8, 8, &u64);
252 if (!(u64.u & RT_BIT(0) /* present */))
253 {
254 printf("rtR0MemObjDarwinGetPTE: %p -> PML4E !p\n", pvPage);
255 return 0;
256 }
257
258 /* PDPTR */
259 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> 30) & 0x1ff) * 8, 8, &u64);
260 if (!(u64.u & RT_BIT(0) /* present */))
261 {
262 printf("rtR0MemObjDarwinGetPTE: %p -> PDPTE !p\n", pvPage);
263 return 0;
264 }
265 if (u64.u & RT_BIT(7) /* big */)
266 return (u64.u & ~(uint64_t)(_1G -1)) | ((uintptr_t)pvPage & (_1G -1));
267
268 /* PD */
269 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> 21) & 0x1ff) * 8, 8, &u64);
270 if (!(u64.u & RT_BIT(0) /* present */))
271 {
272 printf("rtR0MemObjDarwinGetPTE: %p -> PDE !p\n", pvPage);
273 return 0;
274 }
275 if (u64.u & RT_BIT(7) /* big */)
276 return (u64.u & ~(uint64_t)(_2M -1)) | ((uintptr_t)pvPage & (_2M -1));
277
278 /* PD */
279 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> 12) & 0x1ff) * 8, 8, &u64);
280 if (!(u64.u & RT_BIT(0) /* present */))
281 {
282 printf("rtR0MemObjDarwinGetPTE: %p -> PTE !p\n", pvPage);
283 return 0;
284 }
285 return u64.u;
286 }
287
288 if (fPAE)
289 {
290 /* PDPTR */
291 rtR0MemObjDarwinReadPhys((u64.u & 0xffffffe0 /*X86_CR3_PAE_PAGE_MASK*/) | (((uintptr_t)pvPage >> 30) & 0x3) * 8, 8, &u64);
292 if (!(u64.u & RT_BIT(0) /* present */))
293 return 0;
294
295 /* PD */
296 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> 21) & 0x1ff) * 8, 8, &u64);
297 if (!(u64.u & RT_BIT(0) /* present */))
298 return 0;
299 if (u64.u & RT_BIT(7) /* big */)
300 return (u64.u & ~(uint64_t)(_2M -1)) | ((uintptr_t)pvPage & (_2M -1));
301
302 /* PD */
303 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> 12) & 0x1ff) * 8, 8, &u64);
304 if (!(u64.u & RT_BIT(0) /* present */))
305 return 0;
306 return u64.u;
307 }
308
309 /* PD */
310 rtR0MemObjDarwinReadPhys((u64.au32[0] & ~(uint32_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> 22) & 0x3ff) * 4, 4, &u64);
311 if (!(u64.au32[0] & RT_BIT(0) /* present */))
312 return 0;
313 if (u64.au32[0] & RT_BIT(7) /* big */)
314 return (u64.u & ~(uint64_t)(_2M -1)) | ((uintptr_t)pvPage & (_2M -1));
315
316 /* PD */
317 rtR0MemObjDarwinReadPhys((u64.au32[0] & ~(uint32_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> 12) & 0x3ff) * 4, 4, &u64);
318 if (!(u64.au32[0] & RT_BIT(0) /* present */))
319 return 0;
320 return u64.au32[0];
321
322 return 0;
323}
324
325#endif /* RT_STRICT */
326
327int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
328{
329 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)pMem;
330
331 /*
332 * Release the IOMemoryDescriptor or/and IOMemoryMap associated with the object.
333 */
334 if (pMemDarwin->pMemDesc)
335 {
336 if (pMemDarwin->Core.enmType == RTR0MEMOBJTYPE_LOCK)
337 pMemDarwin->pMemDesc->complete(); /* paranoia */
338 pMemDarwin->pMemDesc->release();
339 pMemDarwin->pMemDesc = NULL;
340 }
341
342 if (pMemDarwin->pMemMap)
343 {
344 pMemDarwin->pMemMap->release();
345 pMemDarwin->pMemMap = NULL;
346 }
347
348 /*
349 * Release any memory that we've allocated or locked.
350 */
351 switch (pMemDarwin->Core.enmType)
352 {
353 case RTR0MEMOBJTYPE_LOW:
354 case RTR0MEMOBJTYPE_PAGE:
355 case RTR0MEMOBJTYPE_CONT:
356 break;
357
358 case RTR0MEMOBJTYPE_LOCK:
359 {
360#ifdef USE_VM_MAP_WIRE
361 vm_map_t Map = pMemDarwin->Core.u.Lock.R0Process != NIL_RTR0PROCESS
362 ? get_task_map((task_t)pMemDarwin->Core.u.Lock.R0Process)
363 : kernel_map;
364 kern_return_t kr = vm_map_unwire(Map,
365 (vm_map_offset_t)pMemDarwin->Core.pv,
366 (vm_map_offset_t)pMemDarwin->Core.pv + pMemDarwin->Core.cb,
367 0 /* not user */);
368 AssertRC(kr == KERN_SUCCESS); /** @todo don't ignore... */
369#endif
370 break;
371 }
372
373 case RTR0MEMOBJTYPE_PHYS:
374 /*if (pMemDarwin->Core.u.Phys.fAllocated)
375 IOFreePhysical(pMemDarwin->Core.u.Phys.PhysBase, pMemDarwin->Core.cb);*/
376 Assert(!pMemDarwin->Core.u.Phys.fAllocated);
377 break;
378
379 case RTR0MEMOBJTYPE_PHYS_NC:
380 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
381 return VERR_INTERNAL_ERROR;
382
383 case RTR0MEMOBJTYPE_RES_VIRT:
384 AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
385 return VERR_INTERNAL_ERROR;
386
387 case RTR0MEMOBJTYPE_MAPPING:
388 /* nothing to do here. */
389 break;
390
391 default:
392 AssertMsgFailed(("enmType=%d\n", pMemDarwin->Core.enmType));
393 return VERR_INTERNAL_ERROR;
394 }
395
396 return VINF_SUCCESS;
397}
398
399
400
401/**
402 * Kernel memory alloc worker that uses inTaskWithPhysicalMask.
403 *
404 * @returns IPRT status code.
405 * @retval VERR_ADDRESS_TOO_BIG try another way.
406 *
407 * @param ppMem Where to return the memory object.
408 * @param cb The page aligned memory size.
409 * @param fExecutable Whether the mapping needs to be executable.
410 * @param fContiguous Whether the backing memory needs to be contiguous.
411 * @param PhysMask The mask for the backing memory (i.e. range). Use 0 if
412 * you don't care that much or is speculating.
413 * @param MaxPhysAddr The max address to verify the result against. Use
414 * UINT64_MAX if it doesn't matter.
415 * @param enmType The object type.
416 */
417static int rtR0MemObjNativeAllocWorker(PPRTR0MEMOBJINTERNAL ppMem, size_t cb,
418 bool fExecutable, bool fContiguous,
419 mach_vm_address_t PhysMask, uint64_t MaxPhysAddr,
420 RTR0MEMOBJTYPE enmType)
421{
422 /*
423 * Try inTaskWithPhysicalMask first, but since we don't quite trust that it
424 * actually respects the physical memory mask (10.5.x is certainly busted),
425 * we'll use rtR0MemObjNativeAllocCont as a fallback for dealing with that.
426 *
427 * The kIOMemoryKernelUserShared flag just forces the result to be page aligned.
428 */
429 int rc;
430 IOBufferMemoryDescriptor *pMemDesc =
431 IOBufferMemoryDescriptor::inTaskWithPhysicalMask(kernel_task,
432 kIOMemoryKernelUserShared
433 | kIODirectionInOut
434 | (fContiguous ? kIOMemoryPhysicallyContiguous : 0),
435 cb,
436 PhysMask);
437 if (pMemDesc)
438 {
439 IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
440 if (IORet == kIOReturnSuccess)
441 {
442 void *pv = pMemDesc->getBytesNoCopy(0, cb);
443 if (pv)
444 {
445 /*
446 * Check if it's all below 4GB.
447 */
448 addr64_t AddrPrev = 0;
449 MaxPhysAddr &= ~(uint64_t)PAGE_OFFSET_MASK;
450 for (IOByteCount off = 0; off < cb; off += PAGE_SIZE)
451 {
452#ifdef __LP64__ /* Grumble! */
453 addr64_t Addr = pMemDesc->getPhysicalSegment(off, NULL);
454#else
455 addr64_t Addr = pMemDesc->getPhysicalSegment64(off, NULL);
456#endif
457 if ( Addr > MaxPhysAddr
458 || !Addr
459 || (Addr & PAGE_OFFSET_MASK)
460 || ( fContiguous
461 && !off
462 && Addr == AddrPrev + PAGE_SIZE))
463 {
464 /* Buggy API, try allocate the memory another way. */
465 pMemDesc->release();
466 if (PhysMask)
467 LogAlways(("rtR0MemObjNativeAllocWorker: off=%x Addr=%llx AddrPrev=%llx MaxPhysAddr=%llx PhysMas=%llx - buggy API!\n",
468 off, Addr, AddrPrev, MaxPhysAddr, PhysMask));
469 return VERR_ADDRESS_TOO_BIG;
470 }
471 AddrPrev = Addr;
472 }
473
474#ifdef RT_STRICT
475 /* check that the memory is actually mapped. */
476 //addr64_t Addr = pMemDesc->getPhysicalSegment64(0, NULL);
477 //printf("rtR0MemObjNativeAllocWorker: pv=%p %8llx %8llx\n", pv, rtR0MemObjDarwinGetPTE(pv), Addr);
478 RTTHREADPREEMPTSTATE State = RTTHREADPREEMPTSTATE_INITIALIZER;
479 RTThreadPreemptDisable(&State);
480 rtR0MemObjDarwinTouchPages(pv, cb);
481 RTThreadPreemptRestore(&State);
482#endif
483
484 /*
485 * Create the IPRT memory object.
486 */
487 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), enmType, pv, cb);
488 if (pMemDarwin)
489 {
490 if (fContiguous)
491 {
492#ifdef __LP64__ /* Grumble! */
493 addr64_t PhysBase64 = pMemDesc->getPhysicalSegment(0, NULL);
494#else
495 addr64_t PhysBase64 = pMemDesc->getPhysicalSegment64(0, NULL);
496#endif
497 RTHCPHYS PhysBase = PhysBase64; Assert(PhysBase == PhysBase64);
498 if (enmType == RTR0MEMOBJTYPE_CONT)
499 pMemDarwin->Core.u.Cont.Phys = PhysBase;
500 else if (enmType == RTR0MEMOBJTYPE_PHYS)
501 pMemDarwin->Core.u.Phys.PhysBase = PhysBase;
502 else
503 AssertMsgFailed(("enmType=%d\n", enmType));
504 }
505
506 pMemDarwin->pMemDesc = pMemDesc;
507 *ppMem = &pMemDarwin->Core;
508 return VINF_SUCCESS;
509 }
510
511 rc = VERR_NO_MEMORY;
512 }
513 else
514 rc = VERR_MEMOBJ_INIT_FAILED;
515 }
516 else
517 rc = RTErrConvertFromDarwinIO(IORet);
518 pMemDesc->release();
519 }
520 else
521 rc = VERR_MEMOBJ_INIT_FAILED;
522 Assert(rc != VERR_ADDRESS_TOO_BIG);
523 return rc;
524}
525
526
527int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
528{
529 return rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, false /* fContiguous */,
530 0 /* PhysMask */, UINT64_MAX, RTR0MEMOBJTYPE_PAGE);
531}
532
533
534int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
535{
536 /*
537 * Try IOMallocPhysical/IOMallocAligned first.
538 * Then try optimistically without a physical address mask, which will always
539 * end up using IOMallocAligned.
540 *
541 * (See bug comment in the worker and IOBufferMemoryDescriptor::initWithPhysicalMask.)
542 */
543 int rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, false /* fContiguous */,
544 ~(uint32_t)PAGE_OFFSET_MASK, _4G - PAGE_SIZE, RTR0MEMOBJTYPE_LOW);
545 if (rc == VERR_ADDRESS_TOO_BIG)
546 rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, false /* fContiguous */,
547 0 /* PhysMask */, _4G - PAGE_SIZE, RTR0MEMOBJTYPE_LOW);
548 return rc;
549}
550
551
552int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
553{
554 int rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, true /* fContiguous */,
555 ~(uint32_t)PAGE_OFFSET_MASK, _4G - PAGE_SIZE,
556 RTR0MEMOBJTYPE_CONT);
557
558 /*
559 * Workaround for bogus IOKernelAllocateContiguous behavior, just in case.
560 * cb <= PAGE_SIZE allocations take a different path, using a different allocator.
