VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/darwin/memobj-r0drv-darwin.cpp@ 57358

Last change on this file since 57358 was 57358, checked in by vboxsync, 9 years ago

*: scm cleanup run.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 45.3 KB
Line 
1/* $Id: memobj-r0drv-darwin.cpp 57358 2015-08-14 15:16:38Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Darwin.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-darwin-kernel.h"
32#include "internal/iprt.h"
33#include <iprt/memobj.h>
34
35#include <iprt/asm.h>
36#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
37# include <iprt/x86.h>
38# include <iprt/asm-amd64-x86.h>
39#endif
40#include <iprt/assert.h>
41#include <iprt/log.h>
42#include <iprt/mem.h>
43#include <iprt/param.h>
44#include <iprt/process.h>
45#include <iprt/string.h>
46#include <iprt/thread.h>
47#include "internal/memobj.h"
48
49/*#define USE_VM_MAP_WIRE - may re-enable later when non-mapped allocations are added. */
50
51
52/*********************************************************************************************************************************
53* Structures and Typedefs *
54*********************************************************************************************************************************/
55/**
56 * The Darwin version of the memory object structure.
57 */
58typedef struct RTR0MEMOBJDARWIN
59{
60 /** The core structure. */
61 RTR0MEMOBJINTERNAL Core;
62 /** Pointer to the memory descriptor created for allocated and locked memory. */
63 IOMemoryDescriptor *pMemDesc;
64 /** Pointer to the memory mapping object for mapped memory. */
65 IOMemoryMap *pMemMap;
66} RTR0MEMOBJDARWIN, *PRTR0MEMOBJDARWIN;
67
68
69/**
70 * Touch the pages to force the kernel to create or write-enable the page table
71 * entries.
72 *
73 * This is necessary since the kernel gets upset if we take a page fault when
74 * preemption is disabled and/or we own a simple lock (same thing). It has no
75 * problems with us disabling interrupts when taking the traps, weird stuff.
76 *
77 * (This is basically a way of invoking vm_fault on a range of pages.)
78 *
79 * @param pv Pointer to the first page.
80 * @param cb The number of bytes.
81 */
82static void rtR0MemObjDarwinTouchPages(void *pv, size_t cb)
83{
84 uint32_t volatile *pu32 = (uint32_t volatile *)pv;
85 for (;;)
86 {
87 ASMAtomicCmpXchgU32(pu32, 0xdeadbeef, 0xdeadbeef);
88 if (cb <= PAGE_SIZE)
89 break;
90 cb -= PAGE_SIZE;
91 pu32 += PAGE_SIZE / sizeof(uint32_t);
92 }
93}
94
95
96/**
97 * Read (sniff) every page in the range to make sure there are some page tables
98 * entries backing it.
99 *
100 * This is just to be sure vm_protect didn't remove stuff without re-adding it
101 * if someone should try write-protect something.
102 *
103 * @param pv Pointer to the first page.
104 * @param cb The number of bytes.
105 */
106static void rtR0MemObjDarwinSniffPages(void const *pv, size_t cb)
107{
108 uint32_t volatile *pu32 = (uint32_t volatile *)pv;
109 uint32_t volatile u32Counter = 0;
110 for (;;)
111 {
112 u32Counter += *pu32;
113
114 if (cb <= PAGE_SIZE)
115 break;
116 cb -= PAGE_SIZE;
117 pu32 += PAGE_SIZE / sizeof(uint32_t);
118 }
119}
120
121
122/**
123 * Gets the virtual memory map the specified object is mapped into.
124 *
125 * @returns VM map handle on success, NULL if no map.
126 * @param pMem The memory object.
127 */
128DECLINLINE(vm_map_t) rtR0MemObjDarwinGetMap(PRTR0MEMOBJINTERNAL pMem)
129{
130 switch (pMem->enmType)
131 {
132 case RTR0MEMOBJTYPE_PAGE:
133 case RTR0MEMOBJTYPE_LOW:
134 case RTR0MEMOBJTYPE_CONT:
135 return kernel_map;
136
137 case RTR0MEMOBJTYPE_PHYS:
138 case RTR0MEMOBJTYPE_PHYS_NC:
139 return NULL; /* pretend these have no mapping atm. */
140
141 case RTR0MEMOBJTYPE_LOCK:
142 return pMem->u.Lock.R0Process == NIL_RTR0PROCESS
143 ? kernel_map
144 : get_task_map((task_t)pMem->u.Lock.R0Process);
145
146 case RTR0MEMOBJTYPE_RES_VIRT:
147 return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS
148 ? kernel_map
149 : get_task_map((task_t)pMem->u.ResVirt.R0Process);
150
151 case RTR0MEMOBJTYPE_MAPPING:
152 return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS
153 ? kernel_map
154 : get_task_map((task_t)pMem->u.Mapping.R0Process);
155
156 default:
157 return NULL;
158 }
159}
160
161#if 0 /* not necessary after all*/
162/* My vm_map mockup. */
163struct my_vm_map
164{
165 struct { char pad[8]; } lock;
166 struct my_vm_map_header
167 {
168 struct vm_map_links
169 {
170 void *prev;
171 void *next;
172 vm_map_offset_t start;
173 vm_map_offset_t end;
174 } links;
175 int nentries;
176 boolean_t entries_pageable;
177 } hdr;
178 pmap_t pmap;
179 vm_map_size_t size;
180};
181
182
183/**
184 * Gets the minimum map address, this is similar to get_map_min.
185 *
186 * @returns The start address of the map.
187 * @param pMap The map.
188 */
189static vm_map_offset_t rtR0MemObjDarwinGetMapMin(vm_map_t pMap)
190{
191 /* lazy discovery of the correct offset. The apple guys is a wonderfully secretive bunch. */
192 static int32_t volatile s_offAdjust = INT32_MAX;
193 int32_t off = s_offAdjust;
194 if (off == INT32_MAX)
195 {
196 for (off = 0; ; off += sizeof(pmap_t))
197 {
198 if (*(pmap_t *)((uint8_t *)kernel_map + off) == kernel_pmap)
199 break;
200 AssertReturn(off <= RT_MAX(RT_OFFSETOF(struct my_vm_map, pmap) * 4, 1024), 0x1000);
201 }
202 ASMAtomicWriteS32(&s_offAdjust, off - RT_OFFSETOF(struct my_vm_map, pmap));
203 }
204
205 /* calculate it. */
206 struct my_vm_map *pMyMap = (struct my_vm_map *)((uint8_t *)pMap + off);
207 return pMyMap->hdr.links.start;
208}
209#endif /* unused */
210
211#ifdef RT_STRICT
212
213/**
214 * Read from a physical page.
215 *
216 * @param HCPhys The address to start reading at.
217 * @param cb How many bytes to read.
218 * @param pvDst Where to put the bytes. This is zero'd on failure.
219 */
220static void rtR0MemObjDarwinReadPhys(RTHCPHYS HCPhys, size_t cb, void *pvDst)
221{
222 memset(pvDst, '\0', cb);
223
224 IOAddressRange aRanges[1] = { { (mach_vm_address_t)HCPhys, RT_ALIGN_Z(cb, PAGE_SIZE) } };
225 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddressRanges(&aRanges[0], RT_ELEMENTS(aRanges),
226 kIODirectionIn, NULL /*task*/);
227 if (pMemDesc)
228 {
229#if MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
230 IOMemoryMap *pMemMap = pMemDesc->createMappingInTask(kernel_task, 0, kIOMapAnywhere | kIOMapDefaultCache);
231#else
232 IOMemoryMap *pMemMap = pMemDesc->map(kernel_task, 0, kIOMapAnywhere | kIOMapDefaultCache);
233#endif
234 if (pMemMap)
235 {
236 void const *pvSrc = (void const *)(uintptr_t)pMemMap->getVirtualAddress();
237 memcpy(pvDst, pvSrc, cb);
238 pMemMap->release();
239 }
240 else
241 printf("rtR0MemObjDarwinReadPhys: createMappingInTask failed; HCPhys=%llx\n", HCPhys);
242
243 pMemDesc->release();
244 }
245 else
246 printf("rtR0MemObjDarwinReadPhys: withAddressRanges failed; HCPhys=%llx\n", HCPhys);
247}
248
249
250/**
251 * Gets the PTE for a page.
252 *
253 * @returns the PTE.
254 * @param pvPage The virtual address to get the PTE for.
255 */
256static uint64_t rtR0MemObjDarwinGetPTE(void *pvPage)
257{
258 RTUINT64U u64;
259 RTCCUINTREG cr3 = ASMGetCR3();
260 RTCCUINTREG cr4 = ASMGetCR4();
261 bool fPAE = false;
262 bool fLMA = false;
263 if (cr4 & X86_CR4_PAE)
264 {
265 fPAE = true;
266 uint32_t fExtFeatures = ASMCpuId_EDX(0x80000001);
267 if (fExtFeatures & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE)
268 {
269 uint64_t efer = ASMRdMsr(MSR_K6_EFER);
270 if (efer & MSR_K6_EFER_LMA)
271 fLMA = true;
272 }
273 }
274
275 if (fLMA)
276 {
277 /* PML4 */
278 rtR0MemObjDarwinReadPhys((cr3 & ~(RTCCUINTREG)PAGE_OFFSET_MASK) | (((uint64_t)(uintptr_t)pvPage >> X86_PML4_SHIFT) & X86_PML4_MASK) * 8, 8, &u64);
279 if (!(u64.u & X86_PML4E_P))
280 {
281 printf("rtR0MemObjDarwinGetPTE: %p -> PML4E !p\n", pvPage);
282 return 0;
283 }
284
285 /* PDPTR */
286 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64) * 8, 8, &u64);
287 if (!(u64.u & X86_PDPE_P))
288 {
289 printf("rtR0MemObjDarwinGetPTE: %p -> PDPTE !p\n", pvPage);
290 return 0;
291 }
292 if (u64.u & X86_PDPE_LM_PS)
293 return (u64.u & ~(uint64_t)(_1G -1)) | ((uintptr_t)pvPage & (_1G -1));
294
295 /* PD */
296 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * 8, 8, &u64);
297 if (!(u64.u & X86_PDE_P))
298 {
299 printf("rtR0MemObjDarwinGetPTE: %p -> PDE !p\n", pvPage);
300 return 0;
301 }
302 if (u64.u & X86_PDE_PS)
303 return (u64.u & ~(uint64_t)(_2M -1)) | ((uintptr_t)pvPage & (_2M -1));
304
305 /* PT */
306 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK) * 8, 8, &u64);
307 if (!(u64.u & X86_PTE_P))
308 {
309 printf("rtR0MemObjDarwinGetPTE: %p -> PTE !p\n", pvPage);
310 return 0;
311 }
312 return u64.u;
313 }
314
315 if (fPAE)
316 {
317 /* PDPTR */
318 rtR0MemObjDarwinReadPhys((u64.u & X86_CR3_PAE_PAGE_MASK) | (((uintptr_t)pvPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE) * 8, 8, &u64);
319 if (!(u64.u & X86_PDE_P))
320 return 0;
321
322 /* PD */
323 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK) * 8, 8, &u64);
324 if (!(u64.u & X86_PDE_P))
325 return 0;
326 if (u64.u & X86_PDE_PS)
327 return (u64.u & ~(uint64_t)(_2M -1)) | ((uintptr_t)pvPage & (_2M -1));
328
329 /* PT */
330 rtR0MemObjDarwinReadPhys((u64.u & ~(uint64_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK) * 8, 8, &u64);
331 if (!(u64.u & X86_PTE_P))
332 return 0;
333 return u64.u;
334 }
335
336 /* PD */
337 rtR0MemObjDarwinReadPhys((u64.au32[0] & ~(uint32_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PD_SHIFT) & X86_PD_MASK) * 4, 4, &u64);
338 if (!(u64.au32[0] & X86_PDE_P))
339 return 0;
340 if (u64.au32[0] & X86_PDE_PS)
341 return (u64.u & ~(uint64_t)(_2M -1)) | ((uintptr_t)pvPage & (_2M -1));
342
343 /* PT */
344 rtR0MemObjDarwinReadPhys((u64.au32[0] & ~(uint32_t)PAGE_OFFSET_MASK) | (((uintptr_t)pvPage >> X86_PT_SHIFT) & X86_PT_MASK) * 4, 4, &u64);
345 if (!(u64.au32[0] & X86_PTE_P))
346 return 0;
347 return u64.au32[0];
348
349 return 0;
350}
351
352#endif /* RT_STRICT */
353
354DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
355{
356 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)pMem;
357 IPRT_DARWIN_SAVE_EFL_AC();
358
359 /*
360 * Release the IOMemoryDescriptor or/and IOMemoryMap associated with the object.
361 */
362 if (pMemDarwin->pMemDesc)
363 {
364 pMemDarwin->pMemDesc->complete();
365 pMemDarwin->pMemDesc->release();
366 pMemDarwin->pMemDesc = NULL;
367 }
368
369 if (pMemDarwin->pMemMap)
370 {
371 pMemDarwin->pMemMap->release();
372 pMemDarwin->pMemMap = NULL;
373 }
374
375 /*
376 * Release any memory that we've allocated or locked.
377 */
378 switch (pMemDarwin->Core.enmType)
379 {
380 case RTR0MEMOBJTYPE_LOW:
381 case RTR0MEMOBJTYPE_PAGE:
382 case RTR0MEMOBJTYPE_CONT:
383 break;
384
385 case RTR0MEMOBJTYPE_LOCK:
386 {
387#ifdef USE_VM_MAP_WIRE
388 vm_map_t Map = pMemDarwin->Core.u.Lock.R0Process != NIL_RTR0PROCESS
389 ? get_task_map((task_t)pMemDarwin->Core.u.Lock.R0Process)
390 : kernel_map;
391 kern_return_t kr = vm_map_unwire(Map,
392 (vm_map_offset_t)pMemDarwin->Core.pv,
393 (vm_map_offset_t)pMemDarwin->Core.pv + pMemDarwin->Core.cb,
394 0 /* not user */);
395 AssertRC(kr == KERN_SUCCESS); /** @todo don't ignore... */
396#endif
397 break;
398 }
399
400 case RTR0MEMOBJTYPE_PHYS:
401 /*if (pMemDarwin->Core.u.Phys.fAllocated)
402 IOFreePhysical(pMemDarwin->Core.u.Phys.PhysBase, pMemDarwin->Core.cb);*/
403 Assert(!pMemDarwin->Core.u.Phys.fAllocated);
404 break;
405
406 case RTR0MEMOBJTYPE_PHYS_NC:
407 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
408 IPRT_DARWIN_RESTORE_EFL_AC();
409 return VERR_INTERNAL_ERROR;
410
411 case RTR0MEMOBJTYPE_RES_VIRT:
412 AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
413 IPRT_DARWIN_RESTORE_EFL_AC();
414 return VERR_INTERNAL_ERROR;
415
416 case RTR0MEMOBJTYPE_MAPPING:
417 /* nothing to do here. */
418 break;
419
420 default:
421 AssertMsgFailed(("enmType=%d\n", pMemDarwin->Core.enmType));
422 IPRT_DARWIN_RESTORE_EFL_AC();
423 return VERR_INTERNAL_ERROR;
424 }
425
426 IPRT_DARWIN_RESTORE_EFL_AC();
427 return VINF_SUCCESS;
428}
429
430
431
432/**
433 * Kernel memory alloc worker that uses inTaskWithPhysicalMask.
434 *
435 * @returns IPRT status code.
436 * @retval VERR_ADDRESS_TOO_BIG try another way.
437 *
438 * @param ppMem Where to return the memory object.
439 * @param cb The page aligned memory size.
440 * @param fExecutable Whether the mapping needs to be executable.
441 * @param fContiguous Whether the backing memory needs to be contiguous.
442 * @param PhysMask The mask for the backing memory (i.e. range). Use 0 if
443 * you don't care that much or is speculating.
444 * @param MaxPhysAddr The max address to verify the result against. Use
445 * UINT64_MAX if it doesn't matter.
446 * @param enmType The object type.
447 */
448static int rtR0MemObjNativeAllocWorker(PPRTR0MEMOBJINTERNAL ppMem, size_t cb,
449 bool fExecutable, bool fContiguous,
450 mach_vm_address_t PhysMask, uint64_t MaxPhysAddr,
451 RTR0MEMOBJTYPE enmType)
452{
453 /*
454 * Try inTaskWithPhysicalMask first, but since we don't quite trust that it
455 * actually respects the physical memory mask (10.5.x is certainly busted),
456 * we'll use rtR0MemObjNativeAllocCont as a fallback for dealing with that.
457 *
458 * The kIOMemoryKernelUserShared flag just forces the result to be page aligned.
459 *
460 * The kIOMemoryMapperNone flag is required since 10.8.2 (IOMMU changes?).
461 */
462 int rc;
463 size_t cbFudged = cb;
464 if (1) /** @todo Figure out why this is broken. Is it only on snow leopard? Seen allocating memory for the VM structure, last page corrupted or inaccessible. */
465 cbFudged += PAGE_SIZE;
466#if 1
467 IOOptionBits fOptions = kIOMemoryKernelUserShared | kIODirectionInOut;
468 if (fContiguous)
469 fOptions |= kIOMemoryPhysicallyContiguous;
470 if (version_major >= 12 /* 12 = 10.8.x = Mountain Kitten */)
471 fOptions |= kIOMemoryMapperNone;
472 IOBufferMemoryDescriptor *pMemDesc = IOBufferMemoryDescriptor::inTaskWithPhysicalMask(kernel_task, fOptions,
473 cbFudged, PhysMask);
474#else /* Requires 10.7 SDK, but allows alignment to be specified: */
475 uint64_t uAlignment = PAGE_SIZE;
476 IOOptionBits fOptions = kIODirectionInOut | kIOMemoryMapperNone;
477 if (fContiguous || MaxPhysAddr < UINT64_MAX)
478 {
479 fOptions |= kIOMemoryPhysicallyContiguous;
480 uAlignment = 1; /* PhysMask isn't respected if higher. */
481 }
482
483 IOBufferMemoryDescriptor *pMemDesc = new IOBufferMemoryDescriptor;
484 if (pMemDesc && !pMemDesc->initWithPhysicalMask(kernel_task, fOptions, cbFudged, uAlignment, PhysMask))
485 {
486 pMemDesc->release();
487 pMemDesc = NULL;
488 }
489#endif
490 if (pMemDesc)
491 {
492 IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
493 if (IORet == kIOReturnSuccess)
494 {
495 void *pv = pMemDesc->getBytesNoCopy(0, cbFudged);
496 if (pv)
497 {
498 /*
499 * Check if it's all below 4GB.
500 */
501 addr64_t AddrPrev = 0;
502 MaxPhysAddr &= ~(uint64_t)PAGE_OFFSET_MASK;
503 for (IOByteCount off = 0; off < cb; off += PAGE_SIZE)
504 {
505#ifdef __LP64__
506 addr64_t Addr = pMemDesc->getPhysicalSegment(off, NULL, kIOMemoryMapperNone);
507#else
508 addr64_t Addr = pMemDesc->getPhysicalSegment64(off, NULL);
509#endif
510 if ( Addr > MaxPhysAddr
511 || !Addr
512 || (Addr & PAGE_OFFSET_MASK)
513 || ( fContiguous
514 && !off
515 && Addr == AddrPrev + PAGE_SIZE))
516 {
517 /* Buggy API, try allocate the memory another way. */
518 pMemDesc->complete();
519 pMemDesc->release();
520 if (PhysMask)
521 LogRel(("rtR0MemObjNativeAllocWorker: off=%x Addr=%llx AddrPrev=%llx MaxPhysAddr=%llx PhysMas=%llx fContiguous=%RTbool fOptions=%#x - buggy API!\n",
522 off, Addr, AddrPrev, MaxPhysAddr, PhysMask, fContiguous, fOptions));
523 return VERR_ADDRESS_TOO_BIG;
524 }
525 AddrPrev = Addr;
526 }
527
528#ifdef RT_STRICT
529 /* check that the memory is actually mapped. */
530 //addr64_t Addr = pMemDesc->getPhysicalSegment64(0, NULL);
531 //printf("rtR0MemObjNativeAllocWorker: pv=%p %8llx %8llx\n", pv, rtR0MemObjDarwinGetPTE(pv), Addr);
532 RTTHREADPREEMPTSTATE State = RTTHREADPREEMPTSTATE_INITIALIZER;
533 RTThreadPreemptDisable(&State);
534 rtR0MemObjDarwinTouchPages(pv, cb);
535 RTThreadPreemptRestore(&State);
536#endif
537
538 /*
539 * Create the IPRT memory object.
540 */
541 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), enmType, pv, cb);
542 if (pMemDarwin)
543 {
544 if (fContiguous)
545 {
546#ifdef __LP64__
547 addr64_t PhysBase64 = pMemDesc->getPhysicalSegment(0, NULL, kIOMemoryMapperNone);
548#else
549 addr64_t PhysBase64 = pMemDesc->getPhysicalSegment64(0, NULL);
550#endif
551 RTHCPHYS PhysBase = PhysBase64; Assert(PhysBase == PhysBase64);
552 if (enmType == RTR0MEMOBJTYPE_CONT)
553 pMemDarwin->Core.u.Cont.Phys = PhysBase;
554 else if (enmType == RTR0MEMOBJTYPE_PHYS)
555 pMemDarwin->Core.u.Phys.PhysBase = PhysBase;
556 else
557 AssertMsgFailed(("enmType=%d\n", enmType));
558 }
559
560#if 1 /* Experimental code. */
561 if (fExecutable)
562 {
563 rc = rtR0MemObjNativeProtect(&pMemDarwin->Core, 0, cb, RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
564# ifdef RT_STRICT
565 /* check that the memory is actually mapped. */
566 RTTHREADPREEMPTSTATE State = RTTHREADPREEMPTSTATE_INITIALIZER;
567 RTThreadPreemptDisable(&State);
568 rtR0MemObjDarwinTouchPages(pv, cb);
569 RTThreadPreemptRestore(&State);
570# endif
571
572 /* Bug 6226: Ignore KERN_PROTECTION_FAILURE on Leopard and older. */
573 if ( rc == VERR_PERMISSION_DENIED
574 && version_major <= 10 /* 10 = 10.6.x = Snow Leopard. */)
575 rc = VINF_SUCCESS;
576 }
577 else
578#endif
579 rc = VINF_SUCCESS;
580 if (RT_SUCCESS(rc))
581 {
582 pMemDarwin->pMemDesc = pMemDesc;
583 *ppMem = &pMemDarwin->Core;
584 return VINF_SUCCESS;
585 }
586
587 rtR0MemObjDelete(&pMemDarwin->Core);
588 }
589
590 if (enmType == RTR0MEMOBJTYPE_PHYS_NC)
591 rc = VERR_NO_PHYS_MEMORY;
592 else if (enmType == RTR0MEMOBJTYPE_LOW)
593 rc = VERR_NO_LOW_MEMORY;
594 else if (enmType == RTR0MEMOBJTYPE_CONT)
595 rc = VERR_NO_CONT_MEMORY;
596 else
597 rc = VERR_NO_MEMORY;
598 }
599 else
600 rc = VERR_MEMOBJ_INIT_FAILED;
601
602 pMemDesc->complete();
603 }
604 else
605 rc = RTErrConvertFromDarwinIO(IORet);
606 pMemDesc->release();
607 }
608 else
609 rc = VERR_MEMOBJ_INIT_FAILED;
610 Assert(rc != VERR_ADDRESS_TOO_BIG);
611 return rc;
612}
613
614
615DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
616{
617 IPRT_DARWIN_SAVE_EFL_AC();
618
619 int rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, false /* fContiguous */,
620 0 /* PhysMask */, UINT64_MAX, RTR0MEMOBJTYPE_PAGE);
621
622 IPRT_DARWIN_RESTORE_EFL_AC();
623 return rc;
624}
625
626
627DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
628{
629 IPRT_DARWIN_SAVE_EFL_AC();
630
631 /*
632 * Try IOMallocPhysical/IOMallocAligned first.
633 * Then try optimistically without a physical address mask, which will always
634 * end up using IOMallocAligned.
635 *
636 * (See bug comment in the worker and IOBufferMemoryDescriptor::initWithPhysicalMask.)
637 */
638 int rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, false /* fContiguous */,
639 ~(uint32_t)PAGE_OFFSET_MASK, _4G - PAGE_SIZE, RTR0MEMOBJTYPE_LOW);
640 if (rc == VERR_ADDRESS_TOO_BIG)
641 rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, false /* fContiguous */,
642 0 /* PhysMask */, _4G - PAGE_SIZE, RTR0MEMOBJTYPE_LOW);
643
644 IPRT_DARWIN_RESTORE_EFL_AC();
645 return rc;
646}
647
648
649DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
650{
651 IPRT_DARWIN_SAVE_EFL_AC();
652
653 int rc = rtR0MemObjNativeAllocWorker(ppMem, cb, fExecutable, true /* fContiguous */,
654 ~(uint32_t)PAGE_OFFSET_MASK, _4G - PAGE_SIZE,
655 RTR0MEMOBJTYPE_CONT);
656
657 /*
658 * Workaround for bogus IOKernelAllocateContiguous behavior, just in case.
659 * cb <= PAGE_SIZE allocations take a different path, using a different allocator.
660 */
661 if (RT_FAILURE(rc) && cb <= PAGE_SIZE)
662 rc = rtR0MemObjNativeAllocWorker(ppMem, cb + PAGE_SIZE, fExecutable, true /* fContiguous */,
663 ~(uint32_t)PAGE_OFFSET_MASK, _4G - PAGE_SIZE,
664 RTR0MEMOBJTYPE_CONT);
665 IPRT_DARWIN_RESTORE_EFL_AC();
666 return rc;
667}
668
669
670DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
671{
672 /** @todo alignment */
673 if (uAlignment != PAGE_SIZE)
674 return VERR_NOT_SUPPORTED;
675
676 IPRT_DARWIN_SAVE_EFL_AC();
677
678 /*
679 * Translate the PhysHighest address into a mask.
680 */
681 int rc;
682 if (PhysHighest == NIL_RTHCPHYS)
683 rc = rtR0MemObjNativeAllocWorker(ppMem, cb, true /* fExecutable */, true /* fContiguous */,
684 0 /* PhysMask*/, UINT64_MAX, RTR0MEMOBJTYPE_PHYS);
685 else
686 {
687 mach_vm_address_t PhysMask = 0;
688 PhysMask = ~(mach_vm_address_t)0;
689 while (PhysMask > (PhysHighest | PAGE_OFFSET_MASK))
690 PhysMask >>= 1;
691 AssertReturn(PhysMask + 1 <= cb, VERR_INVALID_PARAMETER);
692 PhysMask &= ~(mach_vm_address_t)PAGE_OFFSET_MASK;
693
694 rc = rtR0MemObjNativeAllocWorker(ppMem, cb, true /* fExecutable */, true /* fContiguous */,
695 PhysMask, PhysHighest, RTR0MEMOBJTYPE_PHYS);
696 }
697
698 IPRT_DARWIN_RESTORE_EFL_AC();
699 return rc;
700}
701
702
703DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
704{
705 /** @todo rtR0MemObjNativeAllocPhys / darwin.
706 * This might be a bit problematic and may very well require having to create our own
707 * object which we populate with pages but without mapping it into any address space.
708 * Estimate is 2-3 days.
709 */
710 return VERR_NOT_SUPPORTED;
711}
712
713
714DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
715{
716 AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
717 IPRT_DARWIN_SAVE_EFL_AC();
718
719 /*
720 * Create a descriptor for it (the validation is always true on intel macs, but
721 * as it doesn't harm us keep it in).
722 */
723 int rc = VERR_ADDRESS_TOO_BIG;
724 IOAddressRange aRanges[1] = { { Phys, cb } };
725 if ( aRanges[0].address == Phys
726 && aRanges[0].length == cb)
727 {
728 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddressRanges(&aRanges[0], RT_ELEMENTS(aRanges),
729 kIODirectionInOut, NULL /*task*/);
730 if (pMemDesc)
731 {
732#ifdef __LP64__
733 Assert(Phys == pMemDesc->getPhysicalSegment(0, NULL, kIOMemoryMapperNone));
734#else
735 Assert(Phys == pMemDesc->getPhysicalSegment64(0, NULL));
736#endif
737
738 /*
739 * Create the IPRT memory object.
740 */
741 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_PHYS, NULL, cb);
742 if (pMemDarwin)
743 {
744 pMemDarwin->Core.u.Phys.PhysBase = Phys;
745 pMemDarwin->Core.u.Phys.fAllocated = false;
746 pMemDarwin->Core.u.Phys.uCachePolicy = uCachePolicy;
747 pMemDarwin->pMemDesc = pMemDesc;
748 *ppMem = &pMemDarwin->Core;
749 IPRT_DARWIN_RESTORE_EFL_AC();
750 return VINF_SUCCESS;
751 }
752
753 rc = VERR_NO_MEMORY;
754 pMemDesc->release();
755 }
756 else
757 rc = VERR_MEMOBJ_INIT_FAILED;
758 }
759 else
760 AssertMsgFailed(("%#llx %llx\n", (unsigned long long)Phys, (unsigned long long)cb));
761 IPRT_DARWIN_RESTORE_EFL_AC();
762 return rc;
763}
764
765
766/**
767 * Internal worker for locking down pages.
768 *
769 * @return IPRT status code.
770 *
771 * @param ppMem Where to store the memory object pointer.
772 * @param pv First page.
773 * @param cb Number of bytes.
774 * @param fAccess The desired access, a combination of RTMEM_PROT_READ
775 * and RTMEM_PROT_WRITE.
776 * @param Task The task \a pv and \a cb refers to.
777 */
778static int rtR0MemObjNativeLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, task_t Task)
779{
780 IPRT_DARWIN_SAVE_EFL_AC();
781 NOREF(fAccess);
782#ifdef USE_VM_MAP_WIRE
783 vm_map_t Map = get_task_map(Task);
784 Assert(Map);
785
786 /*
787 * First try lock the memory.
788 */
789 int rc = VERR_LOCK_FAILED;
790 kern_return_t kr = vm_map_wire(get_task_map(Task),
791 (vm_map_offset_t)pv,
792 (vm_map_offset_t)pv + cb,
793 VM_PROT_DEFAULT,
794 0 /* not user */);
795 if (kr == KERN_SUCCESS)
796 {
797 /*
798 * Create the IPRT memory object.
799 */
800 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_LOCK, pv, cb);
801 if (pMemDarwin)
802 {
803 pMemDarwin->Core.u.Lock.R0Process = (RTR0PROCESS)Task;
804 *ppMem = &pMemDarwin->Core;
805
806 IPRT_DARWIN_RESTORE_EFL_AC();
807 return VINF_SUCCESS;
808 }
809
810 kr = vm_map_unwire(get_task_map(Task), (vm_map_offset_t)pv, (vm_map_offset_t)pv + cb, 0 /* not user */);
811 Assert(kr == KERN_SUCCESS);
812 rc = VERR_NO_MEMORY;
813 }
814
815#else
816
817 /*
818 * Create a descriptor and try lock it (prepare).
819 */
820 int rc = VERR_MEMOBJ_INIT_FAILED;
821 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddressRange((vm_address_t)pv, cb, kIODirectionInOut, Task);
822 if (pMemDesc)
823 {
824 IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
825 if (IORet == kIOReturnSuccess)
826 {
827 /*
828 * Create the IPRT memory object.
829 */
830 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_LOCK, pv, cb);
831 if (pMemDarwin)
832 {
833 pMemDarwin->Core.u.Lock.R0Process = (RTR0PROCESS)Task;
834 pMemDarwin->pMemDesc = pMemDesc;
835 *ppMem = &pMemDarwin->Core;
836
837 IPRT_DARWIN_RESTORE_EFL_AC();
838 return VINF_SUCCESS;
839 }
840
841 pMemDesc->complete();
842 rc = VERR_NO_MEMORY;
843 }
844 else
845 rc = VERR_LOCK_FAILED;
846 pMemDesc->release();
847 }
848#endif
849 IPRT_DARWIN_RESTORE_EFL_AC();
850 return rc;
851}
852
853
854DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
855{
856 return rtR0MemObjNativeLock(ppMem, (void *)R3Ptr, cb, fAccess, (task_t)R0Process);
857}
858
859
860DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
861{
862 return rtR0MemObjNativeLock(ppMem, pv, cb, fAccess, kernel_task);
863}
864
865
866DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
867{
868 return VERR_NOT_SUPPORTED;
869}
870
871
872DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
873{
874 return VERR_NOT_SUPPORTED;
875}
876
877
878DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
879 unsigned fProt, size_t offSub, size_t cbSub)
880{
881 AssertReturn(pvFixed == (void *)-1, VERR_NOT_SUPPORTED);
882
883 /*
884 * Check that the specified alignment is supported.
885 */
886 if (uAlignment > PAGE_SIZE)
887 return VERR_NOT_SUPPORTED;
888
889 IPRT_DARWIN_SAVE_EFL_AC();
890
891 /*
892 * Must have a memory descriptor that we can map.
893 */
894 int rc = VERR_INVALID_PARAMETER;
895 PRTR0MEMOBJDARWIN pMemToMapDarwin = (PRTR0MEMOBJDARWIN)pMemToMap;
896 if (pMemToMapDarwin->pMemDesc)
897 {
898#if MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
899 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->createMappingInTask(kernel_task,
900 0,
901 kIOMapAnywhere | kIOMapDefaultCache,
902 offSub,
903 cbSub);
904#else
905 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->map(kernel_task,
906 0,
907 kIOMapAnywhere | kIOMapDefaultCache,
908 offSub,
909 cbSub);
910#endif
911 if (pMemMap)
912 {
913 IOVirtualAddress VirtAddr = pMemMap->getVirtualAddress();
914 void *pv = (void *)(uintptr_t)VirtAddr;
915 if ((uintptr_t)pv == VirtAddr)
916 {
917 //addr64_t Addr = pMemToMapDarwin->pMemDesc->getPhysicalSegment64(offSub, NULL);
918 //printf("pv=%p: %8llx %8llx\n", pv, rtR0MemObjDarwinGetPTE(pv), Addr);
919
920// /*
921// * Explicitly lock it so that we're sure it is present and that
922// * its PTEs cannot be recycled.
923// * Note! withAddressRange() doesn't work as it adds kIOMemoryTypeVirtual64
924// * to the options which causes prepare() to not wire the pages.
925// * This is probably a bug.
926// */
927// IOAddressRange Range = { (mach_vm_address_t)pv, cbSub };
928// IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withOptions(&Range,
929// 1 /* count */,
930// 0 /* offset */,
931// kernel_task,
932// kIODirectionInOut | kIOMemoryTypeVirtual,
933// kIOMapperSystem);
934// if (pMemDesc)
935// {
936// IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
937// if (IORet == kIOReturnSuccess)
938// {
939 /* HACK ALERT! */
940 rtR0MemObjDarwinTouchPages(pv, cbSub);
941 /** @todo First, the memory should've been mapped by now, and second, it
942 * should have the wired attribute in the PTE (bit 9). Neither
943 * seems to be the case. The disabled locking code doesn't make any
944 * difference, which is extremely odd, and breaks
945 * rtR0MemObjNativeGetPagePhysAddr (getPhysicalSegment64 -> 64 for the
946 * lock descriptor. */
947 //addr64_t Addr = pMemDesc->getPhysicalSegment64(0, NULL);
948 //printf("pv=%p: %8llx %8llx (%d)\n", pv, rtR0MemObjDarwinGetPTE(pv), Addr, 2);
949
950 /*
951 * Create the IPRT memory object.
952 */
953 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_MAPPING,
954 pv, cbSub);
955 if (pMemDarwin)
956 {
957 pMemDarwin->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
958 pMemDarwin->pMemMap = pMemMap;
959// pMemDarwin->pMemDesc = pMemDesc;
960 *ppMem = &pMemDarwin->Core;
961
962 IPRT_DARWIN_RESTORE_EFL_AC();
963 return VINF_SUCCESS;
964 }
965
966// pMemDesc->complete();
967// rc = VERR_NO_MEMORY;
968// }
969// else
970// rc = RTErrConvertFromDarwinIO(IORet);
971// pMemDesc->release();
972// }
973// else
974// rc = VERR_MEMOBJ_INIT_FAILED;
975 }
976 else
977 rc = VERR_ADDRESS_TOO_BIG;
978 pMemMap->release();
979 }
980 else
981 rc = VERR_MAP_FAILED;
982 }
983
984 IPRT_DARWIN_RESTORE_EFL_AC();
985 return rc;
986}
987
988
989DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
990{
991 /*
992 * Check for unsupported things.
993 */
994 AssertReturn(R3PtrFixed == (RTR3PTR)-1, VERR_NOT_SUPPORTED);
995 if (uAlignment > PAGE_SIZE)
996 return VERR_NOT_SUPPORTED;
997
998 IPRT_DARWIN_SAVE_EFL_AC();
999
1000 /*
1001 * Must have a memory descriptor.
1002 */
1003 int rc = VERR_INVALID_PARAMETER;
1004 PRTR0MEMOBJDARWIN pMemToMapDarwin = (PRTR0MEMOBJDARWIN)pMemToMap;
1005 if (pMemToMapDarwin->pMemDesc)
1006 {
1007#if MAC_OS_X_VERSION_MIN_REQUIRED >= 1050
1008 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->createMappingInTask((task_t)R0Process,
1009 0,
1010 kIOMapAnywhere | kIOMapDefaultCache,
1011 0 /* offset */,
1012 0 /* length */);
1013#else
1014 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->map((task_t)R0Process,
1015 0,
1016 kIOMapAnywhere | kIOMapDefaultCache);
1017#endif
1018 if (pMemMap)
1019 {
1020 IOVirtualAddress VirtAddr = pMemMap->getVirtualAddress();
1021 void *pv = (void *)(uintptr_t)VirtAddr;
1022 if ((uintptr_t)pv == VirtAddr)
1023 {
1024 /*
1025 * Create the IPRT memory object.
1026 */
1027 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_MAPPING,
1028 pv, pMemToMapDarwin->Core.cb);
1029 if (pMemDarwin)
1030 {
1031 pMemDarwin->Core.u.Mapping.R0Process = R0Process;
1032 pMemDarwin->pMemMap = pMemMap;
1033 *ppMem = &pMemDarwin->Core;
1034
1035 IPRT_DARWIN_RESTORE_EFL_AC();
1036 return VINF_SUCCESS;
1037 }
1038
1039 rc = VERR_NO_MEMORY;
1040 }
1041 else
1042 rc = VERR_ADDRESS_TOO_BIG;
1043 pMemMap->release();
1044 }
1045 else
1046 rc = VERR_MAP_FAILED;
1047 }
1048
1049 IPRT_DARWIN_RESTORE_EFL_AC();
1050 return rc;
1051}
1052
1053
1054DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1055{
1056 IPRT_DARWIN_SAVE_EFL_AC();
1057
1058 /* Get the map for the object. */
1059 vm_map_t pVmMap = rtR0MemObjDarwinGetMap(pMem);
1060 if (!pVmMap)
1061 {
1062 IPRT_DARWIN_RESTORE_EFL_AC();
1063 return VERR_NOT_SUPPORTED;
1064 }
1065
1066 /*
1067 * Convert the protection.
1068 */
1069 vm_prot_t fMachProt;
1070 switch (fProt)
1071 {
1072 case RTMEM_PROT_NONE:
1073 fMachProt = VM_PROT_NONE;
1074 break;
1075 case RTMEM_PROT_READ:
1076 fMachProt = VM_PROT_READ;
1077 break;
1078 case RTMEM_PROT_READ | RTMEM_PROT_WRITE:
1079 fMachProt = VM_PROT_READ | VM_PROT_WRITE;
1080 break;
1081 case RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
1082 fMachProt = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1083 break;
1084 case RTMEM_PROT_WRITE:
1085 fMachProt = VM_PROT_WRITE | VM_PROT_READ; /* never write-only */
1086 break;
1087 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
1088 fMachProt = VM_PROT_WRITE | VM_PROT_EXECUTE | VM_PROT_READ; /* never write-only or execute-only */
1089 break;
1090 case RTMEM_PROT_EXEC:
1091 fMachProt = VM_PROT_EXECUTE | VM_PROT_READ; /* never execute-only */
1092 break;
1093 default:
1094 AssertFailedReturn(VERR_INVALID_PARAMETER);
1095 }
1096
1097 /*
1098 * Do the job.
1099 */
1100 vm_offset_t Start = (uintptr_t)pMem->pv + offSub;
1101 kern_return_t krc = vm_protect(pVmMap,
1102 Start,
1103 cbSub,
1104 false,
1105 fMachProt);
1106 if (krc != KERN_SUCCESS)
1107 {
1108 static int s_cComplaints = 0;
1109 if (s_cComplaints < 10)
1110 {
1111 s_cComplaints++;
1112 printf("rtR0MemObjNativeProtect: vm_protect(%p,%p,%p,false,%#x) -> %d\n",
1113 pVmMap, (void *)Start, (void *)cbSub, fMachProt, krc);
1114
1115 kern_return_t krc2;
1116 vm_offset_t pvReal = Start;
1117 vm_size_t cbReal = 0;
1118 mach_msg_type_number_t cInfo = VM_REGION_BASIC_INFO_COUNT;
1119 struct vm_region_basic_info Info;
1120 RT_ZERO(Info);
1121 krc2 = vm_region(pVmMap, &pvReal, &cbReal, VM_REGION_BASIC_INFO, (vm_region_info_t)&Info, &cInfo, NULL);
1122 printf("rtR0MemObjNativeProtect: basic info - krc2=%d pv=%p cb=%p prot=%#x max=%#x inh=%#x shr=%d rvd=%d off=%#x behavior=%#x wired=%#x\n",
1123 krc2, (void *)pvReal, (void *)cbReal, Info.protection, Info.max_protection, Info.inheritance,
1124 Info.shared, Info.reserved, Info.offset, Info.behavior, Info.user_wired_count);
1125 }
1126 IPRT_DARWIN_RESTORE_EFL_AC();
1127 return RTErrConvertFromDarwinKern(krc);
1128 }
1129
1130 /*
1131 * Touch the pages if they should be writable afterwards and accessible
1132 * from code which should never fault. vm_protect() may leave pages
1133 * temporarily write protected, possibly due to pmap no-upgrade rules?
1134 *
1135 * This is the same trick (or HACK ALERT if you like) as applied in
1136 * rtR0MemObjNativeMapKernel.
1137 */
1138 if ( pMem->enmType != RTR0MEMOBJTYPE_MAPPING
1139 || pMem->u.Mapping.R0Process == NIL_RTR0PROCESS)
1140 {
1141 if (fProt & RTMEM_PROT_WRITE)
1142 rtR0MemObjDarwinTouchPages((void *)Start, cbSub);
1143 /*
1144 * Sniff (read) read-only pages too, just to be sure.
1145 */
1146 else if (fProt & (RTMEM_PROT_READ | RTMEM_PROT_EXEC))
1147 rtR0MemObjDarwinSniffPages((void const *)Start, cbSub);
1148 }
1149
1150 IPRT_DARWIN_RESTORE_EFL_AC();
1151 return VINF_SUCCESS;
1152}
1153
1154
1155DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1156{
1157 RTHCPHYS PhysAddr;
1158 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)pMem;
1159 IPRT_DARWIN_SAVE_EFL_AC();
1160
1161#ifdef USE_VM_MAP_WIRE
1162 /*
1163 * Locked memory doesn't have a memory descriptor and
1164 * needs to be handled differently.
1165 */
1166 if (pMemDarwin->Core.enmType == RTR0MEMOBJTYPE_LOCK)
1167 {
1168 ppnum_t PgNo;
1169 if (pMemDarwin->Core.u.Lock.R0Process == NIL_RTR0PROCESS)
1170 PgNo = pmap_find_phys(kernel_pmap, (uintptr_t)pMemDarwin->Core.pv + iPage * PAGE_SIZE);
1171 else
1172 {
1173 /*
1174 * From what I can tell, Apple seems to have locked up the all the
1175 * available interfaces that could help us obtain the pmap_t of a task
1176 * or vm_map_t.
1177
1178 * So, we'll have to figure out where in the vm_map_t structure it is
1179 * and read it our selves. ASSUMING that kernel_pmap is pointed to by
1180 * kernel_map->pmap, we scan kernel_map to locate the structure offset.
1181 * Not nice, but it will hopefully do the job in a reliable manner...
1182 *
1183 * (get_task_pmap, get_map_pmap or vm_map_pmap is what we really need btw.)
1184 */
1185 static int s_offPmap = -1;
1186 if (RT_UNLIKELY(s_offPmap == -1))
1187 {
1188 pmap_t const *p = (pmap_t *)kernel_map;
1189 pmap_t const * const pEnd = p + 64;
1190 for (; p < pEnd; p++)
1191 if (*p == kernel_pmap)
1192 {
1193 s_offPmap = (uintptr_t)p - (uintptr_t)kernel_map;
1194 break;
1195 }
1196 AssertReturn(s_offPmap >= 0, NIL_RTHCPHYS);
1197 }
1198 pmap_t Pmap = *(pmap_t *)((uintptr_t)get_task_map((task_t)pMemDarwin->Core.u.Lock.R0Process) + s_offPmap);
1199 PgNo = pmap_find_phys(Pmap, (uintptr_t)pMemDarwin->Core.pv + iPage * PAGE_SIZE);
1200 }
1201
1202 IPRT_DARWIN_RESTORE_EFL_AC();
1203 AssertReturn(PgNo, NIL_RTHCPHYS);
1204 PhysAddr = (RTHCPHYS)PgNo << PAGE_SHIFT;
1205 Assert((PhysAddr >> PAGE_SHIFT) == PgNo);
1206 }
1207 else
1208#endif /* USE_VM_MAP_WIRE */
1209 {
1210 /*
1211 * Get the memory descriptor.
1212 */
1213 IOMemoryDescriptor *pMemDesc = pMemDarwin->pMemDesc;
1214 if (!pMemDesc)
1215 pMemDesc = pMemDarwin->pMemMap->getMemoryDescriptor();
1216 AssertReturn(pMemDesc, NIL_RTHCPHYS);
1217
1218 /*
1219 * If we've got a memory descriptor, use getPhysicalSegment64().
1220 */
1221#ifdef __LP64__
1222 addr64_t Addr = pMemDesc->getPhysicalSegment(iPage * PAGE_SIZE, NULL, kIOMemoryMapperNone);
1223#else
1224 addr64_t Addr = pMemDesc->getPhysicalSegment64(iPage * PAGE_SIZE, NULL);
1225#endif
1226 IPRT_DARWIN_RESTORE_EFL_AC();
1227 AssertMsgReturn(Addr, ("iPage=%u\n", iPage), NIL_RTHCPHYS);
1228 PhysAddr = Addr;
1229 AssertMsgReturn(PhysAddr == Addr, ("PhysAddr=%RHp Addr=%RX64\n", PhysAddr, (uint64_t)Addr), NIL_RTHCPHYS);
1230 }
1231
1232 return PhysAddr;
1233}
1234
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette