/* $Id: alloc-r0drv-linux.c 52803 2014-09-22 08:21:23Z vboxsync $ */ /** @file * IPRT - Memory Allocation, Ring-0 Driver, Linux. */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "the-linux-kernel.h" #include "internal/iprt.h" #include #include #include #include "r0drv/alloc-r0drv.h" #if (defined(RT_ARCH_AMD64) || defined(DOXYGEN_RUNNING)) && !defined(RTMEMALLOC_EXEC_HEAP) # if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23) /** * Starting with 2.6.23 we can use __get_vm_area and map_vm_area to allocate * memory in the moduel range. This is preferrable to the exec heap below. */ # define RTMEMALLOC_EXEC_VM_AREA # else /** * We need memory in the module range (~2GB to ~0) this can only be obtained * thru APIs that are not exported (see module_alloc()). * * So, we'll have to create a quick and dirty heap here using BSS memory. * Very annoying and it's going to restrict us! */ # define RTMEMALLOC_EXEC_HEAP # endif #endif #ifdef RTMEMALLOC_EXEC_HEAP # include # include # include #endif /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ #ifdef RTMEMALLOC_EXEC_VM_AREA /** * Extended header used for headers marked with RTMEMHDR_FLAG_EXEC_VM_AREA. * * This is used with allocating executable memory, for things like generated * code and loaded modules. */ typedef struct RTMEMLNXHDREX { /** The VM area for this allocation. */ struct vm_struct *pVmArea; void *pvDummy; /** The header we present to the generic API. */ RTMEMHDR Hdr; } RTMEMLNXHDREX; AssertCompileSize(RTMEMLNXHDREX, 32); /** Pointer to an extended memory header. */ typedef RTMEMLNXHDREX *PRTMEMLNXHDREX; #endif /******************************************************************************* * Global Variables * *******************************************************************************/ #ifdef RTMEMALLOC_EXEC_HEAP /** The heap. */ static RTHEAPSIMPLE g_HeapExec = NIL_RTHEAPSIMPLE; /** Spinlock protecting the heap. */ static RTSPINLOCK g_HeapExecSpinlock = NIL_RTSPINLOCK; #endif /** * API for cleaning up the heap spinlock on IPRT termination. * This is as RTMemExecDonate specific to AMD64 Linux/GNU. */ DECLHIDDEN(void) rtR0MemExecCleanup(void) { #ifdef RTMEMALLOC_EXEC_HEAP RTSpinlockDestroy(g_HeapExecSpinlock); g_HeapExecSpinlock = NIL_RTSPINLOCK; #endif } /** * Donate read+write+execute memory to the exec heap. * * This API is specific to AMD64 and Linux/GNU. A kernel module that desires to * use RTMemExecAlloc on AMD64 Linux/GNU will have to donate some statically * allocated memory in the module if it wishes for GCC generated code to work. * GCC can only generate modules that work in the address range ~2GB to ~0 * currently. * * The API only accept one single donation. * * @returns IPRT status code. * @retval VERR_NOT_SUPPORTED if the code isn't enabled. * @param pvMemory Pointer to the memory block. * @param cb The size of the memory block. */ RTR0DECL(int) RTR0MemExecDonate(void *pvMemory, size_t cb) { #ifdef RTMEMALLOC_EXEC_HEAP int rc; AssertReturn(g_HeapExec == NIL_RTHEAPSIMPLE, VERR_WRONG_ORDER); rc = RTSpinlockCreate(&g_HeapExecSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "RTR0MemExecDonate"); if (RT_SUCCESS(rc)) { rc = RTHeapSimpleInit(&g_HeapExec, pvMemory, cb); if (RT_FAILURE(rc)) rtR0MemExecCleanup(); } return rc; #else return VERR_NOT_SUPPORTED; #endif } RT_EXPORT_SYMBOL(RTR0MemExecDonate); #ifdef RTMEMALLOC_EXEC_VM_AREA /** * Allocate executable kernel memory in the module range. * * @returns Pointer to a allocation header success. NULL on failure. * * @param cb The size the user requested. */ static PRTMEMHDR rtR0MemAllocExecVmArea(size_t cb) { size_t const cbAlloc = RT_ALIGN_Z(sizeof(RTMEMLNXHDREX) + cb, PAGE_SIZE); size_t const cPages = cbAlloc >> PAGE_SHIFT; struct page **papPages; struct vm_struct *pVmArea; size_t iPage; pVmArea = __get_vm_area(cbAlloc, VM_ALLOC, MODULES_VADDR, MODULES_END); if (!pVmArea) return NULL; pVmArea->nr_pages = 0; /* paranoia? */ pVmArea->pages = NULL; /* paranoia? */ papPages = (struct page **)kmalloc(cPages * sizeof(papPages[0]), GFP_KERNEL | __GFP_NOWARN); if (!papPages) { vunmap(pVmArea->addr); return NULL; } for (iPage = 0; iPage < cPages; iPage++) { papPages[iPage] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN); if (!papPages[iPage]) break; } if (iPage == cPages) { /* * Map the pages. * * Not entirely sure we really need to set nr_pages and pages here, but * they provide a very convenient place for storing something we need * in the free function, if nothing else... */ # if LINUX_VERSION_CODE < KERNEL_VERSION(3, 17, 0) struct page **papPagesIterator = papPages; # endif pVmArea->nr_pages = cPages; pVmArea->pages = papPages; if (!map_vm_area(pVmArea, PAGE_KERNEL_EXEC, # if LINUX_VERSION_CODE < KERNEL_VERSION(3, 17, 0) &papPagesIterator # else papPages # endif )) { PRTMEMLNXHDREX pHdrEx = (PRTMEMLNXHDREX)pVmArea->addr; pHdrEx->pVmArea = pVmArea; pHdrEx->pvDummy = NULL; return &pHdrEx->Hdr; } /* bail out */ # if LINUX_VERSION_CODE < KERNEL_VERSION(3, 17, 0) pVmArea->nr_pages = papPagesIterator - papPages; # endif } vunmap(pVmArea->addr); while (iPage-- > 0) __free_page(papPages[iPage]); kfree(papPages); return NULL; } #endif /* RTMEMALLOC_EXEC_VM_AREA */ /** * OS specific allocation function. */ DECLHIDDEN(int) rtR0MemAllocEx(size_t cb, uint32_t fFlags, PRTMEMHDR *ppHdr) { PRTMEMHDR pHdr; /* * Allocate. */ if (fFlags & RTMEMHDR_FLAG_EXEC) { if (fFlags & RTMEMHDR_FLAG_ANY_CTX) return VERR_NOT_SUPPORTED; #if defined(RT_ARCH_AMD64) # ifdef RTMEMALLOC_EXEC_HEAP if (g_HeapExec != NIL_RTHEAPSIMPLE) { RTSpinlockAcquire(g_HeapExecSpinlock); pHdr = (PRTMEMHDR)RTHeapSimpleAlloc(g_HeapExec, cb + sizeof(*pHdr), 0); RTSpinlockRelease(g_HeapExecSpinlock); fFlags |= RTMEMHDR_FLAG_EXEC_HEAP; } else pHdr = NULL; # elif defined(RTMEMALLOC_EXEC_VM_AREA) pHdr = rtR0MemAllocExecVmArea(cb); fFlags |= RTMEMHDR_FLAG_EXEC_VM_AREA; # else /* !RTMEMALLOC_EXEC_HEAP */ # error "you don not want to go here..." pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, MY_PAGE_KERNEL_EXEC); # endif /* !RTMEMALLOC_EXEC_HEAP */ #elif defined(PAGE_KERNEL_EXEC) && defined(CONFIG_X86_PAE) pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, MY_PAGE_KERNEL_EXEC); #else pHdr = (PRTMEMHDR)vmalloc(cb + sizeof(*pHdr)); #endif } else { if ( #if 1 /* vmalloc has serious performance issues, avoid it. */ cb <= PAGE_SIZE*16 - sizeof(*pHdr) #else cb <= PAGE_SIZE #endif || (fFlags & RTMEMHDR_FLAG_ANY_CTX) ) { fFlags |= RTMEMHDR_FLAG_KMALLOC; pHdr = kmalloc(cb + sizeof(*pHdr), (fFlags & RTMEMHDR_FLAG_ANY_CTX_ALLOC) ? (GFP_ATOMIC | __GFP_NOWARN) : (GFP_KERNEL | __GFP_NOWARN)); if (RT_UNLIKELY( !pHdr && cb > PAGE_SIZE && !(fFlags & RTMEMHDR_FLAG_ANY_CTX) )) { fFlags &= ~RTMEMHDR_FLAG_KMALLOC; pHdr = vmalloc(cb + sizeof(*pHdr)); } } else pHdr = vmalloc(cb + sizeof(*pHdr)); } if (RT_UNLIKELY(!pHdr)) return VERR_NO_MEMORY; /* * Initialize. */ pHdr->u32Magic = RTMEMHDR_MAGIC; pHdr->fFlags = fFlags; pHdr->cb = cb; pHdr->cbReq = cb; *ppHdr = pHdr; return VINF_SUCCESS; } /** * OS specific free function. */ DECLHIDDEN(void) rtR0MemFree(PRTMEMHDR pHdr) { pHdr->u32Magic += 1; if (pHdr->fFlags & RTMEMHDR_FLAG_KMALLOC) kfree(pHdr); #ifdef RTMEMALLOC_EXEC_HEAP else if (pHdr->fFlags & RTMEMHDR_FLAG_EXEC_HEAP) { RTSpinlockAcquire(g_HeapExecSpinlock); RTHeapSimpleFree(g_HeapExec, pHdr); RTSpinlockRelease(g_HeapExecSpinlock); } #endif #ifdef RTMEMALLOC_EXEC_VM_AREA else if (pHdr->fFlags & RTMEMHDR_FLAG_EXEC_VM_AREA) { PRTMEMLNXHDREX pHdrEx = RT_FROM_MEMBER(pHdr, RTMEMLNXHDREX, Hdr); size_t iPage = pHdrEx->pVmArea->nr_pages; struct page **papPages = pHdrEx->pVmArea->pages; void *pvMapping = pHdrEx->pVmArea->addr; vunmap(pvMapping); while (iPage-- > 0) __free_page(papPages[iPage]); kfree(papPages); } #endif else vfree(pHdr); } /** * Compute order. Some functions allocate 2^order pages. * * @returns order. * @param cPages Number of pages. */ static int CalcPowerOf2Order(unsigned long cPages) { int iOrder; unsigned long cTmp; for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder) ; if (cPages & ~(1 << iOrder)) ++iOrder; return iOrder; } /** * Allocates physical contiguous memory (below 4GB). * The allocation is page aligned and the content is undefined. * * @returns Pointer to the memory block. This is page aligned. * @param pPhys Where to store the physical address. * @param cb The allocation size in bytes. This is always * rounded up to PAGE_SIZE. */ RTR0DECL(void *) RTMemContAlloc(PRTCCPHYS pPhys, size_t cb) { int cOrder; unsigned cPages; struct page *paPages; /* * validate input. */ Assert(VALID_PTR(pPhys)); Assert(cb > 0); /* * Allocate page pointer array. */ cb = RT_ALIGN_Z(cb, PAGE_SIZE); cPages = cb >> PAGE_SHIFT; cOrder = CalcPowerOf2Order(cPages); #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32) /* ZONE_DMA32: 0-4GB */ paPages = alloc_pages(GFP_DMA32 | __GFP_NOWARN, cOrder); if (!paPages) #endif #ifdef RT_ARCH_AMD64 /* ZONE_DMA; 0-16MB */ paPages = alloc_pages(GFP_DMA | __GFP_NOWARN, cOrder); #else /* ZONE_NORMAL: 0-896MB */ paPages = alloc_pages(GFP_USER | __GFP_NOWARN, cOrder); #endif if (paPages) { /* * Reserve the pages and mark them executable. */ unsigned iPage; for (iPage = 0; iPage < cPages; iPage++) { Assert(!PageHighMem(&paPages[iPage])); if (iPage + 1 < cPages) { AssertMsg( (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage])) + PAGE_SIZE == (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage + 1])) && page_to_phys(&paPages[iPage]) + PAGE_SIZE == page_to_phys(&paPages[iPage + 1]), ("iPage=%i cPages=%u [0]=%#llx,%p [1]=%#llx,%p\n", iPage, cPages, (long long)page_to_phys(&paPages[iPage]), phys_to_virt(page_to_phys(&paPages[iPage])), (long long)page_to_phys(&paPages[iPage + 1]), phys_to_virt(page_to_phys(&paPages[iPage + 1])) )); } SetPageReserved(&paPages[iPage]); #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */ MY_SET_PAGES_EXEC(&paPages[iPage], 1); #endif } *pPhys = page_to_phys(paPages); return phys_to_virt(page_to_phys(paPages)); } return NULL; } RT_EXPORT_SYMBOL(RTMemContAlloc); /** * Frees memory allocated using RTMemContAlloc(). * * @param pv Pointer to return from RTMemContAlloc(). * @param cb The cb parameter passed to RTMemContAlloc(). */ RTR0DECL(void) RTMemContFree(void *pv, size_t cb) { if (pv) { int cOrder; unsigned cPages; unsigned iPage; struct page *paPages; /* validate */ AssertMsg(!((uintptr_t)pv & PAGE_OFFSET_MASK), ("pv=%p\n", pv)); Assert(cb > 0); /* calc order and get pages */ cb = RT_ALIGN_Z(cb, PAGE_SIZE); cPages = cb >> PAGE_SHIFT; cOrder = CalcPowerOf2Order(cPages); paPages = virt_to_page(pv); /* * Restore page attributes freeing the pages. */ for (iPage = 0; iPage < cPages; iPage++) { ClearPageReserved(&paPages[iPage]); #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */ MY_SET_PAGES_NOEXEC(&paPages[iPage], 1); #endif } __free_pages(paPages, cOrder); } } RT_EXPORT_SYMBOL(RTMemContFree);