561 */
562 if (RT_FAILURE(rc) && cb <= PAGE_SIZE)
563 rc = rtR0MemObjNativeAllocWorker(ppMem, cb + PAGE_SIZE, fExecutable, true /* fContiguous */,
564 ~(uint32_t)PAGE_OFFSET_MASK, _4G - PAGE_SIZE,
565 RTR0MEMOBJTYPE_CONT);
566 return rc;
567}
568
569
570int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
571{
572 /*
573 * Translate the PhysHighest address into a mask.
574 */
575 int rc;
576 if (PhysHighest == NIL_RTHCPHYS)
577 rc = rtR0MemObjNativeAllocWorker(ppMem, cb, true /* fExecutable */, true /* fContiguous */,
578 0 /* PhysMask*/, UINT64_MAX, RTR0MEMOBJTYPE_PHYS);
579 else
580 {
581 mach_vm_address_t PhysMask = 0;
582 PhysMask = ~(mach_vm_address_t)0;
583 while (PhysMask > (PhysHighest | PAGE_OFFSET_MASK))
584 PhysMask >>= 1;
585 AssertReturn(PhysMask + 1 <= cb, VERR_INVALID_PARAMETER);
586 PhysMask &= ~(mach_vm_address_t)PAGE_OFFSET_MASK;
587
588 rc = rtR0MemObjNativeAllocWorker(ppMem, cb, true /* fExecutable */, true /* fContiguous */,
589 PhysMask, PhysHighest, RTR0MEMOBJTYPE_PHYS);
590 }
591 return rc;
592}
593
594
595int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
596{
597 /** @todo rtR0MemObjNativeAllocPhys / darwin.
598 * This might be a bit problematic and may very well require having to create our own
599 * object which we populate with pages but without mapping it into any address space.
600 * Estimate is 2-3 days.
601 */
602 return VERR_NOT_SUPPORTED;
603}
604
605
606int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
607{
608 /*
609 * Create a descriptor for it (the validation is always true on intel macs, but
610 * as it doesn't harm us keep it in).
611 */
612 int rc = VERR_ADDRESS_TOO_BIG;
613 IOAddressRange aRanges[1] = { { Phys, cb } };
614 if ( aRanges[0].address == Phys
615 && aRanges[0].length == cb)
616 {
617 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddressRanges(&aRanges[0], RT_ELEMENTS(aRanges),
618 kIODirectionInOut, NULL /*task*/);
619 if (pMemDesc)
620 {
621#ifdef __LP64__ /* Grumble! */
622 Assert(Phys == pMemDesc->getPhysicalSegment(0, 0));
623#else
624 Assert(Phys == pMemDesc->getPhysicalSegment64(0, 0));
625#endif
626
627 /*
628 * Create the IPRT memory object.
629 */
630 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_PHYS, NULL, cb);
631 if (pMemDarwin)
632 {
633 pMemDarwin->Core.u.Phys.PhysBase = Phys;
634 pMemDarwin->Core.u.Phys.fAllocated = false;
635 pMemDarwin->pMemDesc = pMemDesc;
636 *ppMem = &pMemDarwin->Core;
637 return VINF_SUCCESS;
638 }
639
640 rc = VERR_NO_MEMORY;
641 pMemDesc->release();
642 }
643 else
644 rc = VERR_MEMOBJ_INIT_FAILED;
645 }
646 else
647 AssertMsgFailed(("%#llx %llx\n", (unsigned long long)Phys, (unsigned long long)cb));
648 return rc;
649}
650
651
652/**
653 * Internal worker for locking down pages.
654 *
655 * @return IPRT status code.
656 *
657 * @param ppMem Where to store the memory object pointer.
658 * @param pv First page.
659 * @param cb Number of bytes.
660 * @param fAccess The desired access, a combination of RTMEM_PROT_READ
661 * and RTMEM_PROT_WRITE.
662 * @param Task The task \a pv and \a cb refers to.
663 */
664static int rtR0MemObjNativeLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, task_t Task)
665{
666 NOREF(fAccess);
667#ifdef USE_VM_MAP_WIRE
668 vm_map_t Map = get_task_map(Task);
669 Assert(Map);
670
671 /*
672 * First try lock the memory.
673 */
674 int rc = VERR_LOCK_FAILED;
675 kern_return_t kr = vm_map_wire(get_task_map(Task),
676 (vm_map_offset_t)pv,
677 (vm_map_offset_t)pv + cb,
678 VM_PROT_DEFAULT,
679 0 /* not user */);
680 if (kr == KERN_SUCCESS)
681 {
682 /*
683 * Create the IPRT memory object.
684 */
685 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_LOCK, pv, cb);
686 if (pMemDarwin)
687 {
688 pMemDarwin->Core.u.Lock.R0Process = (RTR0PROCESS)Task;
689 *ppMem = &pMemDarwin->Core;
690 return VINF_SUCCESS;
691 }
692
693 kr = vm_map_unwire(get_task_map(Task), (vm_map_offset_t)pv, (vm_map_offset_t)pv + cb, 0 /* not user */);
694 Assert(kr == KERN_SUCCESS);
695 rc = VERR_NO_MEMORY;
696 }
697
698#else
699
700 /*
701 * Create a descriptor and try lock it (prepare).
702 */
703 int rc = VERR_MEMOBJ_INIT_FAILED;
704 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddressRange((vm_address_t)pv, cb, kIODirectionInOut, Task);
705 if (pMemDesc)
706 {
707 IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
708 if (IORet == kIOReturnSuccess)
709 {
710 /*
711 * Create the IPRT memory object.
712 */
713 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_LOCK, pv, cb);
714 if (pMemDarwin)
715 {
716 pMemDarwin->Core.u.Lock.R0Process = (RTR0PROCESS)Task;
717 pMemDarwin->pMemDesc = pMemDesc;
718 *ppMem = &pMemDarwin->Core;
719 return VINF_SUCCESS;
720 }
721
722 pMemDesc->complete();
723 rc = VERR_NO_MEMORY;
724 }
725 else
726 rc = VERR_LOCK_FAILED;
727 pMemDesc->release();
728 }
729#endif
730 return rc;
731}
732
733
734int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
735{
736 return rtR0MemObjNativeLock(ppMem, (void *)R3Ptr, cb, fAccess, (task_t)R0Process);
737}
738
739
740int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
741{
742 return rtR0MemObjNativeLock(ppMem, pv, cb, fAccess, kernel_task);
743}
744
745
746int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
747{
748 return VERR_NOT_IMPLEMENTED;
749}
750
751
752int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
753{
754 return VERR_NOT_IMPLEMENTED;
755}
756
757
758int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
759 unsigned fProt, size_t offSub, size_t cbSub)
760{
761 AssertReturn(pvFixed == (void *)-1, VERR_NOT_SUPPORTED);
762
763 /*
764 * Check that the specified alignment is supported.
765 */
766 if (uAlignment > PAGE_SIZE)
767 return VERR_NOT_SUPPORTED;
768
769 /*
770 * Must have a memory descriptor that we can map.
771 */
772 int rc = VERR_INVALID_PARAMETER;
773 PRTR0MEMOBJDARWIN pMemToMapDarwin = (PRTR0MEMOBJDARWIN)pMemToMap;
774 if (pMemToMapDarwin->pMemDesc)
775 {
776#if MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
777 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->createMappingInTask(kernel_task,
778 0,
779 kIOMapAnywhere | kIOMapDefaultCache,
780 offSub,
781 cbSub);
782#else
783 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->map(kernel_task,
784 0,
785 kIOMapAnywhere | kIOMapDefaultCache,
786 offSub,
787 cbSub);
788#endif
789 if (pMemMap)
790 {
791 IOVirtualAddress VirtAddr = pMemMap->getVirtualAddress();
792 void *pv = (void *)(uintptr_t)VirtAddr;
793 if ((uintptr_t)pv == VirtAddr)
794 {
795 //addr64_t Addr = pMemToMapDarwin->pMemDesc->getPhysicalSegment64(offSub, NULL);
796 //printf("pv=%p: %8llx %8llx\n", pv, rtR0MemObjDarwinGetPTE(pv), Addr);
797
798// /*
799// * Explicitly lock it so that we're sure it is present and that
800// * its PTEs cannot be recycled.
801// * Note! withAddressRange() doesn't work as it adds kIOMemoryTypeVirtual64
802// * to the options which causes prepare() to not wire the pages.
803// * This is probably a bug.
804// */
805// IOAddressRange Range = { (mach_vm_address_t)pv, cbSub };
806// IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withOptions(&Range,
807// 1 /* count */,
808// 0 /* offset */,
809// kernel_task,
810// kIODirectionInOut | kIOMemoryTypeVirtual,
811// kIOMapperSystem);
812// if (pMemDesc)
813// {
814// IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
815// if (IORet == kIOReturnSuccess)
816// {
817 /* HACK ALERT! */
818 rtR0MemObjDarwinTouchPages(pv, cbSub);
819 /** @todo First, the memory should've been mapped by now, and second, it
820 * shouild have the wired attribute in the PTE (bit 9). Neither is
821 * seems to be the case. The disabled locking code doesn't make any
822 * difference, which is extremely odd, and breaks
823 * rtR0MemObjNativeGetPagePhysAddr (getPhysicalSegment64 -> 64 for the
824 * lock descriptor. */
825 //addr64_t Addr = pMemDesc->getPhysicalSegment64(0, NULL);
826 //printf("pv=%p: %8llx %8llx (%d)\n", pv, rtR0MemObjDarwinGetPTE(pv), Addr, 2);
827
828 /*
829 * Create the IPRT memory object.
830 */
831 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_MAPPING,
832 pv, cbSub);
833 if (pMemDarwin)
834 {
835 pMemDarwin->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
836 pMemDarwin->pMemMap = pMemMap;
837// pMemDarwin->pMemDesc = pMemDesc;
838 *ppMem = &pMemDarwin->Core;
839 return VINF_SUCCESS;
840 }
841
842// pMemDesc->complete();
843// rc = VERR_NO_MEMORY;
844// }
845// else
846// rc = RTErrConvertFromDarwinIO(IORet);
847// pMemDesc->release();
848// }
849// else
850// rc = VERR_MEMOBJ_INIT_FAILED;
851 }
852 else
853 rc = VERR_ADDRESS_TOO_BIG;
854 pMemMap->release();
855 }
856 else
857 rc = VERR_MAP_FAILED;
858 }
859 return rc;
860}
861
862
863int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
864{
865 /*
866 * Check for unsupported things.
867 */
868 AssertReturn(R3PtrFixed == (RTR3PTR)-1, VERR_NOT_SUPPORTED);
869 if (uAlignment > PAGE_SIZE)
870 return VERR_NOT_SUPPORTED;
871
872 /*
873 * Must have a memory descriptor.
874 */
875 int rc = VERR_INVALID_PARAMETER;
876 PRTR0MEMOBJDARWIN pMemToMapDarwin = (PRTR0MEMOBJDARWIN)pMemToMap;
877 if (pMemToMapDarwin->pMemDesc)
878 {
879#if MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
880 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->createMappingInTask((task_t)R0Process,
881 0,
882 kIOMapAnywhere | kIOMapDefaultCache,
883 0 /* offset */,
884 0 /* length */);
885#else
886 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->map((task_t)R0Process,
887 0,
888 kIOMapAnywhere | kIOMapDefaultCache);
889#endif
890 if (pMemMap)
891 {
892 IOVirtualAddress VirtAddr = pMemMap->getVirtualAddress();
893 void *pv = (void *)(uintptr_t)VirtAddr;
894 if ((uintptr_t)pv == VirtAddr)
895 {
896 /*
897 * Create the IPRT memory object.
898 */
899 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_MAPPING,
900 pv, pMemToMapDarwin->Core.cb);
901 if (pMemDarwin)
902 {
903 pMemDarwin->Core.u.Mapping.R0Process = R0Process;
904 pMemDarwin->pMemMap = pMemMap;
905 *ppMem = &pMemDarwin->Core;
906 return VINF_SUCCESS;
907 }
908
909 rc = VERR_NO_MEMORY;
910 }
911 else
912 rc = VERR_ADDRESS_TOO_BIG;
913 pMemMap->release();
914 }
915 else
916 rc = VERR_MAP_FAILED;
917 }
918 return rc;
919}
920
921
922int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
923{
924 /* Get the map for the object. */
925 vm_map_t pVmMap = rtR0MemObjDarwinGetMap(pMem);
926 if (!pVmMap)
927 return VERR_NOT_SUPPORTED;
928
929 /* Convert the protection. */
930 vm_prot_t fMachProt;
931 switch (fProt)
932 {
933 case RTMEM_PROT_NONE:
934 fMachProt = VM_PROT_NONE;
935 break;
936 case RTMEM_PROT_READ:
937 fMachProt = VM_PROT_READ;
938 break;
939 case RTMEM_PROT_READ | RTMEM_PROT_WRITE:
940 fMachProt = VM_PROT_READ | VM_PROT_WRITE;
941 break;
942 case RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
943 fMachProt = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
944 break;
945 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
946 fMachProt = VM_PROT_WRITE | VM_PROT_EXECUTE;
947 break;
948 case RTMEM_PROT_EXEC:
949 fMachProt = VM_PROT_EXECUTE;
950 break;
951 default:
952 AssertFailedReturn(VERR_INVALID_PARAMETER);
953 }
954
955 /* do the job. */
956 vm_offset_t Start = (uintptr_t)pMem->pv + offSub;
957 kern_return_t krc = vm_protect(pVmMap,
958 Start,
959 cbSub,
960 false,
961 fMachProt);
962 if (krc != KERN_SUCCESS)
963 return RTErrConvertFromDarwinKern(krc);
964 return VINF_SUCCESS;
965}
966
967
968RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
969{
970 RTHCPHYS PhysAddr;
971 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)pMem;
972
973#ifdef USE_VM_MAP_WIRE
974 /*
975 * Locked memory doesn't have a memory descriptor and
976 * needs to be handled differently.
977 */
978 if (pMemDarwin->Core.enmType == RTR0MEMOBJTYPE_LOCK)
979 {
980 ppnum_t PgNo;
981 if (pMemDarwin->Core.u.Lock.R0Process == NIL_RTR0PROCESS)
982 PgNo = pmap_find_phys(kernel_pmap, (uintptr_t)pMemDarwin->Core.pv + iPage * PAGE_SIZE);
983 else
984 {
985 /*
986 * From what I can tell, Apple seems to have locked up the all the
987 * available interfaces that could help us obtain the pmap_t of a task
988 * or vm_map_t.
989
990 * So, we'll have to figure out where in the vm_map_t structure it is
991 * and read it our selves. ASSUMING that kernel_pmap is pointed to by
992 * kernel_map->pmap, we scan kernel_map to locate the structure offset.
993 * Not nice, but it will hopefully do the job in a reliable manner...
994 *
995 * (get_task_pmap, get_map_pmap or vm_map_pmap is what we really need btw.)
996 */
997 static int s_offPmap = -1;
998 if (RT_UNLIKELY(s_offPmap == -1))
999 {
1000 pmap_t const *p = (pmap_t *)kernel_map;
1001 pmap_t const * const pEnd = p + 64;
1002 for (; p < pEnd; p++)
1003 if (*p == kernel_pmap)
1004 {
1005 s_offPmap = (uintptr_t)p - (uintptr_t)kernel_map;
1006 break;
1007 }
1008 AssertReturn(s_offPmap >= 0, NIL_RTHCPHYS);
1009 }
1010 pmap_t Pmap = *(pmap_t *)((uintptr_t)get_task_map((task_t)pMemDarwin->Core.u.Lock.R0Process) + s_offPmap);
1011 PgNo = pmap_find_phys(Pmap, (uintptr_t)pMemDarwin->Core.pv + iPage * PAGE_SIZE);
1012 }
1013
1014 AssertReturn(PgNo, NIL_RTHCPHYS);
1015 PhysAddr = (RTHCPHYS)PgNo << PAGE_SHIFT;
1016 Assert((PhysAddr >> PAGE_SHIFT) == PgNo);
1017 }
1018 else
1019#endif /* USE_VM_MAP_WIRE */
1020 {
1021 /*
1022 * Get the memory descriptor.
1023 */
1024 IOMemoryDescriptor *pMemDesc = pMemDarwin->pMemDesc;
1025 if (!pMemDesc)
1026 pMemDesc = pMemDarwin->pMemMap->getMemoryDescriptor();
1027 AssertReturn(pMemDesc, NIL_RTHCPHYS);
1028
1029 /*
1030 * If we've got a memory descriptor, use getPhysicalSegment64().
1031 */
1032#ifdef __LP64__ /* Grumble! */
1033 addr64_t Addr = pMemDesc->getPhysicalSegment(iPage * PAGE_SIZE, NULL);
1034#else
1035 addr64_t Addr = pMemDesc->getPhysicalSegment64(iPage * PAGE_SIZE, NULL);
1036#endif
1037 AssertMsgReturn(Addr, ("iPage=%u\n", iPage), NIL_RTHCPHYS);
1038 PhysAddr = Addr;
1039 AssertMsgReturn(PhysAddr == Addr, ("PhysAddr=%RHp Addr=%RX64\n", PhysAddr, (uint64_t)Addr), NIL_RTHCPHYS);
1040 }
1041
1042 return PhysAddr;
1043}
1044
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette