VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/darwin/memobj-r0drv-darwin.cpp@ 5999

Last change on this file since 5999 was 5999, checked in by vboxsync, 17 years ago

The Giant CDDL Dual-License Header Change.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 22.3 KB
Line 
1/* $Id: memobj-r0drv-darwin.cpp 5999 2007-12-07 15:05:06Z vboxsync $ */
2/** @file
3 * innotek Portable Runtime - Ring-0 Memory Objects, Darwin.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Header Files *
30*******************************************************************************/
31#include "the-darwin-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/alloc.h>
35#include <iprt/assert.h>
36#include <iprt/log.h>
37#include <iprt/param.h>
38#include <iprt/string.h>
39#include <iprt/process.h>
40#include "internal/memobj.h"
41
42#define USE_VM_MAP_WIRE
43
44
45/*******************************************************************************
46* Structures and Typedefs *
47*******************************************************************************/
48/**
49 * The Darwin version of the memory object structure.
50 */
51typedef struct RTR0MEMOBJDARWIN
52{
53 /** The core structure. */
54 RTR0MEMOBJINTERNAL Core;
55 /** Pointer to the memory descriptor created for allocated and locked memory. */
56 IOMemoryDescriptor *pMemDesc;
57 /** Pointer to the memory mapping object for mapped memory. */
58 IOMemoryMap *pMemMap;
59} RTR0MEMOBJDARWIN, *PRTR0MEMOBJDARWIN;
60
61
62int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
63{
64 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)pMem;
65
66 /*
67 * Release the IOMemoryDescriptor/IOMemoryMap associated with the object.
68 */
69 if (pMemDarwin->pMemDesc)
70 {
71 if (pMemDarwin->Core.enmType == RTR0MEMOBJTYPE_LOCK)
72 pMemDarwin->pMemDesc->complete(); /* paranoia */
73 pMemDarwin->pMemDesc->release();
74 pMemDarwin->pMemDesc = NULL;
75 Assert(!pMemDarwin->pMemMap);
76 }
77 else if (pMemDarwin->pMemMap)
78 {
79 pMemDarwin->pMemMap->release();
80 pMemDarwin->pMemMap = NULL;
81 }
82
83 /*
84 * Release any memory that we've allocated or locked.
85 */
86 switch (pMemDarwin->Core.enmType)
87 {
88 case RTR0MEMOBJTYPE_LOW:
89 case RTR0MEMOBJTYPE_PAGE:
90 IOFreeAligned(pMemDarwin->Core.pv, pMemDarwin->Core.cb);
91 break;
92
93 case RTR0MEMOBJTYPE_CONT:
94 IOFreeContiguous(pMemDarwin->Core.pv, pMemDarwin->Core.cb);
95 break;
96
97 case RTR0MEMOBJTYPE_LOCK:
98 {
99#ifdef USE_VM_MAP_WIRE
100 vm_map_t Map = pMemDarwin->Core.u.Lock.R0Process != NIL_RTR0PROCESS
101 ? get_task_map((task_t)pMemDarwin->Core.u.Lock.R0Process)
102 : kernel_map;
103 kern_return_t kr = vm_map_unwire(Map,
104 (vm_map_offset_t)pMemDarwin->Core.pv,
105 (vm_map_offset_t)pMemDarwin->Core.pv + pMemDarwin->Core.cb,
106 0 /* not user */);
107 AssertRC(kr == KERN_SUCCESS); /** @todo don't ignore... */
108#endif
109 break;
110 }
111
112 case RTR0MEMOBJTYPE_PHYS:
113 /*if (pMemDarwin->Core.u.Phys.fAllocated)
114 IOFreePhysical(pMemDarwin->Core.u.Phys.PhysBase, pMemDarwin->Core.cb);*/
115 Assert(!pMemDarwin->Core.u.Phys.fAllocated);
116 break;
117
118 case RTR0MEMOBJTYPE_PHYS_NC:
119 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
120 return VERR_INTERNAL_ERROR;
121 break;
122
123 case RTR0MEMOBJTYPE_RES_VIRT:
124 AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
125 return VERR_INTERNAL_ERROR;
126 break;
127
128 case RTR0MEMOBJTYPE_MAPPING:
129 /* nothing to do here. */
130 break;
131
132 default:
133 AssertMsgFailed(("enmType=%d\n", pMemDarwin->Core.enmType));
134 return VERR_INTERNAL_ERROR;
135 }
136
137 return VINF_SUCCESS;
138}
139
140
141int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
142{
143 /*
144 * Try allocate the memory and create it's IOMemoryDescriptor first.
145 */
146 int rc = VERR_NO_PAGE_MEMORY;
147 AssertCompile(sizeof(IOPhysicalAddress) == 4);
148 void *pv = IOMallocAligned(cb, PAGE_SIZE);
149 if (pv)
150 {
151 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddress((vm_address_t)pv, cb, kIODirectionInOut, kernel_task);
152 if (pMemDesc)
153 {
154 /*
155 * Create the IPRT memory object.
156 */
157 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_PAGE, pv, cb);
158 if (pMemDarwin)
159 {
160 pMemDarwin->pMemDesc = pMemDesc;
161 *ppMem = &pMemDarwin->Core;
162 return VINF_SUCCESS;
163 }
164
165 rc = VERR_NO_MEMORY;
166 pMemDesc->release();
167 }
168 else
169 rc = VERR_MEMOBJ_INIT_FAILED;
170 IOFreeAligned(pv, cb);
171 }
172 return rc;
173}
174
175
176int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
177{
178#if 1
179 /*
180 * Allocating 128KB for the low page pool can bit a bit exhausting on the kernel,
181 * it frequnetly causes the entire box to lock up on startup.
182 *
183 * So, try allocate the memory using IOMallocAligned first and if we get any high
184 * physical memory we'll release it and fall back on IOMAllocContiguous.
185 */
186 int rc = VERR_NO_PAGE_MEMORY;
187 AssertCompile(sizeof(IOPhysicalAddress) == 4);
188 void *pv = IOMallocAligned(cb, PAGE_SIZE);
189 if (pv)
190 {
191 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddress((vm_address_t)pv, cb, kIODirectionInOut, kernel_task);
192 if (pMemDesc)
193 {
194 /*
195 * Check if it's all below 4GB.
196 */
197 for (IOByteCount off = 0; off < cb; off += PAGE_SIZE)
198 {
199 addr64_t Addr = pMemDesc->getPhysicalSegment64(off, NULL);
200 if (Addr > (uint32_t)(_4G - PAGE_SIZE))
201 {
202 /* Ok, we failed, fall back on contiguous allocation. */
203 pMemDesc->release();
204 IOFreeAligned(pv, cb);
205 return rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
206 }
207 }
208
209 /*
210 * Create the IPRT memory object.
211 */
212 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_LOW, pv, cb);
213 if (pMemDarwin)
214 {
215 pMemDarwin->pMemDesc = pMemDesc;
216 *ppMem = &pMemDarwin->Core;
217 return VINF_SUCCESS;
218 }
219
220 rc = VERR_NO_MEMORY;
221 pMemDesc->release();
222 }
223 else
224 rc = VERR_MEMOBJ_INIT_FAILED;
225 IOFreeAligned(pv, cb);
226 }
227 return rc;
228
229#else
230
231 /*
232 * IOMallocContiguous is the most suitable API.
233 */
234 return rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
235#endif
236}
237
238
239int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
240{
241 /*
242 * Try allocate the memory and create it's IOMemoryDescriptor first.
243 */
244 int rc = VERR_NO_CONT_MEMORY;
245 AssertCompile(sizeof(IOPhysicalAddress) == 4);
246 void *pv = IOMallocContiguous(cb, PAGE_SIZE, NULL);
247 if (pv)
248 {
249 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddress((vm_address_t)pv, cb, kIODirectionInOut, kernel_task);
250 if (pMemDesc)
251 {
252 /* a bit of useful paranoia. */
253 addr64_t PhysAddr = pMemDesc->getPhysicalSegment64(0, NULL);
254 Assert(PhysAddr == pMemDesc->getPhysicalAddress());
255 if ( PhysAddr > 0
256 && PhysAddr <= _4G
257 && PhysAddr + cb <= _4G)
258 {
259 /*
260 * Create the IPRT memory object.
261 */
262 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_CONT, pv, cb);
263 if (pMemDarwin)
264 {
265 pMemDarwin->Core.u.Cont.Phys = PhysAddr;
266 pMemDarwin->pMemDesc = pMemDesc;
267 *ppMem = &pMemDarwin->Core;
268 return VINF_SUCCESS;
269 }
270
271 rc = VERR_NO_MEMORY;
272 }
273 else
274 {
275 AssertMsgFailed(("PhysAddr=%llx\n", (unsigned long long)PhysAddr));
276 rc = VERR_INTERNAL_ERROR;
277 }
278 pMemDesc->release();
279 }
280 else
281 rc = VERR_MEMOBJ_INIT_FAILED;
282 IOFreeContiguous(pv, cb);
283 }
284 return rc;
285}
286
287
288int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
289{
290#if 0 /* turned out IOMallocPhysical isn't exported yet. sigh. */
291 /*
292 * Try allocate the memory and create it's IOMemoryDescriptor first.
293 * Note that IOMallocPhysical is not working correctly (it's ignoring the mask).
294 */
295
296 /* first calc the mask (in the hope that it'll be used) */
297 IOPhysicalAddress PhysMask = ~(IOPhysicalAddress)PAGE_OFFSET_MASK;
298 if (PhysHighest != NIL_RTHCPHYS)
299 {
300 PhysMask = ~(IOPhysicalAddress)0;
301 while (PhysMask > PhysHighest)
302 PhysMask >>= 1;
303 AssertReturn(PhysMask + 1 < cb, VERR_INVALID_PARAMETER);
304 PhysMask &= ~(IOPhysicalAddress)PAGE_OFFSET_MASK;
305 }
306
307 /* try allocate physical memory. */
308 int rc = VERR_NO_PHYS_MEMORY;
309 mach_vm_address_t PhysAddr64 = IOMallocPhysical(cb, PhysMask);
310 if (PhysAddr64)
311 {
312 IOPhysicalAddress PhysAddr = PhysAddr64;
313 if ( PhysAddr == PhysAddr64
314 && PhysAddr < PhysHighest
315 && PhysAddr + cb <= PhysHighest)
316 {
317 /* create a descriptor. */
318 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withPhysicalAddress(PhysAddr, cb, kIODirectionInOut);
319 if (pMemDesc)
320 {
321 Assert(PhysAddr == pMemDesc->getPhysicalAddress());
322
323 /*
324 * Create the IPRT memory object.
325 */
326 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_PHYS, NULL, cb);
327 if (pMemDarwin)
328 {
329 pMemDarwin->Core.u.Phys.PhysBase = PhysAddr;
330 pMemDarwin->Core.u.Phys.fAllocated = true;
331 pMemDarwin->pMemDesc = pMemDesc;
332 *ppMem = &pMemDarwin->Core;
333 return VINF_SUCCESS;
334 }
335
336 rc = VERR_NO_MEMORY;
337 pMemDesc->release();
338 }
339 else
340 rc = VERR_MEMOBJ_INIT_FAILED;
341 }
342 else
343 {
344 AssertMsgFailed(("PhysAddr=%#llx PhysAddr64=%#llx PhysHigest=%#llx\n", (unsigned long long)PhysAddr,
345 (unsigned long long)PhysAddr64, (unsigned long long)PhysHighest));
346 rc = VERR_INTERNAL_ERROR;
347 }
348
349 IOFreePhysical(PhysAddr64, cb);
350 }
351
352 /*
353 * Just in case IOMallocContiguous doesn't work right, we can try fall back
354 * on a contiguous allcation.
355 */
356 if (rc == VERR_INTERNAL_ERROR || rc == VERR_NO_PHYS_MEMORY)
357 {
358 int rc2 = rtR0MemObjNativeAllocCont(ppMem, cb, false);
359 if (RT_SUCCESS(rc2))
360 rc = rc2;
361 }
362
363 return rc;
364
365#else
366
367 return rtR0MemObjNativeAllocCont(ppMem, cb, false);
368#endif
369}
370
371
372int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
373{
374 /** @todo rtR0MemObjNativeAllocPhys / darwin. */
375 return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest);
376}
377
378
379int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
380{
381 /*
382 * Validate the address range and create a descriptor for it.
383 */
384 int rc = VERR_ADDRESS_TOO_BIG;
385 IOPhysicalAddress PhysAddr = Phys;
386 if (PhysAddr == Phys)
387 {
388 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withPhysicalAddress(PhysAddr, cb, kIODirectionInOut);
389 if (pMemDesc)
390 {
391 Assert(PhysAddr == pMemDesc->getPhysicalAddress());
392
393 /*
394 * Create the IPRT memory object.
395 */
396 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_PHYS, NULL, cb);
397 if (pMemDarwin)
398 {
399 pMemDarwin->Core.u.Phys.PhysBase = PhysAddr;
400 pMemDarwin->Core.u.Phys.fAllocated = false;
401 pMemDarwin->pMemDesc = pMemDesc;
402 *ppMem = &pMemDarwin->Core;
403 return VINF_SUCCESS;
404 }
405
406 rc = VERR_NO_MEMORY;
407 pMemDesc->release();
408 }
409 }
410 else
411 AssertMsgFailed(("%#llx\n", (unsigned long long)Phys));
412 return rc;
413}
414
415
416/**
417 * Internal worker for locking down pages.
418 *
419 * @return IPRT status code.
420 *
421 * @param ppMem Where to store the memory object pointer.
422 * @param pv First page.
423 * @param cb Number of bytes.
424 * @param Task The task \a pv and \a cb refers to.
425 */
426static int rtR0MemObjNativeLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, task_t Task)
427{
428#ifdef USE_VM_MAP_WIRE
429 vm_map_t Map = get_task_map(Task);
430 Assert(Map);
431
432 /*
433 * First try lock the memory.
434 */
435 int rc = VERR_LOCK_FAILED;
436 kern_return_t kr = vm_map_wire(get_task_map(Task),
437 (vm_map_offset_t)pv,
438 (vm_map_offset_t)pv + cb,
439 VM_PROT_DEFAULT,
440 0 /* not user */);
441 if (kr == KERN_SUCCESS)
442 {
443 /*
444 * Create the IPRT memory object.
445 */
446 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_LOCK, pv, cb);
447 if (pMemDarwin)
448 {
449 pMemDarwin->Core.u.Lock.R0Process = (RTR0PROCESS)Task;
450 *ppMem = &pMemDarwin->Core;
451 return VINF_SUCCESS;
452 }
453
454 kr = vm_map_unwire(get_task_map(Task), (vm_map_offset_t)pv, (vm_map_offset_t)pv + cb, 0 /* not user */);
455 Assert(kr == KERN_SUCCESS);
456 rc = VERR_NO_MEMORY;
457 }
458
459#else
460
461 /*
462 * Create a descriptor and try lock it (prepare).
463 */
464 int rc = VERR_MEMOBJ_INIT_FAILED;
465 IOMemoryDescriptor *pMemDesc = IOMemoryDescriptor::withAddress((vm_address_t)pv, cb, kIODirectionInOut, Task);
466 if (pMemDesc)
467 {
468 IOReturn IORet = pMemDesc->prepare(kIODirectionInOut);
469 if (IORet == kIOReturnSuccess)
470 {
471 /*
472 * Create the IPRT memory object.
473 */
474 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_LOCK, pv, cb);
475 if (pMemDarwin)
476 {
477 pMemDarwin->Core.u.Lock.R0Process = (RTR0PROCESS)Task;
478 pMemDarwin->pMemDesc = pMemDesc;
479 *ppMem = &pMemDarwin->Core;
480 return VINF_SUCCESS;
481 }
482
483 pMemDesc->complete();
484 rc = VERR_NO_MEMORY;
485 }
486 else
487 rc = VERR_LOCK_FAILED;
488 pMemDesc->release();
489 }
490#endif
491 return rc;
492}
493
494
495int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, RTR0PROCESS R0Process)
496{
497 return rtR0MemObjNativeLock(ppMem, (void *)R3Ptr, cb, (task_t)R0Process);
498}
499
500
501int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb)
502{
503 return rtR0MemObjNativeLock(ppMem, pv, cb, kernel_task);
504}
505
506
507int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
508{
509 return VERR_NOT_IMPLEMENTED;
510}
511
512
513int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
514{
515 return VERR_NOT_IMPLEMENTED;
516}
517
518
519int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt)
520{
521 /*
522 * Must have a memory descriptor.
523 */
524 int rc = VERR_INVALID_PARAMETER;
525 PRTR0MEMOBJDARWIN pMemToMapDarwin = (PRTR0MEMOBJDARWIN)pMemToMap;
526 if (pMemToMapDarwin->pMemDesc)
527 {
528 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->map(kernel_task, kIOMapAnywhere,
529 kIOMapAnywhere | kIOMapDefaultCache);
530 if (pMemMap)
531 {
532 IOVirtualAddress VirtAddr = pMemMap->getVirtualAddress();
533 void *pv = (void *)(uintptr_t)VirtAddr;
534 if ((uintptr_t)pv == VirtAddr)
535 {
536 /*
537 * Create the IPRT memory object.
538 */
539 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_MAPPING,
540 pv, pMemToMapDarwin->Core.cb);
541 if (pMemDarwin)
542 {
543 pMemDarwin->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
544 pMemDarwin->pMemMap = pMemMap;
545 *ppMem = &pMemDarwin->Core;
546 return VINF_SUCCESS;
547 }
548
549 rc = VERR_NO_MEMORY;
550 }
551 else
552 rc = VERR_ADDRESS_TOO_BIG;
553 pMemMap->release();
554 }
555 else
556 rc = VERR_MAP_FAILED;
557 }
558 return rc;
559}
560
561
562int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
563{
564 /*
565 * Must have a memory descriptor.
566 */
567 int rc = VERR_INVALID_PARAMETER;
568 PRTR0MEMOBJDARWIN pMemToMapDarwin = (PRTR0MEMOBJDARWIN)pMemToMap;
569 if (pMemToMapDarwin->pMemDesc)
570 {
571 IOMemoryMap *pMemMap = pMemToMapDarwin->pMemDesc->map((task_t)R0Process, kIOMapAnywhere,
572 kIOMapAnywhere | kIOMapDefaultCache);
573 if (pMemMap)
574 {
575 IOVirtualAddress VirtAddr = pMemMap->getVirtualAddress();
576 void *pv = (void *)(uintptr_t)VirtAddr;
577 if ((uintptr_t)pv == VirtAddr)
578 {
579 /*
580 * Create the IPRT memory object.
581 */
582 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)rtR0MemObjNew(sizeof(*pMemDarwin), RTR0MEMOBJTYPE_MAPPING,
583 pv, pMemToMapDarwin->Core.cb);
584 if (pMemDarwin)
585 {
586 pMemDarwin->Core.u.Mapping.R0Process = R0Process;
587 pMemDarwin->pMemMap = pMemMap;
588 *ppMem = &pMemDarwin->Core;
589 return VINF_SUCCESS;
590 }
591
592 rc = VERR_NO_MEMORY;
593 }
594 else
595 rc = VERR_ADDRESS_TOO_BIG;
596 pMemMap->release();
597 }
598 else
599 rc = VERR_MAP_FAILED;
600 }
601 return rc;
602}
603
604
605RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
606{
607 RTHCPHYS PhysAddr;
608 PRTR0MEMOBJDARWIN pMemDarwin = (PRTR0MEMOBJDARWIN)pMem;
609
610#ifdef USE_VM_MAP_WIRE
611 /*
612 * Locked memory doesn't have a memory descriptor and
613 * needs to be handled differently.
614 */
615 if (pMemDarwin->Core.enmType == RTR0MEMOBJTYPE_LOCK)
616 {
617 ppnum_t PgNo;
618 if (pMemDarwin->Core.u.Lock.R0Process == NIL_RTR0PROCESS)
619 PgNo = pmap_find_phys(kernel_pmap, (uintptr_t)pMemDarwin->Core.pv + iPage * PAGE_SIZE);
620 else
621 {
622 /*
623 * From what I can tell, Apple seems to have locked up the all the
624 * available interfaces that could help us obtain the pmap_t of a task
625 * or vm_map_t.
626
627 * So, we'll have to figure out where in the vm_map_t structure it is
628 * and read it our selves. ASSUMING that kernel_pmap is pointed to by
629 * kernel_map->pmap, we scan kernel_map to locate the structure offset.
630 * Not nice, but it will hopefully do the job in a reliable manner...
631 *
632 * (get_task_pmap, get_map_pmap or vm_map_pmap is what we really need btw.)
633 */
634 static int s_offPmap = -1;
635 if (RT_UNLIKELY(s_offPmap == -1))
636 {
637 pmap_t const *p = (pmap_t *)kernel_map;
638 pmap_t const * const pEnd = p + 64;
639 for (; p < pEnd; p++)
640 if (*p == kernel_pmap)
641 {
642 s_offPmap = (uintptr_t)p - (uintptr_t)kernel_map;
643 break;
644 }
645 AssertReturn(s_offPmap >= 0, NIL_RTHCPHYS);
646 }
647 pmap_t Pmap = *(pmap_t *)((uintptr_t)get_task_map((task_t)pMemDarwin->Core.u.Lock.R0Process) + s_offPmap);
648 PgNo = pmap_find_phys(Pmap, (uintptr_t)pMemDarwin->Core.pv + iPage * PAGE_SIZE);
649 }
650
651 AssertReturn(PgNo, NIL_RTHCPHYS);
652 PhysAddr = (RTHCPHYS)PgNo << PAGE_SHIFT;
653 Assert((PhysAddr >> PAGE_SHIFT) == PgNo);
654 }
655 else
656#endif /* USE_VM_MAP_WIRE */
657 {
658 /*
659 * Get the memory descriptor.
660 */
661 IOMemoryDescriptor *pMemDesc = pMemDarwin->pMemDesc;
662 if (!pMemDesc)
663 pMemDesc = pMemDarwin->pMemMap->getMemoryDescriptor();
664 AssertReturn(pMemDesc, NIL_RTHCPHYS);
665
666 /*
667 * If we've got a memory descriptor, use getPhysicalSegment64().
668 */
669 addr64_t Addr = pMemDesc->getPhysicalSegment64(iPage * PAGE_SIZE, NULL);
670 AssertMsgReturn(Addr, ("iPage=%u\n", iPage), NIL_RTHCPHYS);
671 PhysAddr = Addr;
672 AssertMsgReturn(PhysAddr == Addr, ("PhysAddr=%VHp Addr=%RX64\n", PhysAddr, (uint64_t)Addr), NIL_RTHCPHYS);
673 }
674
675 return PhysAddr;
676}
677
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette