VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c@ 78381

Last change on this file since 78381 was 78120, checked in by vboxsync, 6 years ago

IPRT: Started adding a RTR0MemObjMapUserEx function that takes offSub and cbSub. bugref:9217

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev Revision
File size: 59.7 KB
Line 
1/* $Id: memobj-r0drv-linux.c 78120 2019-04-12 13:20:50Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-linux-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/assert.h>
35#include <iprt/err.h>
36#include <iprt/log.h>
37#include <iprt/mem.h>
38#include <iprt/process.h>
39#include <iprt/string.h>
40#include "internal/memobj.h"
41#include "internal/iprt.h"
42
43
44/*********************************************************************************************************************************
45* Defined Constants And Macros *
46*********************************************************************************************************************************/
47/* early 2.6 kernels */
48#ifndef PAGE_SHARED_EXEC
49# define PAGE_SHARED_EXEC PAGE_SHARED
50#endif
51#ifndef PAGE_READONLY_EXEC
52# define PAGE_READONLY_EXEC PAGE_READONLY
53#endif
54
55/*
56 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
57 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
58 * It should be safe to use vm_insert_page() older kernels as well.
59 */
60#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
61# define VBOX_USE_INSERT_PAGE
62#endif
63#if defined(CONFIG_X86_PAE) \
64 && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
65 || ( LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) \
66 && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)))
67# define VBOX_USE_PAE_HACK
68#endif
69
70/* gfp_t was introduced in 2.6.14, define it for earlier. */
71#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 14)
72# define gfp_t unsigned
73#endif
74
75
76/*********************************************************************************************************************************
77* Structures and Typedefs *
78*********************************************************************************************************************************/
79/**
80 * The Darwin version of the memory object structure.
81 */
82typedef struct RTR0MEMOBJLNX
83{
84 /** The core structure. */
85 RTR0MEMOBJINTERNAL Core;
86 /** Set if the allocation is contiguous.
87 * This means it has to be given back as one chunk. */
88 bool fContiguous;
89 /** Set if we've vmap'ed the memory into ring-0. */
90 bool fMappedToRing0;
91 /** The pages in the apPages array. */
92 size_t cPages;
93 /** Array of struct page pointers. (variable size) */
94 struct page *apPages[1];
95} RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
96
97
98static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
99
100
101/**
102 * Helper that converts from a RTR0PROCESS handle to a linux task.
103 *
104 * @returns The corresponding Linux task.
105 * @param R0Process IPRT ring-0 process handle.
106 */
107static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
108{
109 /** @todo fix rtR0ProcessToLinuxTask!! */
110 /** @todo many (all?) callers currently assume that we return 'current'! */
111 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
112}
113
114
115/**
116 * Compute order. Some functions allocate 2^order pages.
117 *
118 * @returns order.
119 * @param cPages Number of pages.
120 */
121static int rtR0MemObjLinuxOrder(size_t cPages)
122{
123 int iOrder;
124 size_t cTmp;
125
126 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
127 ;
128 if (cPages & ~((size_t)1 << iOrder))
129 ++iOrder;
130
131 return iOrder;
132}
133
134
135/**
136 * Converts from RTMEM_PROT_* to Linux PAGE_*.
137 *
138 * @returns Linux page protection constant.
139 * @param fProt The IPRT protection mask.
140 * @param fKernel Whether it applies to kernel or user space.
141 */
142static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
143{
144 switch (fProt)
145 {
146 default:
147 AssertMsgFailed(("%#x %d\n", fProt, fKernel)); RT_FALL_THRU();
148 case RTMEM_PROT_NONE:
149 return PAGE_NONE;
150
151 case RTMEM_PROT_READ:
152 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
153
154 case RTMEM_PROT_WRITE:
155 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
156 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
157
158 case RTMEM_PROT_EXEC:
159 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
160#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
161 if (fKernel)
162 {
163 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
164 pgprot_val(fPg) &= ~_PAGE_RW;
165 return fPg;
166 }
167 return PAGE_READONLY_EXEC;
168#else
169 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
170#endif
171
172 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
173 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
174 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
175 }
176}
177
178
179/**
180 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
181 * an empty user space mapping.
182 *
183 * We acquire the mmap_sem of the task!
184 *
185 * @returns Pointer to the mapping.
186 * (void *)-1 on failure.
187 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
188 * @param cb The size of the mapping.
189 * @param uAlignment The alignment of the mapping.
190 * @param pTask The Linux task to create this mapping in.
191 * @param fProt The RTMEM_PROT_* mask.
192 */
193static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
194{
195 unsigned fLnxProt;
196 unsigned long ulAddr;
197
198 Assert(pTask == current); /* do_mmap */
199 RT_NOREF_PV(pTask);
200
201 /*
202 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
203 */
204 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
205 if (fProt == RTMEM_PROT_NONE)
206 fLnxProt = PROT_NONE;
207 else
208 {
209 fLnxProt = 0;
210 if (fProt & RTMEM_PROT_READ)
211 fLnxProt |= PROT_READ;
212 if (fProt & RTMEM_PROT_WRITE)
213 fLnxProt |= PROT_WRITE;
214 if (fProt & RTMEM_PROT_EXEC)
215 fLnxProt |= PROT_EXEC;
216 }
217
218 if (R3PtrFixed != (RTR3PTR)-1)
219 {
220#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
221 ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
222#else
223 down_write(&pTask->mm->mmap_sem);
224 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
225 up_write(&pTask->mm->mmap_sem);
226#endif
227 }
228 else
229 {
230#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
231 ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
232#else
233 down_write(&pTask->mm->mmap_sem);
234 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
235 up_write(&pTask->mm->mmap_sem);
236#endif
237 if ( !(ulAddr & ~PAGE_MASK)
238 && (ulAddr & (uAlignment - 1)))
239 {
240 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
241 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
242 * ourselves) and further by there begin two mmap strategies (top / bottom). */
243 /* For now, just ignore uAlignment requirements... */
244 }
245 }
246
247
248 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
249 return (void *)-1;
250 return (void *)ulAddr;
251}
252
253
254/**
255 * Worker that destroys a user space mapping.
256 * Undoes what rtR0MemObjLinuxDoMmap did.
257 *
258 * We acquire the mmap_sem of the task!
259 *
260 * @param pv The ring-3 mapping.
261 * @param cb The size of the mapping.
262 * @param pTask The Linux task to destroy this mapping in.
263 */
264static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
265{
266#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
267 Assert(pTask == current); RT_NOREF_PV(pTask);
268 vm_munmap((unsigned long)pv, cb);
269#elif defined(USE_RHEL4_MUNMAP)
270 down_write(&pTask->mm->mmap_sem);
271 do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
272 up_write(&pTask->mm->mmap_sem);
273#else
274 down_write(&pTask->mm->mmap_sem);
275 do_munmap(pTask->mm, (unsigned long)pv, cb);
276 up_write(&pTask->mm->mmap_sem);
277#endif
278}
279
280
281/**
282 * Internal worker that allocates physical pages and creates the memory object for them.
283 *
284 * @returns IPRT status code.
285 * @param ppMemLnx Where to store the memory object pointer.
286 * @param enmType The object type.
287 * @param cb The number of bytes to allocate.
288 * @param uAlignment The alignment of the physical memory.
289 * Only valid if fContiguous == true, ignored otherwise.
290 * @param fFlagsLnx The page allocation flags (GPFs).
291 * @param fContiguous Whether the allocation must be contiguous.
292 * @param rcNoMem What to return when we're out of pages.
293 */
294static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
295 size_t uAlignment, gfp_t fFlagsLnx, bool fContiguous, int rcNoMem)
296{
297 size_t iPage;
298 size_t const cPages = cb >> PAGE_SHIFT;
299 struct page *paPages;
300
301 /*
302 * Allocate a memory object structure that's large enough to contain
303 * the page pointer array.
304 */
305 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
306 if (!pMemLnx)
307 return VERR_NO_MEMORY;
308 pMemLnx->cPages = cPages;
309
310 if (cPages > 255)
311 {
312# ifdef __GFP_REPEAT
313 /* Try hard to allocate the memory, but the allocation attempt might fail. */
314 fFlagsLnx |= __GFP_REPEAT;
315# endif
316# ifdef __GFP_NOMEMALLOC
317 /* Introduced with Linux 2.6.12: Don't use emergency reserves */
318 fFlagsLnx |= __GFP_NOMEMALLOC;
319# endif
320 }
321
322 /*
323 * Allocate the pages.
324 * For small allocations we'll try contiguous first and then fall back on page by page.
325 */
326#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
327 if ( fContiguous
328 || cb <= PAGE_SIZE * 2)
329 {
330# ifdef VBOX_USE_INSERT_PAGE
331 paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
332# else
333 paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
334# endif
335 if (paPages)
336 {
337 fContiguous = true;
338 for (iPage = 0; iPage < cPages; iPage++)
339 pMemLnx->apPages[iPage] = &paPages[iPage];
340 }
341 else if (fContiguous)
342 {
343 rtR0MemObjDelete(&pMemLnx->Core);
344 return rcNoMem;
345 }
346 }
347
348 if (!fContiguous)
349 {
350 for (iPage = 0; iPage < cPages; iPage++)
351 {
352 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
353 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
354 {
355 while (iPage-- > 0)
356 __free_page(pMemLnx->apPages[iPage]);
357 rtR0MemObjDelete(&pMemLnx->Core);
358 return rcNoMem;
359 }
360 }
361 }
362
363#else /* < 2.4.22 */
364 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
365 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
366 if (!paPages)
367 {
368 rtR0MemObjDelete(&pMemLnx->Core);
369 return rcNoMem;
370 }
371 for (iPage = 0; iPage < cPages; iPage++)
372 {
373 pMemLnx->apPages[iPage] = &paPages[iPage];
374 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
375 if (PageHighMem(pMemLnx->apPages[iPage]))
376 BUG();
377 }
378
379 fContiguous = true;
380#endif /* < 2.4.22 */
381 pMemLnx->fContiguous = fContiguous;
382
383#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
384 /*
385 * Reserve the pages.
386 *
387 * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
388 * pages. According to Michal Hocko this shouldn't be necessary anyway because
389 * as pages which are not on the LRU list are never evictable.
390 */
391 for (iPage = 0; iPage < cPages; iPage++)
392 SetPageReserved(pMemLnx->apPages[iPage]);
393#endif
394
395 /*
396 * Note that the physical address of memory allocated with alloc_pages(flags, order)
397 * is always 2^(PAGE_SHIFT+order)-aligned.
398 */
399 if ( fContiguous
400 && uAlignment > PAGE_SIZE)
401 {
402 /*
403 * Check for alignment constraints. The physical address of memory allocated with
404 * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
405 */
406 if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
407 {
408 /*
409 * This should never happen!
410 */
411 printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
412 (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
413 rtR0MemObjLinuxFreePages(pMemLnx);
414 return rcNoMem;
415 }
416 }
417
418 *ppMemLnx = pMemLnx;
419 return VINF_SUCCESS;
420}
421
422
423/**
424 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
425 *
426 * This method does NOT free the object.
427 *
428 * @param pMemLnx The object which physical pages should be freed.
429 */
430static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
431{
432 size_t iPage = pMemLnx->cPages;
433 if (iPage > 0)
434 {
435 /*
436 * Restore the page flags.
437 */
438 while (iPage-- > 0)
439 {
440#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
441 /*
442 * See SetPageReserved() in rtR0MemObjLinuxAllocPages()
443 */
444 ClearPageReserved(pMemLnx->apPages[iPage]);
445#endif
446#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
447#else
448 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
449#endif
450 }
451
452 /*
453 * Free the pages.
454 */
455#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
456 if (!pMemLnx->fContiguous)
457 {
458 iPage = pMemLnx->cPages;
459 while (iPage-- > 0)
460 __free_page(pMemLnx->apPages[iPage]);
461 }
462 else
463#endif
464 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
465
466 pMemLnx->cPages = 0;
467 }
468}
469
470
471/**
472 * Maps the allocation into ring-0.
473 *
474 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
475 *
476 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
477 * space, so we'll use that mapping if possible. If execute access is required, we'll
478 * play safe and do our own mapping.
479 *
480 * @returns IPRT status code.
481 * @param pMemLnx The linux memory object to map.
482 * @param fExecutable Whether execute access is required.
483 */
484static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
485{
486 int rc = VINF_SUCCESS;
487
488 /*
489 * Choose mapping strategy.
490 */
491 bool fMustMap = fExecutable
492 || !pMemLnx->fContiguous;
493 if (!fMustMap)
494 {
495 size_t iPage = pMemLnx->cPages;
496 while (iPage-- > 0)
497 if (PageHighMem(pMemLnx->apPages[iPage]))
498 {
499 fMustMap = true;
500 break;
501 }
502 }
503
504 Assert(!pMemLnx->Core.pv);
505 Assert(!pMemLnx->fMappedToRing0);
506
507 if (fMustMap)
508 {
509 /*
510 * Use vmap - 2.4.22 and later.
511 */
512#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
513 pgprot_t fPg;
514 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
515# ifdef _PAGE_NX
516 if (!fExecutable)
517 pgprot_val(fPg) |= _PAGE_NX;
518# endif
519
520# ifdef VM_MAP
521 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
522# else
523 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
524# endif
525 if (pMemLnx->Core.pv)
526 pMemLnx->fMappedToRing0 = true;
527 else
528 rc = VERR_MAP_FAILED;
529#else /* < 2.4.22 */
530 rc = VERR_NOT_SUPPORTED;
531#endif
532 }
533 else
534 {
535 /*
536 * Use the kernel RAM mapping.
537 */
538 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
539 Assert(pMemLnx->Core.pv);
540 }
541
542 return rc;
543}
544
545
546/**
547 * Undoes what rtR0MemObjLinuxVMap() did.
548 *
549 * @param pMemLnx The linux memory object.
550 */
551static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
552{
553#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
554 if (pMemLnx->fMappedToRing0)
555 {
556 Assert(pMemLnx->Core.pv);
557 vunmap(pMemLnx->Core.pv);
558 pMemLnx->fMappedToRing0 = false;
559 }
560#else /* < 2.4.22 */
561 Assert(!pMemLnx->fMappedToRing0);
562#endif
563 pMemLnx->Core.pv = NULL;
564}
565
566
567DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
568{
569 IPRT_LINUX_SAVE_EFL_AC();
570 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
571
572 /*
573 * Release any memory that we've allocated or locked.
574 */
575 switch (pMemLnx->Core.enmType)
576 {
577 case RTR0MEMOBJTYPE_LOW:
578 case RTR0MEMOBJTYPE_PAGE:
579 case RTR0MEMOBJTYPE_CONT:
580 case RTR0MEMOBJTYPE_PHYS:
581 case RTR0MEMOBJTYPE_PHYS_NC:
582 rtR0MemObjLinuxVUnmap(pMemLnx);
583 rtR0MemObjLinuxFreePages(pMemLnx);
584 break;
585
586 case RTR0MEMOBJTYPE_LOCK:
587 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
588 {
589 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
590 size_t iPage;
591 Assert(pTask);
592 if (pTask && pTask->mm)
593 down_read(&pTask->mm->mmap_sem);
594
595 iPage = pMemLnx->cPages;
596 while (iPage-- > 0)
597 {
598 if (!PageReserved(pMemLnx->apPages[iPage]))
599 SetPageDirty(pMemLnx->apPages[iPage]);
600#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
601 put_page(pMemLnx->apPages[iPage]);
602#else
603 page_cache_release(pMemLnx->apPages[iPage]);
604#endif
605 }
606
607 if (pTask && pTask->mm)
608 up_read(&pTask->mm->mmap_sem);
609 }
610 /* else: kernel memory - nothing to do here. */
611 break;
612
613 case RTR0MEMOBJTYPE_RES_VIRT:
614 Assert(pMemLnx->Core.pv);
615 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
616 {
617 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
618 Assert(pTask);
619 if (pTask && pTask->mm)
620 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
621 }
622 else
623 {
624 vunmap(pMemLnx->Core.pv);
625
626 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
627 __free_page(pMemLnx->apPages[0]);
628 pMemLnx->apPages[0] = NULL;
629 pMemLnx->cPages = 0;
630 }
631 pMemLnx->Core.pv = NULL;
632 break;
633
634 case RTR0MEMOBJTYPE_MAPPING:
635 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
636 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
637 {
638 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
639 Assert(pTask);
640 if (pTask && pTask->mm)
641 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
642 }
643 else
644 vunmap(pMemLnx->Core.pv);
645 pMemLnx->Core.pv = NULL;
646 break;
647
648 default:
649 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
650 return VERR_INTERNAL_ERROR;
651 }
652 IPRT_LINUX_RESTORE_EFL_ONLY_AC();
653 return VINF_SUCCESS;
654}
655
656
657DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
658{
659 IPRT_LINUX_SAVE_EFL_AC();
660 PRTR0MEMOBJLNX pMemLnx;
661 int rc;
662
663#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
664 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
665 false /* non-contiguous */, VERR_NO_MEMORY);
666#else
667 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
668 false /* non-contiguous */, VERR_NO_MEMORY);
669#endif
670 if (RT_SUCCESS(rc))
671 {
672 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
673 if (RT_SUCCESS(rc))
674 {
675 *ppMem = &pMemLnx->Core;
676 IPRT_LINUX_RESTORE_EFL_AC();
677 return rc;
678 }
679
680 rtR0MemObjLinuxFreePages(pMemLnx);
681 rtR0MemObjDelete(&pMemLnx->Core);
682 }
683
684 IPRT_LINUX_RESTORE_EFL_AC();
685 return rc;
686}
687
688
689DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
690{
691 IPRT_LINUX_SAVE_EFL_AC();
692 PRTR0MEMOBJLNX pMemLnx;
693 int rc;
694
695 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
696#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
697 /* ZONE_DMA32: 0-4GB */
698 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
699 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
700 if (RT_FAILURE(rc))
701#endif
702#ifdef RT_ARCH_AMD64
703 /* ZONE_DMA: 0-16MB */
704 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
705 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
706#else
707# ifdef CONFIG_X86_PAE
708# endif
709 /* ZONE_NORMAL: 0-896MB */
710 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
711 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
712#endif
713 if (RT_SUCCESS(rc))
714 {
715 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
716 if (RT_SUCCESS(rc))
717 {
718 *ppMem = &pMemLnx->Core;
719 IPRT_LINUX_RESTORE_EFL_AC();
720 return rc;
721 }
722
723 rtR0MemObjLinuxFreePages(pMemLnx);
724 rtR0MemObjDelete(&pMemLnx->Core);
725 }
726
727 IPRT_LINUX_RESTORE_EFL_AC();
728 return rc;
729}
730
731
732DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
733{
734 IPRT_LINUX_SAVE_EFL_AC();
735 PRTR0MEMOBJLNX pMemLnx;
736 int rc;
737
738#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
739 /* ZONE_DMA32: 0-4GB */
740 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
741 true /* contiguous */, VERR_NO_CONT_MEMORY);
742 if (RT_FAILURE(rc))
743#endif
744#ifdef RT_ARCH_AMD64
745 /* ZONE_DMA: 0-16MB */
746 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
747 true /* contiguous */, VERR_NO_CONT_MEMORY);
748#else
749 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
750 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
751 true /* contiguous */, VERR_NO_CONT_MEMORY);
752#endif
753 if (RT_SUCCESS(rc))
754 {
755 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
756 if (RT_SUCCESS(rc))
757 {
758#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
759 size_t iPage = pMemLnx->cPages;
760 while (iPage-- > 0)
761 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
762#endif
763 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
764 *ppMem = &pMemLnx->Core;
765 IPRT_LINUX_RESTORE_EFL_AC();
766 return rc;
767 }
768
769 rtR0MemObjLinuxFreePages(pMemLnx);
770 rtR0MemObjDelete(&pMemLnx->Core);
771 }
772
773 IPRT_LINUX_RESTORE_EFL_AC();
774 return rc;
775}
776
777
778/**
779 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
780 *
781 * @returns IPRT status code.
782 * @param ppMemLnx Where to
783 * @param enmType The object type.
784 * @param cb The size of the allocation.
785 * @param uAlignment The alignment of the physical memory.
786 * Only valid for fContiguous == true, ignored otherwise.
787 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
788 * @param fGfp The Linux GFP flags to use for the allocation.
789 */
790static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
791 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, gfp_t fGfp)
792{
793 PRTR0MEMOBJLNX pMemLnx;
794 int rc;
795
796 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
797 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
798 VERR_NO_PHYS_MEMORY);
799 if (RT_FAILURE(rc))
800 return rc;
801
802 /*
803 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
804 */
805 if (PhysHighest != NIL_RTHCPHYS)
806 {
807 size_t iPage = pMemLnx->cPages;
808 while (iPage-- > 0)
809 if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
810 {
811 rtR0MemObjLinuxFreePages(pMemLnx);
812 rtR0MemObjDelete(&pMemLnx->Core);
813 return VERR_NO_MEMORY;
814 }
815 }
816
817 /*
818 * Complete the object.
819 */
820 if (enmType == RTR0MEMOBJTYPE_PHYS)
821 {
822 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
823 pMemLnx->Core.u.Phys.fAllocated = true;
824 }
825 *ppMem = &pMemLnx->Core;
826 return rc;
827}
828
829
830/**
831 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
832 *
833 * @returns IPRT status code.
834 * @param ppMem Where to store the memory object pointer on success.
835 * @param enmType The object type.
836 * @param cb The size of the allocation.
837 * @param uAlignment The alignment of the physical memory.
838 * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
839 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
840 */
841static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
842 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
843{
844 int rc;
845 IPRT_LINUX_SAVE_EFL_AC();
846
847 /*
848 * There are two clear cases and that's the <=16MB and anything-goes ones.
849 * When the physical address limit is somewhere in-between those two we'll
850 * just have to try, starting with HIGHUSER and working our way thru the
851 * different types, hoping we'll get lucky.
852 *
853 * We should probably move this physical address restriction logic up to
854 * the page alloc function as it would be more efficient there. But since
855 * we don't expect this to be a performance issue just yet it can wait.
856 */
857 if (PhysHighest == NIL_RTHCPHYS)
858 /* ZONE_HIGHMEM: the whole physical memory */
859 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
860 else if (PhysHighest <= _1M * 16)
861 /* ZONE_DMA: 0-16MB */
862 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
863 else
864 {
865 rc = VERR_NO_MEMORY;
866 if (RT_FAILURE(rc))
867 /* ZONE_HIGHMEM: the whole physical memory */
868 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
869 if (RT_FAILURE(rc))
870 /* ZONE_NORMAL: 0-896MB */
871 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
872#ifdef GFP_DMA32
873 if (RT_FAILURE(rc))
874 /* ZONE_DMA32: 0-4GB */
875 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
876#endif
877 if (RT_FAILURE(rc))
878 /* ZONE_DMA: 0-16MB */
879 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
880 }
881 IPRT_LINUX_RESTORE_EFL_AC();
882 return rc;
883}
884
885
886/**
887 * Translates a kernel virtual address to a linux page structure by walking the
888 * page tables.
889 *
890 * @note We do assume that the page tables will not change as we are walking
891 * them. This assumption is rather forced by the fact that I could not
892 * immediately see any way of preventing this from happening. So, we
893 * take some extra care when accessing them.
894 *
895 * Because of this, we don't want to use this function on memory where
896 * attribute changes to nearby pages is likely to cause large pages to
897 * be used or split up. So, don't use this for the linear mapping of
898 * physical memory.
899 *
900 * @returns Pointer to the page structur or NULL if it could not be found.
901 * @param pv The kernel virtual address.
902 */
903RTDECL(struct page *) rtR0MemObjLinuxVirtToPage(void *pv)
904{
905 unsigned long ulAddr = (unsigned long)pv;
906 unsigned long pfn;
907 struct page *pPage;
908 pte_t *pEntry;
909 union
910 {
911 pgd_t Global;
912#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
913 p4d_t Four;
914#endif
915#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
916 pud_t Upper;
917#endif
918 pmd_t Middle;
919 pte_t Entry;
920 } u;
921
922 /* Should this happen in a situation this code will be called in? And if
923 * so, can it change under our feet? See also
924 * "Documentation/vm/active_mm.txt" in the kernel sources. */
925 if (RT_UNLIKELY(!current->active_mm))
926 return NULL;
927 u.Global = *pgd_offset(current->active_mm, ulAddr);
928 if (RT_UNLIKELY(pgd_none(u.Global)))
929 return NULL;
930#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
931# if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
932 u.Four = *p4d_offset(&u.Global, ulAddr);
933 if (RT_UNLIKELY(p4d_none(u.Four)))
934 return NULL;
935 if (p4d_large(u.Four))
936 {
937 pPage = p4d_page(u.Four);
938 AssertReturn(pPage, NULL);
939 pfn = page_to_pfn(pPage); /* doing the safe way... */
940 AssertCompile(P4D_SHIFT - PAGE_SHIFT < 31);
941 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (P4D_SHIFT - PAGE_SHIFT)) - 1);
942 return pfn_to_page(pfn);
943 }
944 u.Upper = *pud_offset(&u.Four, ulAddr);
945# else /* < 4.12 */
946 u.Upper = *pud_offset(&u.Global, ulAddr);
947# endif /* < 4.12 */
948 if (RT_UNLIKELY(pud_none(u.Upper)))
949 return NULL;
950# if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)
951 if (pud_large(u.Upper))
952 {
953 pPage = pud_page(u.Upper);
954 AssertReturn(pPage, NULL);
955 pfn = page_to_pfn(pPage); /* doing the safe way... */
956 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
957 return pfn_to_page(pfn);
958 }
959# endif
960 u.Middle = *pmd_offset(&u.Upper, ulAddr);
961#else /* < 2.6.11 */
962 u.Middle = *pmd_offset(&u.Global, ulAddr);
963#endif /* < 2.6.11 */
964 if (RT_UNLIKELY(pmd_none(u.Middle)))
965 return NULL;
966#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
967 if (pmd_large(u.Middle))
968 {
969 pPage = pmd_page(u.Middle);
970 AssertReturn(pPage, NULL);
971 pfn = page_to_pfn(pPage); /* doing the safe way... */
972 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
973 return pfn_to_page(pfn);
974 }
975#endif
976
977#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
978 pEntry = pte_offset_map(&u.Middle, ulAddr);
979#else
980 pEntry = pte_offset(&u.Middle, ulAddr);
981#endif
982 if (RT_UNLIKELY(!pEntry))
983 return NULL;
984 u.Entry = *pEntry;
985#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map)
986 pte_unmap(pEntry);
987#endif
988
989 if (RT_UNLIKELY(!pte_present(u.Entry)))
990 return NULL;
991 return pte_page(u.Entry);
992}
993RT_EXPORT_SYMBOL(rtR0MemObjLinuxVirtToPage);
994
995
996DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
997{
998 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
999}
1000
1001
1002DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
1003{
1004 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
1005}
1006
1007
1008DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
1009{
1010 IPRT_LINUX_SAVE_EFL_AC();
1011
1012 /*
1013 * All we need to do here is to validate that we can use
1014 * ioremap on the specified address (32/64-bit dma_addr_t).
1015 */
1016 PRTR0MEMOBJLNX pMemLnx;
1017 dma_addr_t PhysAddr = Phys;
1018 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
1019
1020 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
1021 if (!pMemLnx)
1022 {
1023 IPRT_LINUX_RESTORE_EFL_AC();
1024 return VERR_NO_MEMORY;
1025 }
1026
1027 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
1028 pMemLnx->Core.u.Phys.fAllocated = false;
1029 pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
1030 Assert(!pMemLnx->cPages);
1031 *ppMem = &pMemLnx->Core;
1032 IPRT_LINUX_RESTORE_EFL_AC();
1033 return VINF_SUCCESS;
1034}
1035
1036/* openSUSE Leap 42.3 detection :-/ */
1037#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0) \
1038 && LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0) \
1039 && defined(FAULT_FLAG_REMOTE)
1040# define GET_USER_PAGES_API KERNEL_VERSION(4, 10, 0) /* no typo! */
1041#else
1042# define GET_USER_PAGES_API LINUX_VERSION_CODE
1043#endif
1044
1045DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
1046{
1047 IPRT_LINUX_SAVE_EFL_AC();
1048 const int cPages = cb >> PAGE_SHIFT;
1049 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1050 struct vm_area_struct **papVMAs;
1051 PRTR0MEMOBJLNX pMemLnx;
1052 int rc = VERR_NO_MEMORY;
1053 int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
1054
1055 /*
1056 * Check for valid task and size overflows.
1057 */
1058 if (!pTask)
1059 return VERR_NOT_SUPPORTED;
1060 if (((size_t)cPages << PAGE_SHIFT) != cb)
1061 return VERR_OUT_OF_RANGE;
1062
1063 /*
1064 * Allocate the memory object and a temporary buffer for the VMAs.
1065 */
1066 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
1067 if (!pMemLnx)
1068 {
1069 IPRT_LINUX_RESTORE_EFL_AC();
1070 return VERR_NO_MEMORY;
1071 }
1072
1073 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
1074 if (papVMAs)
1075 {
1076 down_read(&pTask->mm->mmap_sem);
1077
1078 /*
1079 * Get user pages.
1080 */
1081/** @todo r=bird: Should we not force read access too? */
1082#if GET_USER_PAGES_API >= KERNEL_VERSION(4, 6, 0)
1083 if (R0Process == RTR0ProcHandleSelf())
1084 rc = get_user_pages(R3Ptr, /* Where from. */
1085 cPages, /* How many pages. */
1086# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1087 fWrite ? FOLL_WRITE | /* Write to memory. */
1088 FOLL_FORCE /* force write access. */
1089 : 0, /* Write to memory. */
1090# else
1091 fWrite, /* Write to memory. */
1092 fWrite, /* force write access. */
1093# endif
1094 &pMemLnx->apPages[0], /* Page array. */
1095 papVMAs); /* vmas */
1096 /*
1097 * Actually this should not happen at the moment as call this function
1098 * only for our own process.
1099 */
1100 else
1101 rc = get_user_pages_remote(
1102 pTask, /* Task for fault accounting. */
1103 pTask->mm, /* Whose pages. */
1104 R3Ptr, /* Where from. */
1105 cPages, /* How many pages. */
1106# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1107 fWrite ? FOLL_WRITE | /* Write to memory. */
1108 FOLL_FORCE /* force write access. */
1109 : 0, /* Write to memory. */
1110# else
1111 fWrite, /* Write to memory. */
1112 fWrite, /* force write access. */
1113# endif
1114 &pMemLnx->apPages[0], /* Page array. */
1115 papVMAs /* vmas */
1116# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 10, 0)
1117 , NULL /* locked */
1118# endif
1119 );
1120#else /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1121 rc = get_user_pages(pTask, /* Task for fault accounting. */
1122 pTask->mm, /* Whose pages. */
1123 R3Ptr, /* Where from. */
1124 cPages, /* How many pages. */
1125/* The get_user_pages API change was back-ported to 4.4.168. */
1126# if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 168) \
1127 && LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
1128 fWrite ? FOLL_WRITE | /* Write to memory. */
1129 FOLL_FORCE /* force write access. */
1130 : 0, /* Write to memory. */
1131# else
1132 fWrite, /* Write to memory. */
1133 fWrite, /* force write access. */
1134# endif
1135 &pMemLnx->apPages[0], /* Page array. */
1136 papVMAs); /* vmas */
1137#endif /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1138 if (rc == cPages)
1139 {
1140 /*
1141 * Flush dcache (required?), protect against fork and _really_ pin the page
1142 * table entries. get_user_pages() will protect against swapping out the
1143 * pages but it will NOT protect against removing page table entries. This
1144 * can be achieved with
1145 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
1146 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
1147 * Usual Linux distributions support only a limited size of locked pages
1148 * (e.g. 32KB).
1149 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
1150 * or by
1151 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
1152 * a range check.
1153 */
1154 /** @todo The Linux fork() protection will require more work if this API
1155 * is to be used for anything but locking VM pages. */
1156 while (rc-- > 0)
1157 {
1158 flush_dcache_page(pMemLnx->apPages[rc]);
1159 papVMAs[rc]->vm_flags |= VM_DONTCOPY | VM_LOCKED;
1160 }
1161
1162 up_read(&pTask->mm->mmap_sem);
1163
1164 RTMemFree(papVMAs);
1165
1166 pMemLnx->Core.u.Lock.R0Process = R0Process;
1167 pMemLnx->cPages = cPages;
1168 Assert(!pMemLnx->fMappedToRing0);
1169 *ppMem = &pMemLnx->Core;
1170
1171 IPRT_LINUX_RESTORE_EFL_AC();
1172 return VINF_SUCCESS;
1173 }
1174
1175 /*
1176 * Failed - we need to unlock any pages that we succeeded to lock.
1177 */
1178 while (rc-- > 0)
1179 {
1180 if (!PageReserved(pMemLnx->apPages[rc]))
1181 SetPageDirty(pMemLnx->apPages[rc]);
1182#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
1183 put_page(pMemLnx->apPages[rc]);
1184#else
1185 page_cache_release(pMemLnx->apPages[rc]);
1186#endif
1187 }
1188
1189 up_read(&pTask->mm->mmap_sem);
1190
1191 RTMemFree(papVMAs);
1192 rc = VERR_LOCK_FAILED;
1193 }
1194
1195 rtR0MemObjDelete(&pMemLnx->Core);
1196 IPRT_LINUX_RESTORE_EFL_AC();
1197 return rc;
1198}
1199
1200
1201DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
1202{
1203 IPRT_LINUX_SAVE_EFL_AC();
1204 void *pvLast = (uint8_t *)pv + cb - 1;
1205 size_t const cPages = cb >> PAGE_SHIFT;
1206 PRTR0MEMOBJLNX pMemLnx;
1207 bool fLinearMapping;
1208 int rc;
1209 uint8_t *pbPage;
1210 size_t iPage;
1211 NOREF(fAccess);
1212
1213 if ( !RTR0MemKernelIsValidAddr(pv)
1214 || !RTR0MemKernelIsValidAddr(pv + cb))
1215 return VERR_INVALID_PARAMETER;
1216
1217 /*
1218 * The lower part of the kernel memory has a linear mapping between
1219 * physical and virtual addresses. So we take a short cut here. This is
1220 * assumed to be the cleanest way to handle those addresses (and the code
1221 * is well tested, though the test for determining it is not very nice).
1222 * If we ever decide it isn't we can still remove it.
1223 */
1224#if 0
1225 fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
1226#else
1227 fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
1228 && (unsigned long)pvLast < (unsigned long)high_memory;
1229#endif
1230
1231 /*
1232 * Allocate the memory object.
1233 */
1234 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
1235 if (!pMemLnx)
1236 {
1237 IPRT_LINUX_RESTORE_EFL_AC();
1238 return VERR_NO_MEMORY;
1239 }
1240
1241 /*
1242 * Gather the pages.
1243 * We ASSUME all kernel pages are non-swappable and non-movable.
1244 */
1245 rc = VINF_SUCCESS;
1246 pbPage = (uint8_t *)pvLast;
1247 iPage = cPages;
1248 if (!fLinearMapping)
1249 {
1250 while (iPage-- > 0)
1251 {
1252 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1253 if (RT_UNLIKELY(!pPage))
1254 {
1255 rc = VERR_LOCK_FAILED;
1256 break;
1257 }
1258 pMemLnx->apPages[iPage] = pPage;
1259 pbPage -= PAGE_SIZE;
1260 }
1261 }
1262 else
1263 {
1264 while (iPage-- > 0)
1265 {
1266 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
1267 pbPage -= PAGE_SIZE;
1268 }
1269 }
1270 if (RT_SUCCESS(rc))
1271 {
1272 /*
1273 * Complete the memory object and return.
1274 */
1275 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
1276 pMemLnx->cPages = cPages;
1277 Assert(!pMemLnx->fMappedToRing0);
1278 *ppMem = &pMemLnx->Core;
1279
1280 IPRT_LINUX_RESTORE_EFL_AC();
1281 return VINF_SUCCESS;
1282 }
1283
1284 rtR0MemObjDelete(&pMemLnx->Core);
1285 IPRT_LINUX_RESTORE_EFL_AC();
1286 return rc;
1287}
1288
1289
1290DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
1291{
1292#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1293 IPRT_LINUX_SAVE_EFL_AC();
1294 const size_t cPages = cb >> PAGE_SHIFT;
1295 struct page *pDummyPage;
1296 struct page **papPages;
1297
1298 /* check for unsupported stuff. */
1299 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1300 if (uAlignment > PAGE_SIZE)
1301 return VERR_NOT_SUPPORTED;
1302
1303 /*
1304 * Allocate a dummy page and create a page pointer array for vmap such that
1305 * the dummy page is mapped all over the reserved area.
1306 */
1307 pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
1308 if (pDummyPage)
1309 {
1310 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
1311 if (papPages)
1312 {
1313 void *pv;
1314 size_t iPage = cPages;
1315 while (iPage-- > 0)
1316 papPages[iPage] = pDummyPage;
1317# ifdef VM_MAP
1318 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
1319# else
1320 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
1321# endif
1322 RTMemFree(papPages);
1323 if (pv)
1324 {
1325 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1326 if (pMemLnx)
1327 {
1328 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
1329 pMemLnx->cPages = 1;
1330 pMemLnx->apPages[0] = pDummyPage;
1331 *ppMem = &pMemLnx->Core;
1332 IPRT_LINUX_RESTORE_EFL_AC();
1333 return VINF_SUCCESS;
1334 }
1335 vunmap(pv);
1336 }
1337 }
1338 __free_page(pDummyPage);
1339 }
1340 IPRT_LINUX_RESTORE_EFL_AC();
1341 return VERR_NO_MEMORY;
1342
1343#else /* < 2.4.22 */
1344 /*
1345 * Could probably use ioremap here, but the caller is in a better position than us
1346 * to select some safe physical memory.
1347 */
1348 return VERR_NOT_SUPPORTED;
1349#endif
1350}
1351
1352
1353DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
1354{
1355 IPRT_LINUX_SAVE_EFL_AC();
1356 PRTR0MEMOBJLNX pMemLnx;
1357 void *pv;
1358 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1359 if (!pTask)
1360 return VERR_NOT_SUPPORTED;
1361
1362 /*
1363 * Check that the specified alignment is supported.
1364 */
1365 if (uAlignment > PAGE_SIZE)
1366 return VERR_NOT_SUPPORTED;
1367
1368 /*
1369 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1370 */
1371 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1372 if (pv == (void *)-1)
1373 {
1374 IPRT_LINUX_RESTORE_EFL_AC();
1375 return VERR_NO_MEMORY;
1376 }
1377
1378 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1379 if (!pMemLnx)
1380 {
1381 rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
1382 IPRT_LINUX_RESTORE_EFL_AC();
1383 return VERR_NO_MEMORY;
1384 }
1385
1386 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1387 *ppMem = &pMemLnx->Core;
1388 IPRT_LINUX_RESTORE_EFL_AC();
1389 return VINF_SUCCESS;
1390}
1391
1392
1393DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
1394 void *pvFixed, size_t uAlignment,
1395 unsigned fProt, size_t offSub, size_t cbSub)
1396{
1397 int rc = VERR_NO_MEMORY;
1398 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1399 PRTR0MEMOBJLNX pMemLnx;
1400 IPRT_LINUX_SAVE_EFL_AC();
1401
1402 /* Fail if requested to do something we can't. */
1403 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
1404 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1405 if (uAlignment > PAGE_SIZE)
1406 return VERR_NOT_SUPPORTED;
1407
1408 /*
1409 * Create the IPRT memory object.
1410 */
1411 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1412 if (pMemLnx)
1413 {
1414 if (pMemLnxToMap->cPages)
1415 {
1416#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1417 /*
1418 * Use vmap - 2.4.22 and later.
1419 */
1420 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1421# ifdef VM_MAP
1422 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
1423# else
1424 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
1425# endif
1426 if (pMemLnx->Core.pv)
1427 {
1428 pMemLnx->fMappedToRing0 = true;
1429 rc = VINF_SUCCESS;
1430 }
1431 else
1432 rc = VERR_MAP_FAILED;
1433
1434#else /* < 2.4.22 */
1435 /*
1436 * Only option here is to share mappings if possible and forget about fProt.
1437 */
1438 if (rtR0MemObjIsRing3(pMemToMap))
1439 rc = VERR_NOT_SUPPORTED;
1440 else
1441 {
1442 rc = VINF_SUCCESS;
1443 if (!pMemLnxToMap->Core.pv)
1444 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1445 if (RT_SUCCESS(rc))
1446 {
1447 Assert(pMemLnxToMap->Core.pv);
1448 pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
1449 }
1450 }
1451#endif
1452 }
1453 else
1454 {
1455 /*
1456 * MMIO / physical memory.
1457 */
1458 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1459 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1460 ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb)
1461 : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
1462 if (pMemLnx->Core.pv)
1463 {
1464 /** @todo fix protection. */
1465 rc = VINF_SUCCESS;
1466 }
1467 }
1468 if (RT_SUCCESS(rc))
1469 {
1470 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1471 *ppMem = &pMemLnx->Core;
1472 IPRT_LINUX_RESTORE_EFL_AC();
1473 return VINF_SUCCESS;
1474 }
1475 rtR0MemObjDelete(&pMemLnx->Core);
1476 }
1477
1478 IPRT_LINUX_RESTORE_EFL_AC();
1479 return rc;
1480}
1481
1482
1483#ifdef VBOX_USE_PAE_HACK
1484/**
1485 * Replace the PFN of a PTE with the address of the actual page.
1486 *
1487 * The caller maps a reserved dummy page at the address with the desired access
1488 * and flags.
1489 *
1490 * This hack is required for older Linux kernels which don't provide
1491 * remap_pfn_range().
1492 *
1493 * @returns 0 on success, -ENOMEM on failure.
1494 * @param mm The memory context.
1495 * @param ulAddr The mapping address.
1496 * @param Phys The physical address of the page to map.
1497 */
1498static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1499{
1500 int rc = -ENOMEM;
1501 pgd_t *pgd;
1502
1503 spin_lock(&mm->page_table_lock);
1504
1505 pgd = pgd_offset(mm, ulAddr);
1506 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1507 {
1508 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1509 if (!pmd_none(*pmd))
1510 {
1511 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1512 if (ptep)
1513 {
1514 pte_t pte = *ptep;
1515 pte.pte_high &= 0xfff00000;
1516 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1517 pte.pte_low &= 0x00000fff;
1518 pte.pte_low |= (Phys & 0xfffff000);
1519 set_pte(ptep, pte);
1520 pte_unmap(ptep);
1521 rc = 0;
1522 }
1523 }
1524 }
1525
1526 spin_unlock(&mm->page_table_lock);
1527 return rc;
1528}
1529#endif /* VBOX_USE_PAE_HACK */
1530
1531
1532DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
1533 unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub)
1534{
1535 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1536 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1537 int rc = VERR_NO_MEMORY;
1538 PRTR0MEMOBJLNX pMemLnx;
1539#ifdef VBOX_USE_PAE_HACK
1540 struct page *pDummyPage;
1541 RTHCPHYS DummyPhys;
1542#endif
1543 IPRT_LINUX_SAVE_EFL_AC();
1544
1545 /*
1546 * Check for restrictions.
1547 */
1548 if (!pTask)
1549 return VERR_NOT_SUPPORTED;
1550 if (uAlignment > PAGE_SIZE)
1551 return VERR_NOT_SUPPORTED;
1552 AssertMsgReturn(!offSub && !cbSub, ("%#zx %#zx\n", offSub, cbSub), VERR_NOT_SUPPORTED); /** @todo implement sub maps */
1553
1554#ifdef VBOX_USE_PAE_HACK
1555 /*
1556 * Allocate a dummy page for use when mapping the memory.
1557 */
1558 pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
1559 if (!pDummyPage)
1560 {
1561 IPRT_LINUX_RESTORE_EFL_AC();
1562 return VERR_NO_MEMORY;
1563 }
1564 SetPageReserved(pDummyPage);
1565 DummyPhys = page_to_phys(pDummyPage);
1566#endif
1567
1568 /*
1569 * Create the IPRT memory object.
1570 */
1571 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1572 if (pMemLnx)
1573 {
1574 /*
1575 * Allocate user space mapping.
1576 */
1577 void *pv;
1578 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
1579 if (pv != (void *)-1)
1580 {
1581 /*
1582 * Map page by page into the mmap area.
1583 * This is generic, paranoid and not very efficient.
1584 */
1585 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1586 unsigned long ulAddrCur = (unsigned long)pv;
1587 const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
1588 size_t iPage;
1589
1590 down_write(&pTask->mm->mmap_sem);
1591
1592 rc = VINF_SUCCESS;
1593 if (pMemLnxToMap->cPages)
1594 {
1595 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1596 {
1597#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)
1598 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1599#endif
1600#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1601 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1602 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1603#endif
1604#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1605 /* remap_page_range() limitation on x86 */
1606 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1607#endif
1608
1609#if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
1610 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1611 /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
1612 * See remap_pfn_range() in mm/memory.c */
1613#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)
1614 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1615#else
1616 vma->vm_flags |= VM_RESERVED;
1617#endif
1618#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1619 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1620#elif defined(VBOX_USE_PAE_HACK)
1621 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1622 if (!rc)
1623 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1624#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1625 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1626#else /* 2.4 */
1627 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1628#endif
1629 if (rc)
1630 {
1631 rc = VERR_NO_MEMORY;
1632 break;
1633 }
1634 }
1635 }
1636 else
1637 {
1638 RTHCPHYS Phys;
1639 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1640 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1641 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1642 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1643 else
1644 {
1645 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1646 Phys = NIL_RTHCPHYS;
1647 }
1648 if (Phys != NIL_RTHCPHYS)
1649 {
1650 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1651 {
1652#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1653 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1654 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1655#endif
1656#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1657 /* remap_page_range() limitation on x86 */
1658 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1659#endif
1660
1661#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1662 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1663#elif defined(VBOX_USE_PAE_HACK)
1664 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1665 if (!rc)
1666 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1667#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1668 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1669#else /* 2.4 */
1670 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1671#endif
1672 if (rc)
1673 {
1674 rc = VERR_NO_MEMORY;
1675 break;
1676 }
1677 }
1678 }
1679 }
1680
1681#ifdef CONFIG_NUMA_BALANCING
1682# if LINUX_VERSION_CODE < KERNEL_VERSION(3, 13, 0)
1683# ifdef RHEL_RELEASE_CODE
1684# if RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7, 0)
1685# define VBOX_NUMA_HACK_OLD
1686# endif
1687# endif
1688# endif
1689 if (RT_SUCCESS(rc))
1690 {
1691 /** @todo Ugly hack! But right now we have no other means to
1692 * disable automatic NUMA page balancing. */
1693# ifdef RT_OS_X86
1694# ifdef VBOX_NUMA_HACK_OLD
1695 pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
1696# endif
1697 pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
1698# else
1699# ifdef VBOX_NUMA_HACK_OLD
1700 pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
1701# endif
1702 pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
1703# endif
1704 }
1705#endif /* CONFIG_NUMA_BALANCING */
1706
1707 up_write(&pTask->mm->mmap_sem);
1708
1709 if (RT_SUCCESS(rc))
1710 {
1711#ifdef VBOX_USE_PAE_HACK
1712 __free_page(pDummyPage);
1713#endif
1714 pMemLnx->Core.pv = pv;
1715 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1716 *ppMem = &pMemLnx->Core;
1717 IPRT_LINUX_RESTORE_EFL_AC();
1718 return VINF_SUCCESS;
1719 }
1720
1721 /*
1722 * Bail out.
1723 */
1724 rtR0MemObjLinuxDoMunmap(pv, pMemLnxToMap->Core.cb, pTask);
1725 }
1726 rtR0MemObjDelete(&pMemLnx->Core);
1727 }
1728#ifdef VBOX_USE_PAE_HACK
1729 __free_page(pDummyPage);
1730#endif
1731
1732 IPRT_LINUX_RESTORE_EFL_AC();
1733 return rc;
1734}
1735
1736
1737DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1738{
1739 NOREF(pMem);
1740 NOREF(offSub);
1741 NOREF(cbSub);
1742 NOREF(fProt);
1743 return VERR_NOT_SUPPORTED;
1744}
1745
1746
1747DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1748{
1749 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1750
1751 if (pMemLnx->cPages)
1752 return page_to_phys(pMemLnx->apPages[iPage]);
1753
1754 switch (pMemLnx->Core.enmType)
1755 {
1756 case RTR0MEMOBJTYPE_CONT:
1757 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1758
1759 case RTR0MEMOBJTYPE_PHYS:
1760 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1761
1762 /* the parent knows */
1763 case RTR0MEMOBJTYPE_MAPPING:
1764 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1765
1766 /* cPages > 0 */
1767 case RTR0MEMOBJTYPE_LOW:
1768 case RTR0MEMOBJTYPE_LOCK:
1769 case RTR0MEMOBJTYPE_PHYS_NC:
1770 case RTR0MEMOBJTYPE_PAGE:
1771 default:
1772 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1773 /* fall thru */
1774
1775 case RTR0MEMOBJTYPE_RES_VIRT:
1776 return NIL_RTHCPHYS;
1777 }
1778}
1779
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette