/* $Id: semevent-r0drv-freebsd.c 22819 2009-09-07 19:10:55Z vboxsync $ */ /** @file * IPRT - Single Release Event Semaphores, Ring-0 Driver, FreeBSD. */ /* * Copyright (c) 2007 knut st. osmundsen * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "the-freebsd-kernel.h" #include #include #include #include #include #include #include "internal/magics.h" /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * FreeBSD event semaphore. */ typedef struct RTSEMEVENTINTERNAL { /** Magic value (RTSEMEVENT_MAGIC). */ uint32_t volatile u32Magic; /** The number of waiting threads. */ uint32_t volatile cWaiters; /** Set if the event object is signaled. */ uint8_t volatile fSignaled; /** The number of threads in the process of waking up. */ uint32_t volatile cWaking; /** Spinlock protecting this structure. */ RTSPINLOCK hSpinLock; } RTSEMEVENTINTERNAL, *PRTSEMEVENTINTERNAL; RTDECL(int) RTSemEventCreate(PRTSEMEVENT pEventSem) { Assert(sizeof(RTSEMEVENTINTERNAL) > sizeof(void *)); AssertPtrReturn(pEventSem, VERR_INVALID_POINTER); PRTSEMEVENTINTERNAL pEventInt = (PRTSEMEVENTINTERNAL)RTMemAllocZ(sizeof(*pEventInt)); if (pEventInt) { pEventInt->u32Magic = RTSEMEVENT_MAGIC; pEventInt->cWaiters = 0; pEventInt->cWaking = 0; pEventInt->fSignaled = 0; int rc = RTSpinlockCreate(&pEventInt->hSpinLock); if (RT_SUCCESS(rc)) { *pEventSem = pEventInt; return VINF_SUCCESS; } RTMemFree(pEventInt); return rc; } return VERR_NO_MEMORY; } RTDECL(int) RTSemEventDestroy(RTSEMEVENT EventSem) { if (EventSem == NIL_RTSEMEVENT) /* don't bitch */ return VERR_INVALID_HANDLE; PRTSEMEVENTINTERNAL pEventInt = (PRTSEMEVENTINTERNAL)EventSem; RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER; AssertPtrReturn(pEventInt, VERR_INVALID_HANDLE); AssertMsgReturn(pEventInt->u32Magic == RTSEMEVENT_MAGIC, ("pEventInt=%p u32Magic=%#x\n", pEventInt, pEventInt->u32Magic), VERR_INVALID_HANDLE); RTSpinlockAcquire(pEventInt->hSpinLock, &Tmp); ASMAtomicIncU32(&pEventInt->u32Magic); /* make the handle invalid */ if (pEventInt->cWaiters > 0) { /* abort waiting thread, last man cleans up. */ ASMAtomicXchgU32(&pEventInt->cWaking, pEventInt->cWaking + pEventInt->cWaiters); sleepq_lock(pEventInt); sleepq_broadcast(pEventInt, SLEEPQ_CONDVAR, 0, 0); sleepq_release(pEventInt); RTSpinlockRelease(pEventInt->hSpinLock, &Tmp); } else if (pEventInt->cWaking) /* the last waking thread is gonna do the cleanup */ RTSpinlockRelease(pEventInt->hSpinLock, &Tmp); else { RTSpinlockRelease(pEventInt->hSpinLock, &Tmp); RTSpinlockDestroy(pEventInt->hSpinLock); RTMemFree(pEventInt); } return VINF_SUCCESS; } RTDECL(int) RTSemEventSignal(RTSEMEVENT EventSem) { RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER; PRTSEMEVENTINTERNAL pEventInt = (PRTSEMEVENTINTERNAL)EventSem; AssertPtrReturn(pEventInt, VERR_INVALID_HANDLE); AssertMsgReturn(pEventInt->u32Magic == RTSEMEVENT_MAGIC, ("pEventInt=%p u32Magic=%#x\n", pEventInt, pEventInt->u32Magic), VERR_INVALID_HANDLE); RTSpinlockAcquire(pEventInt->hSpinLock, &Tmp); if (pEventInt->cWaiters > 0) { ASMAtomicDecU32(&pEventInt->cWaiters); ASMAtomicIncU32(&pEventInt->cWaking); sleepq_lock(pEventInt); int fWakeupSwapProc = sleepq_signal(pEventInt, SLEEPQ_CONDVAR, 0, 0); sleepq_release(pEventInt); if (fWakeupSwapProc) kick_proc0(); } else ASMAtomicXchgU8(&pEventInt->fSignaled, true); RTSpinlockRelease(pEventInt->hSpinLock, &Tmp); return VINF_SUCCESS; } static int rtSemEventWait(RTSEMEVENT EventSem, unsigned cMillies, bool fInterruptible) { int rc; RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER; PRTSEMEVENTINTERNAL pEventInt = (PRTSEMEVENTINTERNAL)EventSem; AssertPtrReturn(pEventInt, VERR_INVALID_HANDLE); AssertMsgReturn(pEventInt->u32Magic == RTSEMEVENT_MAGIC, ("pEventInt=%p u32Magic=%#x\n", pEventInt, pEventInt->u32Magic), VERR_INVALID_HANDLE); RTSpinlockAcquire(pEventInt->hSpinLock, &Tmp); if (pEventInt->fSignaled) { Assert(!pEventInt->cWaiters); ASMAtomicXchgU8(&pEventInt->fSignaled, false); rc = VINF_SUCCESS; } else { if (cMillies == 0) rc = VERR_TIMEOUT; else { ASMAtomicIncU32(&pEventInt->cWaiters); int fFlags = SLEEPQ_CONDVAR; if (fInterruptible) fFlags |= SLEEPQ_INTERRUPTIBLE; sleepq_lock(pEventInt); sleepq_add(pEventInt, NULL, "IPRT Event Semaphore", fFlags, 0); if (cMillies != RT_INDEFINITE_WAIT) { /* * Translate milliseconds into ticks and go to sleep. */ struct timeval tv; tv.tv_sec = cMillies / 1000; tv.tv_usec = (cMillies % 1000) * 1000; sleepq_set_timeout(pEventInt, tvtohz(&tv)); RTSpinlockRelease(pEventInt->hSpinLock, &Tmp); if (fInterruptible) rc = SLEEPQ_TIMEDWAIT_SIG(pEventInt); else rc = SLEEPQ_TIMEDWAIT(pEventInt); } else { RTSpinlockRelease(pEventInt->hSpinLock, &Tmp); if (fInterruptible) rc = SLEEPQ_WAIT_SIG(pEventInt); else { rc = 0; SLEEPQ_WAIT(pEventInt); } } RTSpinlockAcquire(pEventInt->hSpinLock, &Tmp); switch (rc) { case 0: if (pEventInt->u32Magic == RTSEMEVENT_MAGIC) { ASMAtomicDecU32(&pEventInt->cWaking); rc = VINF_SUCCESS; } else { rc = VERR_SEM_DESTROYED; /** @todo this isn't necessarily correct, we've * could've woken up just before destruction... */ if (!ASMAtomicDecU32(&pEventInt->cWaking)) { /* The event was destroyed, as the last thread do the cleanup. we don't actually know whether */ RTSpinlockRelease(pEventInt->hSpinLock, &Tmp); RTSpinlockDestroy(pEventInt->hSpinLock); RTMemFree(pEventInt); return rc; } } break; case EWOULDBLOCK: Assert(cMillies != RT_INDEFINITE_WAIT); if (pEventInt->cWaiters > 0) ASMAtomicDecU32(&pEventInt->cWaiters); rc = VERR_TIMEOUT; break; case EINTR: case ERESTART: Assert(fInterruptible); if (pEventInt->cWaiters > 0) ASMAtomicDecU32(&pEventInt->cWaiters); rc = VERR_INTERRUPTED; break; default: AssertMsgFailed(("sleepq_* -> %d\n", rc)); rc = VERR_GENERAL_FAILURE; break; } } } RTSpinlockRelease(pEventInt->hSpinLock, &Tmp); return rc; } RTDECL(int) RTSemEventWait(RTSEMEVENT EventSem, unsigned cMillies) { return rtSemEventWait(EventSem, cMillies, false /* not interruptible */); } RTDECL(int) RTSemEventWaitNoResume(RTSEMEVENT EventSem, unsigned cMillies) { return rtSemEventWait(EventSem, cMillies, true /* interruptible */); }