1 | /* $Id: memobj-r0drv-linux.c 86542 2020-10-12 13:35:53Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Ring-0 Memory Objects, Linux.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2020 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*********************************************************************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *********************************************************************************************************************************/
|
---|
31 | #include "the-linux-kernel.h"
|
---|
32 |
|
---|
33 | #include <iprt/memobj.h>
|
---|
34 | #include <iprt/assert.h>
|
---|
35 | #include <iprt/err.h>
|
---|
36 | #include <iprt/log.h>
|
---|
37 | #include <iprt/mem.h>
|
---|
38 | #include <iprt/process.h>
|
---|
39 | #include <iprt/string.h>
|
---|
40 | #include "internal/memobj.h"
|
---|
41 | #include "internal/iprt.h"
|
---|
42 |
|
---|
43 |
|
---|
44 | /*********************************************************************************************************************************
|
---|
45 | * Defined Constants And Macros *
|
---|
46 | *********************************************************************************************************************************/
|
---|
47 | /* early 2.6 kernels */
|
---|
48 | #ifndef PAGE_SHARED_EXEC
|
---|
49 | # define PAGE_SHARED_EXEC PAGE_SHARED
|
---|
50 | #endif
|
---|
51 | #ifndef PAGE_READONLY_EXEC
|
---|
52 | # define PAGE_READONLY_EXEC PAGE_READONLY
|
---|
53 | #endif
|
---|
54 |
|
---|
55 | /** @def IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
|
---|
56 | * Whether we use alloc_vm_area (3.2+) for executable memory.
|
---|
57 | * This is a must for 5.8+, but we enable it all the way back to 3.2.x for
|
---|
58 | * better W^R compliance (fExecutable flag). */
|
---|
59 | #if RTLNX_VER_MIN(3,2,0) || defined(DOXYGEN_RUNNING)
|
---|
60 | # define IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
|
---|
61 | #endif
|
---|
62 |
|
---|
63 | /*
|
---|
64 | * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
|
---|
65 | * track_pfn_vma_new() is apparently not defined for non-RAM pages.
|
---|
66 | * It should be safe to use vm_insert_page() older kernels as well.
|
---|
67 | */
|
---|
68 | #if RTLNX_VER_MIN(2,6,23)
|
---|
69 | # define VBOX_USE_INSERT_PAGE
|
---|
70 | #endif
|
---|
71 | #if defined(CONFIG_X86_PAE) \
|
---|
72 | && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
|
---|
73 | || RTLNX_VER_RANGE(2,6,0, 2,6,11) )
|
---|
74 | # define VBOX_USE_PAE_HACK
|
---|
75 | #endif
|
---|
76 |
|
---|
77 | /* gfp_t was introduced in 2.6.14, define it for earlier. */
|
---|
78 | #if RTLNX_VER_MAX(2,6,14)
|
---|
79 | # define gfp_t unsigned
|
---|
80 | #endif
|
---|
81 |
|
---|
82 | /*
|
---|
83 | * Wrappers around mmap_lock/mmap_sem difference.
|
---|
84 | */
|
---|
85 | #if RTLNX_VER_MIN(5,8,0)
|
---|
86 | # define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_lock)
|
---|
87 | # define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_lock)
|
---|
88 | # define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_lock)
|
---|
89 | # define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_lock)
|
---|
90 | #else
|
---|
91 | # define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_sem)
|
---|
92 | # define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_sem)
|
---|
93 | # define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_sem)
|
---|
94 | # define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_sem)
|
---|
95 | #endif
|
---|
96 |
|
---|
97 |
|
---|
98 | /*********************************************************************************************************************************
|
---|
99 | * Structures and Typedefs *
|
---|
100 | *********************************************************************************************************************************/
|
---|
101 | /**
|
---|
102 | * The Linux version of the memory object structure.
|
---|
103 | */
|
---|
104 | typedef struct RTR0MEMOBJLNX
|
---|
105 | {
|
---|
106 | /** The core structure. */
|
---|
107 | RTR0MEMOBJINTERNAL Core;
|
---|
108 | /** Set if the allocation is contiguous.
|
---|
109 | * This means it has to be given back as one chunk. */
|
---|
110 | bool fContiguous;
|
---|
111 | /** Set if executable allocation. */
|
---|
112 | bool fExecutable;
|
---|
113 | /** Set if we've vmap'ed the memory into ring-0. */
|
---|
114 | bool fMappedToRing0;
|
---|
115 | #ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
|
---|
116 | /** Return from alloc_vm_area() that we now need to use for executable
|
---|
117 | * memory. */
|
---|
118 | struct vm_struct *pArea;
|
---|
119 | /** PTE array that goes along with pArea (must be freed). */
|
---|
120 | pte_t **papPtesForArea;
|
---|
121 | #endif
|
---|
122 | /** The pages in the apPages array. */
|
---|
123 | size_t cPages;
|
---|
124 | /** Array of struct page pointers. (variable size) */
|
---|
125 | struct page *apPages[1];
|
---|
126 | } RTR0MEMOBJLNX;
|
---|
127 | /** Pointer to the linux memory object. */
|
---|
128 | typedef RTR0MEMOBJLNX *PRTR0MEMOBJLNX;
|
---|
129 |
|
---|
130 |
|
---|
131 | static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
|
---|
132 |
|
---|
133 |
|
---|
134 | /**
|
---|
135 | * Helper that converts from a RTR0PROCESS handle to a linux task.
|
---|
136 | *
|
---|
137 | * @returns The corresponding Linux task.
|
---|
138 | * @param R0Process IPRT ring-0 process handle.
|
---|
139 | */
|
---|
140 | static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
|
---|
141 | {
|
---|
142 | /** @todo fix rtR0ProcessToLinuxTask!! */
|
---|
143 | /** @todo many (all?) callers currently assume that we return 'current'! */
|
---|
144 | return R0Process == RTR0ProcHandleSelf() ? current : NULL;
|
---|
145 | }
|
---|
146 |
|
---|
147 |
|
---|
148 | /**
|
---|
149 | * Compute order. Some functions allocate 2^order pages.
|
---|
150 | *
|
---|
151 | * @returns order.
|
---|
152 | * @param cPages Number of pages.
|
---|
153 | */
|
---|
154 | static int rtR0MemObjLinuxOrder(size_t cPages)
|
---|
155 | {
|
---|
156 | int iOrder;
|
---|
157 | size_t cTmp;
|
---|
158 |
|
---|
159 | for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
|
---|
160 | ;
|
---|
161 | if (cPages & ~((size_t)1 << iOrder))
|
---|
162 | ++iOrder;
|
---|
163 |
|
---|
164 | return iOrder;
|
---|
165 | }
|
---|
166 |
|
---|
167 |
|
---|
168 | /**
|
---|
169 | * Converts from RTMEM_PROT_* to Linux PAGE_*.
|
---|
170 | *
|
---|
171 | * @returns Linux page protection constant.
|
---|
172 | * @param fProt The IPRT protection mask.
|
---|
173 | * @param fKernel Whether it applies to kernel or user space.
|
---|
174 | */
|
---|
175 | static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
|
---|
176 | {
|
---|
177 | switch (fProt)
|
---|
178 | {
|
---|
179 | default:
|
---|
180 | AssertMsgFailed(("%#x %d\n", fProt, fKernel)); RT_FALL_THRU();
|
---|
181 | case RTMEM_PROT_NONE:
|
---|
182 | return PAGE_NONE;
|
---|
183 |
|
---|
184 | case RTMEM_PROT_READ:
|
---|
185 | return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
|
---|
186 |
|
---|
187 | case RTMEM_PROT_WRITE:
|
---|
188 | case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
|
---|
189 | return fKernel ? PAGE_KERNEL : PAGE_SHARED;
|
---|
190 |
|
---|
191 | case RTMEM_PROT_EXEC:
|
---|
192 | case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
|
---|
193 | #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
|
---|
194 | if (fKernel)
|
---|
195 | {
|
---|
196 | pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
|
---|
197 | pgprot_val(fPg) &= ~_PAGE_RW;
|
---|
198 | return fPg;
|
---|
199 | }
|
---|
200 | return PAGE_READONLY_EXEC;
|
---|
201 | #else
|
---|
202 | return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
|
---|
203 | #endif
|
---|
204 |
|
---|
205 | case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
|
---|
206 | case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
|
---|
207 | return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
|
---|
208 | }
|
---|
209 | }
|
---|
210 |
|
---|
211 |
|
---|
212 | /**
|
---|
213 | * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
|
---|
214 | * an empty user space mapping.
|
---|
215 | *
|
---|
216 | * We acquire the mmap_sem/mmap_lock of the task!
|
---|
217 | *
|
---|
218 | * @returns Pointer to the mapping.
|
---|
219 | * (void *)-1 on failure.
|
---|
220 | * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
|
---|
221 | * @param cb The size of the mapping.
|
---|
222 | * @param uAlignment The alignment of the mapping.
|
---|
223 | * @param pTask The Linux task to create this mapping in.
|
---|
224 | * @param fProt The RTMEM_PROT_* mask.
|
---|
225 | */
|
---|
226 | static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
|
---|
227 | {
|
---|
228 | unsigned fLnxProt;
|
---|
229 | unsigned long ulAddr;
|
---|
230 |
|
---|
231 | Assert(pTask == current); /* do_mmap */
|
---|
232 | RT_NOREF_PV(pTask);
|
---|
233 |
|
---|
234 | /*
|
---|
235 | * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
|
---|
236 | */
|
---|
237 | fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
|
---|
238 | if (fProt == RTMEM_PROT_NONE)
|
---|
239 | fLnxProt = PROT_NONE;
|
---|
240 | else
|
---|
241 | {
|
---|
242 | fLnxProt = 0;
|
---|
243 | if (fProt & RTMEM_PROT_READ)
|
---|
244 | fLnxProt |= PROT_READ;
|
---|
245 | if (fProt & RTMEM_PROT_WRITE)
|
---|
246 | fLnxProt |= PROT_WRITE;
|
---|
247 | if (fProt & RTMEM_PROT_EXEC)
|
---|
248 | fLnxProt |= PROT_EXEC;
|
---|
249 | }
|
---|
250 |
|
---|
251 | if (R3PtrFixed != (RTR3PTR)-1)
|
---|
252 | {
|
---|
253 | #if RTLNX_VER_MIN(3,5,0)
|
---|
254 | ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
|
---|
255 | #else
|
---|
256 | LNX_MM_DOWN_WRITE(pTask->mm);
|
---|
257 | ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
|
---|
258 | LNX_MM_UP_WRITE(pTask->mm);
|
---|
259 | #endif
|
---|
260 | }
|
---|
261 | else
|
---|
262 | {
|
---|
263 | #if RTLNX_VER_MIN(3,5,0)
|
---|
264 | ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
|
---|
265 | #else
|
---|
266 | LNX_MM_DOWN_WRITE(pTask->mm);
|
---|
267 | ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
|
---|
268 | LNX_MM_UP_WRITE(pTask->mm);
|
---|
269 | #endif
|
---|
270 | if ( !(ulAddr & ~PAGE_MASK)
|
---|
271 | && (ulAddr & (uAlignment - 1)))
|
---|
272 | {
|
---|
273 | /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
|
---|
274 | * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
|
---|
275 | * ourselves) and further by there begin two mmap strategies (top / bottom). */
|
---|
276 | /* For now, just ignore uAlignment requirements... */
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 |
|
---|
281 | if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
|
---|
282 | return (void *)-1;
|
---|
283 | return (void *)ulAddr;
|
---|
284 | }
|
---|
285 |
|
---|
286 |
|
---|
287 | /**
|
---|
288 | * Worker that destroys a user space mapping.
|
---|
289 | * Undoes what rtR0MemObjLinuxDoMmap did.
|
---|
290 | *
|
---|
291 | * We acquire the mmap_sem/mmap_lock of the task!
|
---|
292 | *
|
---|
293 | * @param pv The ring-3 mapping.
|
---|
294 | * @param cb The size of the mapping.
|
---|
295 | * @param pTask The Linux task to destroy this mapping in.
|
---|
296 | */
|
---|
297 | static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
|
---|
298 | {
|
---|
299 | #if RTLNX_VER_MIN(3,5,0)
|
---|
300 | Assert(pTask == current); RT_NOREF_PV(pTask);
|
---|
301 | vm_munmap((unsigned long)pv, cb);
|
---|
302 | #elif defined(USE_RHEL4_MUNMAP)
|
---|
303 | LNX_MM_DOWN_WRITE(pTask->mm);
|
---|
304 | do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
|
---|
305 | LNX_MM_UP_WRITE(pTask->mm);
|
---|
306 | #else
|
---|
307 | LNX_MM_DOWN_WRITE(pTask->mm);
|
---|
308 | do_munmap(pTask->mm, (unsigned long)pv, cb);
|
---|
309 | LNX_MM_UP_WRITE(pTask->mm);
|
---|
310 | #endif
|
---|
311 | }
|
---|
312 |
|
---|
313 |
|
---|
314 | /**
|
---|
315 | * Internal worker that allocates physical pages and creates the memory object for them.
|
---|
316 | *
|
---|
317 | * @returns IPRT status code.
|
---|
318 | * @param ppMemLnx Where to store the memory object pointer.
|
---|
319 | * @param enmType The object type.
|
---|
320 | * @param cb The number of bytes to allocate.
|
---|
321 | * @param uAlignment The alignment of the physical memory.
|
---|
322 | * Only valid if fContiguous == true, ignored otherwise.
|
---|
323 | * @param fFlagsLnx The page allocation flags (GPFs).
|
---|
324 | * @param fContiguous Whether the allocation must be contiguous.
|
---|
325 | * @param fExecutable Whether the memory must be executable.
|
---|
326 | * @param rcNoMem What to return when we're out of pages.
|
---|
327 | */
|
---|
328 | static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
|
---|
329 | size_t uAlignment, gfp_t fFlagsLnx, bool fContiguous, bool fExecutable, int rcNoMem)
|
---|
330 | {
|
---|
331 | size_t iPage;
|
---|
332 | size_t const cPages = cb >> PAGE_SHIFT;
|
---|
333 | struct page *paPages;
|
---|
334 |
|
---|
335 | /*
|
---|
336 | * Allocate a memory object structure that's large enough to contain
|
---|
337 | * the page pointer array.
|
---|
338 | */
|
---|
339 | PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
|
---|
340 | if (!pMemLnx)
|
---|
341 | return VERR_NO_MEMORY;
|
---|
342 | pMemLnx->cPages = cPages;
|
---|
343 |
|
---|
344 | if (cPages > 255)
|
---|
345 | {
|
---|
346 | # ifdef __GFP_REPEAT
|
---|
347 | /* Try hard to allocate the memory, but the allocation attempt might fail. */
|
---|
348 | fFlagsLnx |= __GFP_REPEAT;
|
---|
349 | # endif
|
---|
350 | # ifdef __GFP_NOMEMALLOC
|
---|
351 | /* Introduced with Linux 2.6.12: Don't use emergency reserves */
|
---|
352 | fFlagsLnx |= __GFP_NOMEMALLOC;
|
---|
353 | # endif
|
---|
354 | }
|
---|
355 |
|
---|
356 | /*
|
---|
357 | * Allocate the pages.
|
---|
358 | * For small allocations we'll try contiguous first and then fall back on page by page.
|
---|
359 | */
|
---|
360 | #if RTLNX_VER_MIN(2,4,22)
|
---|
361 | if ( fContiguous
|
---|
362 | || cb <= PAGE_SIZE * 2)
|
---|
363 | {
|
---|
364 | # ifdef VBOX_USE_INSERT_PAGE
|
---|
365 | paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
|
---|
366 | # else
|
---|
367 | paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
|
---|
368 | # endif
|
---|
369 | if (paPages)
|
---|
370 | {
|
---|
371 | fContiguous = true;
|
---|
372 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
373 | pMemLnx->apPages[iPage] = &paPages[iPage];
|
---|
374 | }
|
---|
375 | else if (fContiguous)
|
---|
376 | {
|
---|
377 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
378 | return rcNoMem;
|
---|
379 | }
|
---|
380 | }
|
---|
381 |
|
---|
382 | if (!fContiguous)
|
---|
383 | {
|
---|
384 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
385 | {
|
---|
386 | pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
|
---|
387 | if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
|
---|
388 | {
|
---|
389 | while (iPage-- > 0)
|
---|
390 | __free_page(pMemLnx->apPages[iPage]);
|
---|
391 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
392 | return rcNoMem;
|
---|
393 | }
|
---|
394 | }
|
---|
395 | }
|
---|
396 |
|
---|
397 | #else /* < 2.4.22 */
|
---|
398 | /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
|
---|
399 | paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
|
---|
400 | if (!paPages)
|
---|
401 | {
|
---|
402 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
403 | return rcNoMem;
|
---|
404 | }
|
---|
405 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
406 | {
|
---|
407 | pMemLnx->apPages[iPage] = &paPages[iPage];
|
---|
408 | if (fExecutable)
|
---|
409 | MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
|
---|
410 | if (PageHighMem(pMemLnx->apPages[iPage]))
|
---|
411 | BUG();
|
---|
412 | }
|
---|
413 |
|
---|
414 | fContiguous = true;
|
---|
415 | #endif /* < 2.4.22 */
|
---|
416 | pMemLnx->fContiguous = fContiguous;
|
---|
417 | pMemLnx->fExecutable = fExecutable;
|
---|
418 |
|
---|
419 | #if RTLNX_VER_MAX(4,5,0)
|
---|
420 | /*
|
---|
421 | * Reserve the pages.
|
---|
422 | *
|
---|
423 | * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
|
---|
424 | * pages. According to Michal Hocko this shouldn't be necessary anyway because
|
---|
425 | * as pages which are not on the LRU list are never evictable.
|
---|
426 | */
|
---|
427 | for (iPage = 0; iPage < cPages; iPage++)
|
---|
428 | SetPageReserved(pMemLnx->apPages[iPage]);
|
---|
429 | #endif
|
---|
430 |
|
---|
431 | /*
|
---|
432 | * Note that the physical address of memory allocated with alloc_pages(flags, order)
|
---|
433 | * is always 2^(PAGE_SHIFT+order)-aligned.
|
---|
434 | */
|
---|
435 | if ( fContiguous
|
---|
436 | && uAlignment > PAGE_SIZE)
|
---|
437 | {
|
---|
438 | /*
|
---|
439 | * Check for alignment constraints. The physical address of memory allocated with
|
---|
440 | * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
|
---|
441 | */
|
---|
442 | if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
|
---|
443 | {
|
---|
444 | /*
|
---|
445 | * This should never happen!
|
---|
446 | */
|
---|
447 | printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
|
---|
448 | (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
|
---|
449 | rtR0MemObjLinuxFreePages(pMemLnx);
|
---|
450 | return rcNoMem;
|
---|
451 | }
|
---|
452 | }
|
---|
453 |
|
---|
454 | *ppMemLnx = pMemLnx;
|
---|
455 | return VINF_SUCCESS;
|
---|
456 | }
|
---|
457 |
|
---|
458 |
|
---|
459 | /**
|
---|
460 | * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
|
---|
461 | *
|
---|
462 | * This method does NOT free the object.
|
---|
463 | *
|
---|
464 | * @param pMemLnx The object which physical pages should be freed.
|
---|
465 | */
|
---|
466 | static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
|
---|
467 | {
|
---|
468 | size_t iPage = pMemLnx->cPages;
|
---|
469 | if (iPage > 0)
|
---|
470 | {
|
---|
471 | /*
|
---|
472 | * Restore the page flags.
|
---|
473 | */
|
---|
474 | while (iPage-- > 0)
|
---|
475 | {
|
---|
476 | #if RTLNX_VER_MAX(4,5,0)
|
---|
477 | /* See SetPageReserved() in rtR0MemObjLinuxAllocPages() */
|
---|
478 | ClearPageReserved(pMemLnx->apPages[iPage]);
|
---|
479 | #endif
|
---|
480 | #if RTLNX_VER_MAX(2,4,22)
|
---|
481 | if (pMemLnx->fExecutable)
|
---|
482 | MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
|
---|
483 | #endif
|
---|
484 | }
|
---|
485 |
|
---|
486 | /*
|
---|
487 | * Free the pages.
|
---|
488 | */
|
---|
489 | #if RTLNX_VER_MIN(2,4,22)
|
---|
490 | if (!pMemLnx->fContiguous)
|
---|
491 | {
|
---|
492 | iPage = pMemLnx->cPages;
|
---|
493 | while (iPage-- > 0)
|
---|
494 | __free_page(pMemLnx->apPages[iPage]);
|
---|
495 | }
|
---|
496 | else
|
---|
497 | #endif
|
---|
498 | __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
|
---|
499 |
|
---|
500 | pMemLnx->cPages = 0;
|
---|
501 | }
|
---|
502 | }
|
---|
503 |
|
---|
504 |
|
---|
505 | /**
|
---|
506 | * Maps the allocation into ring-0.
|
---|
507 | *
|
---|
508 | * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
|
---|
509 | *
|
---|
510 | * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
|
---|
511 | * space, so we'll use that mapping if possible. If execute access is required, we'll
|
---|
512 | * play safe and do our own mapping.
|
---|
513 | *
|
---|
514 | * @returns IPRT status code.
|
---|
515 | * @param pMemLnx The linux memory object to map.
|
---|
516 | * @param fExecutable Whether execute access is required.
|
---|
517 | */
|
---|
518 | static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
|
---|
519 | {
|
---|
520 | int rc = VINF_SUCCESS;
|
---|
521 |
|
---|
522 | /*
|
---|
523 | * Choose mapping strategy.
|
---|
524 | */
|
---|
525 | bool fMustMap = fExecutable
|
---|
526 | || !pMemLnx->fContiguous;
|
---|
527 | if (!fMustMap)
|
---|
528 | {
|
---|
529 | size_t iPage = pMemLnx->cPages;
|
---|
530 | while (iPage-- > 0)
|
---|
531 | if (PageHighMem(pMemLnx->apPages[iPage]))
|
---|
532 | {
|
---|
533 | fMustMap = true;
|
---|
534 | break;
|
---|
535 | }
|
---|
536 | }
|
---|
537 |
|
---|
538 | Assert(!pMemLnx->Core.pv);
|
---|
539 | Assert(!pMemLnx->fMappedToRing0);
|
---|
540 |
|
---|
541 | if (fMustMap)
|
---|
542 | {
|
---|
543 | /*
|
---|
544 | * Use vmap - 2.4.22 and later.
|
---|
545 | */
|
---|
546 | #if RTLNX_VER_MIN(2,4,22)
|
---|
547 | pgprot_t fPg;
|
---|
548 | pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
|
---|
549 | # ifdef _PAGE_NX
|
---|
550 | if (!fExecutable)
|
---|
551 | pgprot_val(fPg) |= _PAGE_NX;
|
---|
552 | # endif
|
---|
553 |
|
---|
554 | # ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
|
---|
555 | if (fExecutable)
|
---|
556 | {
|
---|
557 | pte_t **papPtes = (pte_t **)kmalloc_array(pMemLnx->cPages, sizeof(papPtes[0]), GFP_KERNEL);
|
---|
558 | if (papPtes)
|
---|
559 | {
|
---|
560 | pMemLnx->pArea = alloc_vm_area(pMemLnx->Core.cb, papPtes); /* Note! pArea->nr_pages is not set. */
|
---|
561 | if (pMemLnx->pArea)
|
---|
562 | {
|
---|
563 | size_t i;
|
---|
564 | Assert(pMemLnx->pArea->size >= pMemLnx->Core.cb); /* Note! includes guard page. */
|
---|
565 | Assert(pMemLnx->pArea->addr);
|
---|
566 | # ifdef _PAGE_NX
|
---|
567 | pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
|
---|
568 | # endif
|
---|
569 | pMemLnx->papPtesForArea = papPtes;
|
---|
570 | for (i = 0; i < pMemLnx->cPages; i++)
|
---|
571 | *papPtes[i] = mk_pte(pMemLnx->apPages[i], fPg);
|
---|
572 | pMemLnx->Core.pv = pMemLnx->pArea->addr;
|
---|
573 | pMemLnx->fMappedToRing0 = true;
|
---|
574 | }
|
---|
575 | else
|
---|
576 | {
|
---|
577 | kfree(papPtes);
|
---|
578 | rc = VERR_MAP_FAILED;
|
---|
579 | }
|
---|
580 | }
|
---|
581 | else
|
---|
582 | rc = VERR_MAP_FAILED;
|
---|
583 | }
|
---|
584 | else
|
---|
585 | # endif
|
---|
586 | {
|
---|
587 | # ifdef VM_MAP
|
---|
588 | pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
|
---|
589 | # else
|
---|
590 | pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
|
---|
591 | # endif
|
---|
592 | if (pMemLnx->Core.pv)
|
---|
593 | pMemLnx->fMappedToRing0 = true;
|
---|
594 | else
|
---|
595 | rc = VERR_MAP_FAILED;
|
---|
596 | }
|
---|
597 | #else /* < 2.4.22 */
|
---|
598 | rc = VERR_NOT_SUPPORTED;
|
---|
599 | #endif
|
---|
600 | }
|
---|
601 | else
|
---|
602 | {
|
---|
603 | /*
|
---|
604 | * Use the kernel RAM mapping.
|
---|
605 | */
|
---|
606 | pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
|
---|
607 | Assert(pMemLnx->Core.pv);
|
---|
608 | }
|
---|
609 |
|
---|
610 | return rc;
|
---|
611 | }
|
---|
612 |
|
---|
613 |
|
---|
614 | /**
|
---|
615 | * Undoes what rtR0MemObjLinuxVMap() did.
|
---|
616 | *
|
---|
617 | * @param pMemLnx The linux memory object.
|
---|
618 | */
|
---|
619 | static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
|
---|
620 | {
|
---|
621 | #if RTLNX_VER_MIN(2,4,22)
|
---|
622 | # ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
|
---|
623 | if (pMemLnx->pArea)
|
---|
624 | {
|
---|
625 | # if 0
|
---|
626 | pte_t **papPtes = pMemLnx->papPtesForArea;
|
---|
627 | size_t i;
|
---|
628 | for (i = 0; i < pMemLnx->cPages; i++)
|
---|
629 | *papPtes[i] = 0;
|
---|
630 | # endif
|
---|
631 | free_vm_area(pMemLnx->pArea);
|
---|
632 | kfree(pMemLnx->papPtesForArea);
|
---|
633 | pMemLnx->pArea = NULL;
|
---|
634 | pMemLnx->papPtesForArea = NULL;
|
---|
635 | }
|
---|
636 | else
|
---|
637 | # endif
|
---|
638 | if (pMemLnx->fMappedToRing0)
|
---|
639 | {
|
---|
640 | Assert(pMemLnx->Core.pv);
|
---|
641 | vunmap(pMemLnx->Core.pv);
|
---|
642 | pMemLnx->fMappedToRing0 = false;
|
---|
643 | }
|
---|
644 | #else /* < 2.4.22 */
|
---|
645 | Assert(!pMemLnx->fMappedToRing0);
|
---|
646 | #endif
|
---|
647 | pMemLnx->Core.pv = NULL;
|
---|
648 | }
|
---|
649 |
|
---|
650 |
|
---|
651 | DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
|
---|
652 | {
|
---|
653 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
654 | PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
|
---|
655 |
|
---|
656 | /*
|
---|
657 | * Release any memory that we've allocated or locked.
|
---|
658 | */
|
---|
659 | switch (pMemLnx->Core.enmType)
|
---|
660 | {
|
---|
661 | case RTR0MEMOBJTYPE_LOW:
|
---|
662 | case RTR0MEMOBJTYPE_PAGE:
|
---|
663 | case RTR0MEMOBJTYPE_CONT:
|
---|
664 | case RTR0MEMOBJTYPE_PHYS:
|
---|
665 | case RTR0MEMOBJTYPE_PHYS_NC:
|
---|
666 | rtR0MemObjLinuxVUnmap(pMemLnx);
|
---|
667 | rtR0MemObjLinuxFreePages(pMemLnx);
|
---|
668 | break;
|
---|
669 |
|
---|
670 | case RTR0MEMOBJTYPE_LOCK:
|
---|
671 | if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
|
---|
672 | {
|
---|
673 | struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
|
---|
674 | size_t iPage;
|
---|
675 | Assert(pTask);
|
---|
676 | if (pTask && pTask->mm)
|
---|
677 | LNX_MM_DOWN_READ(pTask->mm);
|
---|
678 |
|
---|
679 | iPage = pMemLnx->cPages;
|
---|
680 | while (iPage-- > 0)
|
---|
681 | {
|
---|
682 | if (!PageReserved(pMemLnx->apPages[iPage]))
|
---|
683 | SetPageDirty(pMemLnx->apPages[iPage]);
|
---|
684 | #if RTLNX_VER_MIN(4,6,0)
|
---|
685 | put_page(pMemLnx->apPages[iPage]);
|
---|
686 | #else
|
---|
687 | page_cache_release(pMemLnx->apPages[iPage]);
|
---|
688 | #endif
|
---|
689 | }
|
---|
690 |
|
---|
691 | if (pTask && pTask->mm)
|
---|
692 | LNX_MM_UP_READ(pTask->mm);
|
---|
693 | }
|
---|
694 | /* else: kernel memory - nothing to do here. */
|
---|
695 | break;
|
---|
696 |
|
---|
697 | case RTR0MEMOBJTYPE_RES_VIRT:
|
---|
698 | Assert(pMemLnx->Core.pv);
|
---|
699 | if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
|
---|
700 | {
|
---|
701 | struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
|
---|
702 | Assert(pTask);
|
---|
703 | if (pTask && pTask->mm)
|
---|
704 | rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
|
---|
705 | }
|
---|
706 | else
|
---|
707 | {
|
---|
708 | vunmap(pMemLnx->Core.pv);
|
---|
709 |
|
---|
710 | Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
|
---|
711 | __free_page(pMemLnx->apPages[0]);
|
---|
712 | pMemLnx->apPages[0] = NULL;
|
---|
713 | pMemLnx->cPages = 0;
|
---|
714 | }
|
---|
715 | pMemLnx->Core.pv = NULL;
|
---|
716 | break;
|
---|
717 |
|
---|
718 | case RTR0MEMOBJTYPE_MAPPING:
|
---|
719 | Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
|
---|
720 | if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
|
---|
721 | {
|
---|
722 | struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
|
---|
723 | Assert(pTask);
|
---|
724 | if (pTask && pTask->mm)
|
---|
725 | rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
|
---|
726 | }
|
---|
727 | else
|
---|
728 | vunmap(pMemLnx->Core.pv);
|
---|
729 | pMemLnx->Core.pv = NULL;
|
---|
730 | break;
|
---|
731 |
|
---|
732 | default:
|
---|
733 | AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
|
---|
734 | return VERR_INTERNAL_ERROR;
|
---|
735 | }
|
---|
736 | IPRT_LINUX_RESTORE_EFL_ONLY_AC();
|
---|
737 | return VINF_SUCCESS;
|
---|
738 | }
|
---|
739 |
|
---|
740 |
|
---|
741 | DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
742 | {
|
---|
743 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
744 | PRTR0MEMOBJLNX pMemLnx;
|
---|
745 | int rc;
|
---|
746 |
|
---|
747 | #if RTLNX_VER_MIN(2,4,22)
|
---|
748 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
|
---|
749 | false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
|
---|
750 | #else
|
---|
751 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
|
---|
752 | false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
|
---|
753 | #endif
|
---|
754 | if (RT_SUCCESS(rc))
|
---|
755 | {
|
---|
756 | rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
|
---|
757 | if (RT_SUCCESS(rc))
|
---|
758 | {
|
---|
759 | *ppMem = &pMemLnx->Core;
|
---|
760 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
761 | return rc;
|
---|
762 | }
|
---|
763 |
|
---|
764 | rtR0MemObjLinuxFreePages(pMemLnx);
|
---|
765 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
766 | }
|
---|
767 |
|
---|
768 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
769 | return rc;
|
---|
770 | }
|
---|
771 |
|
---|
772 |
|
---|
773 | DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
774 | {
|
---|
775 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
776 | PRTR0MEMOBJLNX pMemLnx;
|
---|
777 | int rc;
|
---|
778 |
|
---|
779 | /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
|
---|
780 | #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
|
---|
781 | /* ZONE_DMA32: 0-4GB */
|
---|
782 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
|
---|
783 | false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
|
---|
784 | if (RT_FAILURE(rc))
|
---|
785 | #endif
|
---|
786 | #ifdef RT_ARCH_AMD64
|
---|
787 | /* ZONE_DMA: 0-16MB */
|
---|
788 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
|
---|
789 | false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
|
---|
790 | #else
|
---|
791 | # ifdef CONFIG_X86_PAE
|
---|
792 | # endif
|
---|
793 | /* ZONE_NORMAL: 0-896MB */
|
---|
794 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
|
---|
795 | false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
|
---|
796 | #endif
|
---|
797 | if (RT_SUCCESS(rc))
|
---|
798 | {
|
---|
799 | rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
|
---|
800 | if (RT_SUCCESS(rc))
|
---|
801 | {
|
---|
802 | *ppMem = &pMemLnx->Core;
|
---|
803 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
804 | return rc;
|
---|
805 | }
|
---|
806 |
|
---|
807 | rtR0MemObjLinuxFreePages(pMemLnx);
|
---|
808 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
809 | }
|
---|
810 |
|
---|
811 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
812 | return rc;
|
---|
813 | }
|
---|
814 |
|
---|
815 |
|
---|
816 | DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
817 | {
|
---|
818 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
819 | PRTR0MEMOBJLNX pMemLnx;
|
---|
820 | int rc;
|
---|
821 |
|
---|
822 | #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
|
---|
823 | /* ZONE_DMA32: 0-4GB */
|
---|
824 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
|
---|
825 | true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
|
---|
826 | if (RT_FAILURE(rc))
|
---|
827 | #endif
|
---|
828 | #ifdef RT_ARCH_AMD64
|
---|
829 | /* ZONE_DMA: 0-16MB */
|
---|
830 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
|
---|
831 | true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
|
---|
832 | #else
|
---|
833 | /* ZONE_NORMAL (32-bit hosts): 0-896MB */
|
---|
834 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
|
---|
835 | true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
|
---|
836 | #endif
|
---|
837 | if (RT_SUCCESS(rc))
|
---|
838 | {
|
---|
839 | rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
|
---|
840 | if (RT_SUCCESS(rc))
|
---|
841 | {
|
---|
842 | #if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
|
---|
843 | size_t iPage = pMemLnx->cPages;
|
---|
844 | while (iPage-- > 0)
|
---|
845 | Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
|
---|
846 | #endif
|
---|
847 | pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
|
---|
848 | *ppMem = &pMemLnx->Core;
|
---|
849 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
850 | return rc;
|
---|
851 | }
|
---|
852 |
|
---|
853 | rtR0MemObjLinuxFreePages(pMemLnx);
|
---|
854 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
855 | }
|
---|
856 |
|
---|
857 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
858 | return rc;
|
---|
859 | }
|
---|
860 |
|
---|
861 |
|
---|
862 | /**
|
---|
863 | * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
|
---|
864 | *
|
---|
865 | * @returns IPRT status code.
|
---|
866 | * @param ppMemLnx Where to
|
---|
867 | * @param enmType The object type.
|
---|
868 | * @param cb The size of the allocation.
|
---|
869 | * @param uAlignment The alignment of the physical memory.
|
---|
870 | * Only valid for fContiguous == true, ignored otherwise.
|
---|
871 | * @param PhysHighest See rtR0MemObjNativeAllocPhys.
|
---|
872 | * @param fGfp The Linux GFP flags to use for the allocation.
|
---|
873 | */
|
---|
874 | static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
|
---|
875 | size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, gfp_t fGfp)
|
---|
876 | {
|
---|
877 | PRTR0MEMOBJLNX pMemLnx;
|
---|
878 | int rc;
|
---|
879 |
|
---|
880 | rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
|
---|
881 | enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
|
---|
882 | false /*fExecutable*/, VERR_NO_PHYS_MEMORY);
|
---|
883 | if (RT_FAILURE(rc))
|
---|
884 | return rc;
|
---|
885 |
|
---|
886 | /*
|
---|
887 | * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
|
---|
888 | */
|
---|
889 | if (PhysHighest != NIL_RTHCPHYS)
|
---|
890 | {
|
---|
891 | size_t iPage = pMemLnx->cPages;
|
---|
892 | while (iPage-- > 0)
|
---|
893 | if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
|
---|
894 | {
|
---|
895 | rtR0MemObjLinuxFreePages(pMemLnx);
|
---|
896 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
897 | return VERR_NO_MEMORY;
|
---|
898 | }
|
---|
899 | }
|
---|
900 |
|
---|
901 | /*
|
---|
902 | * Complete the object.
|
---|
903 | */
|
---|
904 | if (enmType == RTR0MEMOBJTYPE_PHYS)
|
---|
905 | {
|
---|
906 | pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
|
---|
907 | pMemLnx->Core.u.Phys.fAllocated = true;
|
---|
908 | }
|
---|
909 | *ppMem = &pMemLnx->Core;
|
---|
910 | return rc;
|
---|
911 | }
|
---|
912 |
|
---|
913 |
|
---|
914 | /**
|
---|
915 | * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
|
---|
916 | *
|
---|
917 | * @returns IPRT status code.
|
---|
918 | * @param ppMem Where to store the memory object pointer on success.
|
---|
919 | * @param enmType The object type.
|
---|
920 | * @param cb The size of the allocation.
|
---|
921 | * @param uAlignment The alignment of the physical memory.
|
---|
922 | * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
|
---|
923 | * @param PhysHighest See rtR0MemObjNativeAllocPhys.
|
---|
924 | */
|
---|
925 | static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
|
---|
926 | size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
|
---|
927 | {
|
---|
928 | int rc;
|
---|
929 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
930 |
|
---|
931 | /*
|
---|
932 | * There are two clear cases and that's the <=16MB and anything-goes ones.
|
---|
933 | * When the physical address limit is somewhere in-between those two we'll
|
---|
934 | * just have to try, starting with HIGHUSER and working our way thru the
|
---|
935 | * different types, hoping we'll get lucky.
|
---|
936 | *
|
---|
937 | * We should probably move this physical address restriction logic up to
|
---|
938 | * the page alloc function as it would be more efficient there. But since
|
---|
939 | * we don't expect this to be a performance issue just yet it can wait.
|
---|
940 | */
|
---|
941 | if (PhysHighest == NIL_RTHCPHYS)
|
---|
942 | /* ZONE_HIGHMEM: the whole physical memory */
|
---|
943 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
|
---|
944 | else if (PhysHighest <= _1M * 16)
|
---|
945 | /* ZONE_DMA: 0-16MB */
|
---|
946 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
|
---|
947 | else
|
---|
948 | {
|
---|
949 | rc = VERR_NO_MEMORY;
|
---|
950 | if (RT_FAILURE(rc))
|
---|
951 | /* ZONE_HIGHMEM: the whole physical memory */
|
---|
952 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
|
---|
953 | if (RT_FAILURE(rc))
|
---|
954 | /* ZONE_NORMAL: 0-896MB */
|
---|
955 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
|
---|
956 | #ifdef GFP_DMA32
|
---|
957 | if (RT_FAILURE(rc))
|
---|
958 | /* ZONE_DMA32: 0-4GB */
|
---|
959 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
|
---|
960 | #endif
|
---|
961 | if (RT_FAILURE(rc))
|
---|
962 | /* ZONE_DMA: 0-16MB */
|
---|
963 | rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
|
---|
964 | }
|
---|
965 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
966 | return rc;
|
---|
967 | }
|
---|
968 |
|
---|
969 |
|
---|
970 | /**
|
---|
971 | * Translates a kernel virtual address to a linux page structure by walking the
|
---|
972 | * page tables.
|
---|
973 | *
|
---|
974 | * @note We do assume that the page tables will not change as we are walking
|
---|
975 | * them. This assumption is rather forced by the fact that I could not
|
---|
976 | * immediately see any way of preventing this from happening. So, we
|
---|
977 | * take some extra care when accessing them.
|
---|
978 | *
|
---|
979 | * Because of this, we don't want to use this function on memory where
|
---|
980 | * attribute changes to nearby pages is likely to cause large pages to
|
---|
981 | * be used or split up. So, don't use this for the linear mapping of
|
---|
982 | * physical memory.
|
---|
983 | *
|
---|
984 | * @returns Pointer to the page structur or NULL if it could not be found.
|
---|
985 | * @param pv The kernel virtual address.
|
---|
986 | */
|
---|
987 | RTDECL(struct page *) rtR0MemObjLinuxVirtToPage(void *pv)
|
---|
988 | {
|
---|
989 | unsigned long ulAddr = (unsigned long)pv;
|
---|
990 | unsigned long pfn;
|
---|
991 | struct page *pPage;
|
---|
992 | pte_t *pEntry;
|
---|
993 | union
|
---|
994 | {
|
---|
995 | pgd_t Global;
|
---|
996 | #if RTLNX_VER_MIN(4,12,0)
|
---|
997 | p4d_t Four;
|
---|
998 | #endif
|
---|
999 | #if RTLNX_VER_MIN(2,6,11)
|
---|
1000 | pud_t Upper;
|
---|
1001 | #endif
|
---|
1002 | pmd_t Middle;
|
---|
1003 | pte_t Entry;
|
---|
1004 | } u;
|
---|
1005 |
|
---|
1006 | /* Should this happen in a situation this code will be called in? And if
|
---|
1007 | * so, can it change under our feet? See also
|
---|
1008 | * "Documentation/vm/active_mm.txt" in the kernel sources. */
|
---|
1009 | if (RT_UNLIKELY(!current->active_mm))
|
---|
1010 | return NULL;
|
---|
1011 | u.Global = *pgd_offset(current->active_mm, ulAddr);
|
---|
1012 | if (RT_UNLIKELY(pgd_none(u.Global)))
|
---|
1013 | return NULL;
|
---|
1014 | #if RTLNX_VER_MIN(2,6,11)
|
---|
1015 | # if RTLNX_VER_MIN(4,12,0)
|
---|
1016 | u.Four = *p4d_offset(&u.Global, ulAddr);
|
---|
1017 | if (RT_UNLIKELY(p4d_none(u.Four)))
|
---|
1018 | return NULL;
|
---|
1019 | if (p4d_large(u.Four))
|
---|
1020 | {
|
---|
1021 | pPage = p4d_page(u.Four);
|
---|
1022 | AssertReturn(pPage, NULL);
|
---|
1023 | pfn = page_to_pfn(pPage); /* doing the safe way... */
|
---|
1024 | AssertCompile(P4D_SHIFT - PAGE_SHIFT < 31);
|
---|
1025 | pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (P4D_SHIFT - PAGE_SHIFT)) - 1);
|
---|
1026 | return pfn_to_page(pfn);
|
---|
1027 | }
|
---|
1028 | u.Upper = *pud_offset(&u.Four, ulAddr);
|
---|
1029 | # else /* < 4.12 */
|
---|
1030 | u.Upper = *pud_offset(&u.Global, ulAddr);
|
---|
1031 | # endif /* < 4.12 */
|
---|
1032 | if (RT_UNLIKELY(pud_none(u.Upper)))
|
---|
1033 | return NULL;
|
---|
1034 | # if RTLNX_VER_MIN(2,6,25)
|
---|
1035 | if (pud_large(u.Upper))
|
---|
1036 | {
|
---|
1037 | pPage = pud_page(u.Upper);
|
---|
1038 | AssertReturn(pPage, NULL);
|
---|
1039 | pfn = page_to_pfn(pPage); /* doing the safe way... */
|
---|
1040 | pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
|
---|
1041 | return pfn_to_page(pfn);
|
---|
1042 | }
|
---|
1043 | # endif
|
---|
1044 | u.Middle = *pmd_offset(&u.Upper, ulAddr);
|
---|
1045 | #else /* < 2.6.11 */
|
---|
1046 | u.Middle = *pmd_offset(&u.Global, ulAddr);
|
---|
1047 | #endif /* < 2.6.11 */
|
---|
1048 | if (RT_UNLIKELY(pmd_none(u.Middle)))
|
---|
1049 | return NULL;
|
---|
1050 | #if RTLNX_VER_MIN(2,6,0)
|
---|
1051 | if (pmd_large(u.Middle))
|
---|
1052 | {
|
---|
1053 | pPage = pmd_page(u.Middle);
|
---|
1054 | AssertReturn(pPage, NULL);
|
---|
1055 | pfn = page_to_pfn(pPage); /* doing the safe way... */
|
---|
1056 | pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
|
---|
1057 | return pfn_to_page(pfn);
|
---|
1058 | }
|
---|
1059 | #endif
|
---|
1060 |
|
---|
1061 | #if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
|
---|
1062 | pEntry = pte_offset_map(&u.Middle, ulAddr);
|
---|
1063 | #else
|
---|
1064 | pEntry = pte_offset(&u.Middle, ulAddr);
|
---|
1065 | #endif
|
---|
1066 | if (RT_UNLIKELY(!pEntry))
|
---|
1067 | return NULL;
|
---|
1068 | u.Entry = *pEntry;
|
---|
1069 | #if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map)
|
---|
1070 | pte_unmap(pEntry);
|
---|
1071 | #endif
|
---|
1072 |
|
---|
1073 | if (RT_UNLIKELY(!pte_present(u.Entry)))
|
---|
1074 | return NULL;
|
---|
1075 | return pte_page(u.Entry);
|
---|
1076 | }
|
---|
1077 | RT_EXPORT_SYMBOL(rtR0MemObjLinuxVirtToPage);
|
---|
1078 |
|
---|
1079 |
|
---|
1080 | DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
|
---|
1081 | {
|
---|
1082 | return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
|
---|
1083 | }
|
---|
1084 |
|
---|
1085 |
|
---|
1086 | DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
|
---|
1087 | {
|
---|
1088 | return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 |
|
---|
1092 | DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
|
---|
1093 | {
|
---|
1094 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1095 |
|
---|
1096 | /*
|
---|
1097 | * All we need to do here is to validate that we can use
|
---|
1098 | * ioremap on the specified address (32/64-bit dma_addr_t).
|
---|
1099 | */
|
---|
1100 | PRTR0MEMOBJLNX pMemLnx;
|
---|
1101 | dma_addr_t PhysAddr = Phys;
|
---|
1102 | AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
|
---|
1103 |
|
---|
1104 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
|
---|
1105 | if (!pMemLnx)
|
---|
1106 | {
|
---|
1107 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1108 | return VERR_NO_MEMORY;
|
---|
1109 | }
|
---|
1110 |
|
---|
1111 | pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
|
---|
1112 | pMemLnx->Core.u.Phys.fAllocated = false;
|
---|
1113 | pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
|
---|
1114 | Assert(!pMemLnx->cPages);
|
---|
1115 | *ppMem = &pMemLnx->Core;
|
---|
1116 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1117 | return VINF_SUCCESS;
|
---|
1118 | }
|
---|
1119 |
|
---|
1120 | /* openSUSE Leap 42.3 detection :-/ */
|
---|
1121 | #if RTLNX_VER_RANGE(4,4,0, 4,6,0) && defined(FAULT_FLAG_REMOTE)
|
---|
1122 | # define GET_USER_PAGES_API KERNEL_VERSION(4, 10, 0) /* no typo! */
|
---|
1123 | #else
|
---|
1124 | # define GET_USER_PAGES_API LINUX_VERSION_CODE
|
---|
1125 | #endif
|
---|
1126 |
|
---|
1127 | DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
|
---|
1128 | {
|
---|
1129 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1130 | const int cPages = cb >> PAGE_SHIFT;
|
---|
1131 | struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
|
---|
1132 | struct vm_area_struct **papVMAs;
|
---|
1133 | PRTR0MEMOBJLNX pMemLnx;
|
---|
1134 | int rc = VERR_NO_MEMORY;
|
---|
1135 | int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
|
---|
1136 |
|
---|
1137 | /*
|
---|
1138 | * Check for valid task and size overflows.
|
---|
1139 | */
|
---|
1140 | if (!pTask)
|
---|
1141 | return VERR_NOT_SUPPORTED;
|
---|
1142 | if (((size_t)cPages << PAGE_SHIFT) != cb)
|
---|
1143 | return VERR_OUT_OF_RANGE;
|
---|
1144 |
|
---|
1145 | /*
|
---|
1146 | * Allocate the memory object and a temporary buffer for the VMAs.
|
---|
1147 | */
|
---|
1148 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
|
---|
1149 | if (!pMemLnx)
|
---|
1150 | {
|
---|
1151 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1152 | return VERR_NO_MEMORY;
|
---|
1153 | }
|
---|
1154 |
|
---|
1155 | papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
|
---|
1156 | if (papVMAs)
|
---|
1157 | {
|
---|
1158 | LNX_MM_DOWN_READ(pTask->mm);
|
---|
1159 |
|
---|
1160 | /*
|
---|
1161 | * Get user pages.
|
---|
1162 | */
|
---|
1163 | /** @todo r=bird: Should we not force read access too? */
|
---|
1164 | #if GET_USER_PAGES_API >= KERNEL_VERSION(4, 6, 0)
|
---|
1165 | if (R0Process == RTR0ProcHandleSelf())
|
---|
1166 | rc = get_user_pages(R3Ptr, /* Where from. */
|
---|
1167 | cPages, /* How many pages. */
|
---|
1168 | # if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
|
---|
1169 | fWrite ? FOLL_WRITE | /* Write to memory. */
|
---|
1170 | FOLL_FORCE /* force write access. */
|
---|
1171 | : 0, /* Write to memory. */
|
---|
1172 | # else
|
---|
1173 | fWrite, /* Write to memory. */
|
---|
1174 | fWrite, /* force write access. */
|
---|
1175 | # endif
|
---|
1176 | &pMemLnx->apPages[0], /* Page array. */
|
---|
1177 | papVMAs); /* vmas */
|
---|
1178 | /*
|
---|
1179 | * Actually this should not happen at the moment as call this function
|
---|
1180 | * only for our own process.
|
---|
1181 | */
|
---|
1182 | else
|
---|
1183 | rc = get_user_pages_remote(
|
---|
1184 | # if GET_USER_PAGES_API < KERNEL_VERSION(5, 9, 0)
|
---|
1185 | pTask, /* Task for fault accounting. */
|
---|
1186 | # endif
|
---|
1187 | pTask->mm, /* Whose pages. */
|
---|
1188 | R3Ptr, /* Where from. */
|
---|
1189 | cPages, /* How many pages. */
|
---|
1190 | # if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
|
---|
1191 | fWrite ? FOLL_WRITE | /* Write to memory. */
|
---|
1192 | FOLL_FORCE /* force write access. */
|
---|
1193 | : 0, /* Write to memory. */
|
---|
1194 | # else
|
---|
1195 | fWrite, /* Write to memory. */
|
---|
1196 | fWrite, /* force write access. */
|
---|
1197 | # endif
|
---|
1198 | &pMemLnx->apPages[0], /* Page array. */
|
---|
1199 | papVMAs /* vmas */
|
---|
1200 | # if GET_USER_PAGES_API >= KERNEL_VERSION(4, 10, 0)
|
---|
1201 | , NULL /* locked */
|
---|
1202 | # endif
|
---|
1203 | );
|
---|
1204 | #else /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
|
---|
1205 | rc = get_user_pages(pTask, /* Task for fault accounting. */
|
---|
1206 | pTask->mm, /* Whose pages. */
|
---|
1207 | R3Ptr, /* Where from. */
|
---|
1208 | cPages, /* How many pages. */
|
---|
1209 | /* The get_user_pages API change was back-ported to 4.4.168. */
|
---|
1210 | # if RTLNX_VER_RANGE(4,4,168, 4,5,0)
|
---|
1211 | fWrite ? FOLL_WRITE | /* Write to memory. */
|
---|
1212 | FOLL_FORCE /* force write access. */
|
---|
1213 | : 0, /* Write to memory. */
|
---|
1214 | # else
|
---|
1215 | fWrite, /* Write to memory. */
|
---|
1216 | fWrite, /* force write access. */
|
---|
1217 | # endif
|
---|
1218 | &pMemLnx->apPages[0], /* Page array. */
|
---|
1219 | papVMAs); /* vmas */
|
---|
1220 | #endif /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
|
---|
1221 | if (rc == cPages)
|
---|
1222 | {
|
---|
1223 | /*
|
---|
1224 | * Flush dcache (required?), protect against fork and _really_ pin the page
|
---|
1225 | * table entries. get_user_pages() will protect against swapping out the
|
---|
1226 | * pages but it will NOT protect against removing page table entries. This
|
---|
1227 | * can be achieved with
|
---|
1228 | * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
|
---|
1229 | * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
|
---|
1230 | * Usual Linux distributions support only a limited size of locked pages
|
---|
1231 | * (e.g. 32KB).
|
---|
1232 | * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
|
---|
1233 | * or by
|
---|
1234 | * - setting the VM_LOCKED flag. This is the same as doing mlock() without
|
---|
1235 | * a range check.
|
---|
1236 | */
|
---|
1237 | /** @todo The Linux fork() protection will require more work if this API
|
---|
1238 | * is to be used for anything but locking VM pages. */
|
---|
1239 | while (rc-- > 0)
|
---|
1240 | {
|
---|
1241 | flush_dcache_page(pMemLnx->apPages[rc]);
|
---|
1242 | papVMAs[rc]->vm_flags |= VM_DONTCOPY | VM_LOCKED;
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 | LNX_MM_UP_READ(pTask->mm);
|
---|
1246 |
|
---|
1247 | RTMemFree(papVMAs);
|
---|
1248 |
|
---|
1249 | pMemLnx->Core.u.Lock.R0Process = R0Process;
|
---|
1250 | pMemLnx->cPages = cPages;
|
---|
1251 | Assert(!pMemLnx->fMappedToRing0);
|
---|
1252 | *ppMem = &pMemLnx->Core;
|
---|
1253 |
|
---|
1254 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1255 | return VINF_SUCCESS;
|
---|
1256 | }
|
---|
1257 |
|
---|
1258 | /*
|
---|
1259 | * Failed - we need to unlock any pages that we succeeded to lock.
|
---|
1260 | */
|
---|
1261 | while (rc-- > 0)
|
---|
1262 | {
|
---|
1263 | if (!PageReserved(pMemLnx->apPages[rc]))
|
---|
1264 | SetPageDirty(pMemLnx->apPages[rc]);
|
---|
1265 | #if RTLNX_VER_MIN(4,6,0)
|
---|
1266 | put_page(pMemLnx->apPages[rc]);
|
---|
1267 | #else
|
---|
1268 | page_cache_release(pMemLnx->apPages[rc]);
|
---|
1269 | #endif
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 | LNX_MM_UP_READ(pTask->mm);
|
---|
1273 |
|
---|
1274 | RTMemFree(papVMAs);
|
---|
1275 | rc = VERR_LOCK_FAILED;
|
---|
1276 | }
|
---|
1277 |
|
---|
1278 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
1279 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1280 | return rc;
|
---|
1281 | }
|
---|
1282 |
|
---|
1283 |
|
---|
1284 | DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
|
---|
1285 | {
|
---|
1286 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1287 | void *pvLast = (uint8_t *)pv + cb - 1;
|
---|
1288 | size_t const cPages = cb >> PAGE_SHIFT;
|
---|
1289 | PRTR0MEMOBJLNX pMemLnx;
|
---|
1290 | bool fLinearMapping;
|
---|
1291 | int rc;
|
---|
1292 | uint8_t *pbPage;
|
---|
1293 | size_t iPage;
|
---|
1294 | NOREF(fAccess);
|
---|
1295 |
|
---|
1296 | if ( !RTR0MemKernelIsValidAddr(pv)
|
---|
1297 | || !RTR0MemKernelIsValidAddr(pv + cb))
|
---|
1298 | return VERR_INVALID_PARAMETER;
|
---|
1299 |
|
---|
1300 | /*
|
---|
1301 | * The lower part of the kernel memory has a linear mapping between
|
---|
1302 | * physical and virtual addresses. So we take a short cut here. This is
|
---|
1303 | * assumed to be the cleanest way to handle those addresses (and the code
|
---|
1304 | * is well tested, though the test for determining it is not very nice).
|
---|
1305 | * If we ever decide it isn't we can still remove it.
|
---|
1306 | */
|
---|
1307 | #if 0
|
---|
1308 | fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
|
---|
1309 | #else
|
---|
1310 | fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
|
---|
1311 | && (unsigned long)pvLast < (unsigned long)high_memory;
|
---|
1312 | #endif
|
---|
1313 |
|
---|
1314 | /*
|
---|
1315 | * Allocate the memory object.
|
---|
1316 | */
|
---|
1317 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
|
---|
1318 | if (!pMemLnx)
|
---|
1319 | {
|
---|
1320 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1321 | return VERR_NO_MEMORY;
|
---|
1322 | }
|
---|
1323 |
|
---|
1324 | /*
|
---|
1325 | * Gather the pages.
|
---|
1326 | * We ASSUME all kernel pages are non-swappable and non-movable.
|
---|
1327 | */
|
---|
1328 | rc = VINF_SUCCESS;
|
---|
1329 | pbPage = (uint8_t *)pvLast;
|
---|
1330 | iPage = cPages;
|
---|
1331 | if (!fLinearMapping)
|
---|
1332 | {
|
---|
1333 | while (iPage-- > 0)
|
---|
1334 | {
|
---|
1335 | struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
|
---|
1336 | if (RT_UNLIKELY(!pPage))
|
---|
1337 | {
|
---|
1338 | rc = VERR_LOCK_FAILED;
|
---|
1339 | break;
|
---|
1340 | }
|
---|
1341 | pMemLnx->apPages[iPage] = pPage;
|
---|
1342 | pbPage -= PAGE_SIZE;
|
---|
1343 | }
|
---|
1344 | }
|
---|
1345 | else
|
---|
1346 | {
|
---|
1347 | while (iPage-- > 0)
|
---|
1348 | {
|
---|
1349 | pMemLnx->apPages[iPage] = virt_to_page(pbPage);
|
---|
1350 | pbPage -= PAGE_SIZE;
|
---|
1351 | }
|
---|
1352 | }
|
---|
1353 | if (RT_SUCCESS(rc))
|
---|
1354 | {
|
---|
1355 | /*
|
---|
1356 | * Complete the memory object and return.
|
---|
1357 | */
|
---|
1358 | pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
|
---|
1359 | pMemLnx->cPages = cPages;
|
---|
1360 | Assert(!pMemLnx->fMappedToRing0);
|
---|
1361 | *ppMem = &pMemLnx->Core;
|
---|
1362 |
|
---|
1363 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1364 | return VINF_SUCCESS;
|
---|
1365 | }
|
---|
1366 |
|
---|
1367 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
1368 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1369 | return rc;
|
---|
1370 | }
|
---|
1371 |
|
---|
1372 |
|
---|
1373 | DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
|
---|
1374 | {
|
---|
1375 | #if RTLNX_VER_MIN(2,4,22)
|
---|
1376 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1377 | const size_t cPages = cb >> PAGE_SHIFT;
|
---|
1378 | struct page *pDummyPage;
|
---|
1379 | struct page **papPages;
|
---|
1380 |
|
---|
1381 | /* check for unsupported stuff. */
|
---|
1382 | AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
|
---|
1383 | if (uAlignment > PAGE_SIZE)
|
---|
1384 | return VERR_NOT_SUPPORTED;
|
---|
1385 |
|
---|
1386 | /*
|
---|
1387 | * Allocate a dummy page and create a page pointer array for vmap such that
|
---|
1388 | * the dummy page is mapped all over the reserved area.
|
---|
1389 | */
|
---|
1390 | pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
|
---|
1391 | if (pDummyPage)
|
---|
1392 | {
|
---|
1393 | papPages = RTMemAlloc(sizeof(*papPages) * cPages);
|
---|
1394 | if (papPages)
|
---|
1395 | {
|
---|
1396 | void *pv;
|
---|
1397 | size_t iPage = cPages;
|
---|
1398 | while (iPage-- > 0)
|
---|
1399 | papPages[iPage] = pDummyPage;
|
---|
1400 | # ifdef VM_MAP
|
---|
1401 | pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
|
---|
1402 | # else
|
---|
1403 | pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
|
---|
1404 | # endif
|
---|
1405 | RTMemFree(papPages);
|
---|
1406 | if (pv)
|
---|
1407 | {
|
---|
1408 | PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
|
---|
1409 | if (pMemLnx)
|
---|
1410 | {
|
---|
1411 | pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
|
---|
1412 | pMemLnx->cPages = 1;
|
---|
1413 | pMemLnx->apPages[0] = pDummyPage;
|
---|
1414 | *ppMem = &pMemLnx->Core;
|
---|
1415 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1416 | return VINF_SUCCESS;
|
---|
1417 | }
|
---|
1418 | vunmap(pv);
|
---|
1419 | }
|
---|
1420 | }
|
---|
1421 | __free_page(pDummyPage);
|
---|
1422 | }
|
---|
1423 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1424 | return VERR_NO_MEMORY;
|
---|
1425 |
|
---|
1426 | #else /* < 2.4.22 */
|
---|
1427 | /*
|
---|
1428 | * Could probably use ioremap here, but the caller is in a better position than us
|
---|
1429 | * to select some safe physical memory.
|
---|
1430 | */
|
---|
1431 | return VERR_NOT_SUPPORTED;
|
---|
1432 | #endif
|
---|
1433 | }
|
---|
1434 |
|
---|
1435 |
|
---|
1436 | DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
|
---|
1437 | {
|
---|
1438 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1439 | PRTR0MEMOBJLNX pMemLnx;
|
---|
1440 | void *pv;
|
---|
1441 | struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
|
---|
1442 | if (!pTask)
|
---|
1443 | return VERR_NOT_SUPPORTED;
|
---|
1444 |
|
---|
1445 | /*
|
---|
1446 | * Check that the specified alignment is supported.
|
---|
1447 | */
|
---|
1448 | if (uAlignment > PAGE_SIZE)
|
---|
1449 | return VERR_NOT_SUPPORTED;
|
---|
1450 |
|
---|
1451 | /*
|
---|
1452 | * Let rtR0MemObjLinuxDoMmap do the difficult bits.
|
---|
1453 | */
|
---|
1454 | pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
|
---|
1455 | if (pv == (void *)-1)
|
---|
1456 | {
|
---|
1457 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1458 | return VERR_NO_MEMORY;
|
---|
1459 | }
|
---|
1460 |
|
---|
1461 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
|
---|
1462 | if (!pMemLnx)
|
---|
1463 | {
|
---|
1464 | rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
|
---|
1465 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1466 | return VERR_NO_MEMORY;
|
---|
1467 | }
|
---|
1468 |
|
---|
1469 | pMemLnx->Core.u.ResVirt.R0Process = R0Process;
|
---|
1470 | *ppMem = &pMemLnx->Core;
|
---|
1471 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1472 | return VINF_SUCCESS;
|
---|
1473 | }
|
---|
1474 |
|
---|
1475 |
|
---|
1476 | DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
|
---|
1477 | void *pvFixed, size_t uAlignment,
|
---|
1478 | unsigned fProt, size_t offSub, size_t cbSub)
|
---|
1479 | {
|
---|
1480 | int rc = VERR_NO_MEMORY;
|
---|
1481 | PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
|
---|
1482 | PRTR0MEMOBJLNX pMemLnx;
|
---|
1483 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1484 |
|
---|
1485 | /* Fail if requested to do something we can't. */
|
---|
1486 | AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
|
---|
1487 | if (uAlignment > PAGE_SIZE)
|
---|
1488 | return VERR_NOT_SUPPORTED;
|
---|
1489 |
|
---|
1490 | /*
|
---|
1491 | * Create the IPRT memory object.
|
---|
1492 | */
|
---|
1493 | if (!cbSub)
|
---|
1494 | cbSub = pMemLnxToMap->Core.cb - offSub;
|
---|
1495 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub);
|
---|
1496 | if (pMemLnx)
|
---|
1497 | {
|
---|
1498 | if (pMemLnxToMap->cPages)
|
---|
1499 | {
|
---|
1500 | #if RTLNX_VER_MIN(2,4,22)
|
---|
1501 | /*
|
---|
1502 | * Use vmap - 2.4.22 and later.
|
---|
1503 | */
|
---|
1504 | pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
|
---|
1505 | /** @todo We don't really care too much for EXEC here... 5.8 always adds NX. */
|
---|
1506 | Assert(((offSub + cbSub) >> PAGE_SHIFT) <= pMemLnxToMap->cPages);
|
---|
1507 | # ifdef VM_MAP
|
---|
1508 | pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_MAP, fPg);
|
---|
1509 | # else
|
---|
1510 | pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_ALLOC, fPg);
|
---|
1511 | # endif
|
---|
1512 | if (pMemLnx->Core.pv)
|
---|
1513 | {
|
---|
1514 | pMemLnx->fMappedToRing0 = true;
|
---|
1515 | rc = VINF_SUCCESS;
|
---|
1516 | }
|
---|
1517 | else
|
---|
1518 | rc = VERR_MAP_FAILED;
|
---|
1519 |
|
---|
1520 | #else /* < 2.4.22 */
|
---|
1521 | /*
|
---|
1522 | * Only option here is to share mappings if possible and forget about fProt.
|
---|
1523 | */
|
---|
1524 | if (rtR0MemObjIsRing3(pMemToMap))
|
---|
1525 | rc = VERR_NOT_SUPPORTED;
|
---|
1526 | else
|
---|
1527 | {
|
---|
1528 | rc = VINF_SUCCESS;
|
---|
1529 | if (!pMemLnxToMap->Core.pv)
|
---|
1530 | rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
|
---|
1531 | if (RT_SUCCESS(rc))
|
---|
1532 | {
|
---|
1533 | Assert(pMemLnxToMap->Core.pv);
|
---|
1534 | pMemLnx->Core.pv = (uint8_t *)pMemLnxToMap->Core.pv + offSub;
|
---|
1535 | }
|
---|
1536 | }
|
---|
1537 | #endif
|
---|
1538 | }
|
---|
1539 | else
|
---|
1540 | {
|
---|
1541 | /*
|
---|
1542 | * MMIO / physical memory.
|
---|
1543 | */
|
---|
1544 | Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
|
---|
1545 | #if RTLNX_VER_MIN(2,6,25)
|
---|
1546 | /*
|
---|
1547 | * ioremap() defaults to no caching since the 2.6 kernels.
|
---|
1548 | * ioremap_nocache() has been removed finally in 5.6-rc1.
|
---|
1549 | */
|
---|
1550 | pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
|
---|
1551 | ? ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
|
---|
1552 | : ioremap_cache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
|
---|
1553 | #else /* KERNEL_VERSION < 2.6.25 */
|
---|
1554 | pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
|
---|
1555 | ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
|
---|
1556 | : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
|
---|
1557 | #endif /* KERNEL_VERSION < 2.6.25 */
|
---|
1558 | if (pMemLnx->Core.pv)
|
---|
1559 | {
|
---|
1560 | /** @todo fix protection. */
|
---|
1561 | rc = VINF_SUCCESS;
|
---|
1562 | }
|
---|
1563 | }
|
---|
1564 | if (RT_SUCCESS(rc))
|
---|
1565 | {
|
---|
1566 | pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
|
---|
1567 | *ppMem = &pMemLnx->Core;
|
---|
1568 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1569 | return VINF_SUCCESS;
|
---|
1570 | }
|
---|
1571 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
1572 | }
|
---|
1573 |
|
---|
1574 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1575 | return rc;
|
---|
1576 | }
|
---|
1577 |
|
---|
1578 |
|
---|
1579 | #ifdef VBOX_USE_PAE_HACK
|
---|
1580 | /**
|
---|
1581 | * Replace the PFN of a PTE with the address of the actual page.
|
---|
1582 | *
|
---|
1583 | * The caller maps a reserved dummy page at the address with the desired access
|
---|
1584 | * and flags.
|
---|
1585 | *
|
---|
1586 | * This hack is required for older Linux kernels which don't provide
|
---|
1587 | * remap_pfn_range().
|
---|
1588 | *
|
---|
1589 | * @returns 0 on success, -ENOMEM on failure.
|
---|
1590 | * @param mm The memory context.
|
---|
1591 | * @param ulAddr The mapping address.
|
---|
1592 | * @param Phys The physical address of the page to map.
|
---|
1593 | */
|
---|
1594 | static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
|
---|
1595 | {
|
---|
1596 | int rc = -ENOMEM;
|
---|
1597 | pgd_t *pgd;
|
---|
1598 |
|
---|
1599 | spin_lock(&mm->page_table_lock);
|
---|
1600 |
|
---|
1601 | pgd = pgd_offset(mm, ulAddr);
|
---|
1602 | if (!pgd_none(*pgd) && !pgd_bad(*pgd))
|
---|
1603 | {
|
---|
1604 | pmd_t *pmd = pmd_offset(pgd, ulAddr);
|
---|
1605 | if (!pmd_none(*pmd))
|
---|
1606 | {
|
---|
1607 | pte_t *ptep = pte_offset_map(pmd, ulAddr);
|
---|
1608 | if (ptep)
|
---|
1609 | {
|
---|
1610 | pte_t pte = *ptep;
|
---|
1611 | pte.pte_high &= 0xfff00000;
|
---|
1612 | pte.pte_high |= ((Phys >> 32) & 0x000fffff);
|
---|
1613 | pte.pte_low &= 0x00000fff;
|
---|
1614 | pte.pte_low |= (Phys & 0xfffff000);
|
---|
1615 | set_pte(ptep, pte);
|
---|
1616 | pte_unmap(ptep);
|
---|
1617 | rc = 0;
|
---|
1618 | }
|
---|
1619 | }
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | spin_unlock(&mm->page_table_lock);
|
---|
1623 | return rc;
|
---|
1624 | }
|
---|
1625 | #endif /* VBOX_USE_PAE_HACK */
|
---|
1626 |
|
---|
1627 |
|
---|
1628 | DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
|
---|
1629 | unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub)
|
---|
1630 | {
|
---|
1631 | struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
|
---|
1632 | PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
|
---|
1633 | int rc = VERR_NO_MEMORY;
|
---|
1634 | PRTR0MEMOBJLNX pMemLnx;
|
---|
1635 | #ifdef VBOX_USE_PAE_HACK
|
---|
1636 | struct page *pDummyPage;
|
---|
1637 | RTHCPHYS DummyPhys;
|
---|
1638 | #endif
|
---|
1639 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1640 |
|
---|
1641 | /*
|
---|
1642 | * Check for restrictions.
|
---|
1643 | */
|
---|
1644 | if (!pTask)
|
---|
1645 | return VERR_NOT_SUPPORTED;
|
---|
1646 | if (uAlignment > PAGE_SIZE)
|
---|
1647 | return VERR_NOT_SUPPORTED;
|
---|
1648 |
|
---|
1649 | #ifdef VBOX_USE_PAE_HACK
|
---|
1650 | /*
|
---|
1651 | * Allocate a dummy page for use when mapping the memory.
|
---|
1652 | */
|
---|
1653 | pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
|
---|
1654 | if (!pDummyPage)
|
---|
1655 | {
|
---|
1656 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1657 | return VERR_NO_MEMORY;
|
---|
1658 | }
|
---|
1659 | SetPageReserved(pDummyPage);
|
---|
1660 | DummyPhys = page_to_phys(pDummyPage);
|
---|
1661 | #endif
|
---|
1662 |
|
---|
1663 | /*
|
---|
1664 | * Create the IPRT memory object.
|
---|
1665 | */
|
---|
1666 | Assert(!offSub || cbSub);
|
---|
1667 | if (cbSub == 0)
|
---|
1668 | cbSub = pMemLnxToMap->Core.cb;
|
---|
1669 | pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub);
|
---|
1670 | if (pMemLnx)
|
---|
1671 | {
|
---|
1672 | /*
|
---|
1673 | * Allocate user space mapping.
|
---|
1674 | */
|
---|
1675 | void *pv;
|
---|
1676 | pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cbSub, uAlignment, pTask, fProt);
|
---|
1677 | if (pv != (void *)-1)
|
---|
1678 | {
|
---|
1679 | /*
|
---|
1680 | * Map page by page into the mmap area.
|
---|
1681 | * This is generic, paranoid and not very efficient.
|
---|
1682 | */
|
---|
1683 | pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
|
---|
1684 | unsigned long ulAddrCur = (unsigned long)pv;
|
---|
1685 | const size_t cPages = (offSub + cbSub) >> PAGE_SHIFT;
|
---|
1686 | size_t iPage;
|
---|
1687 |
|
---|
1688 | LNX_MM_DOWN_WRITE(pTask->mm);
|
---|
1689 |
|
---|
1690 | rc = VINF_SUCCESS;
|
---|
1691 | if (pMemLnxToMap->cPages)
|
---|
1692 | {
|
---|
1693 | for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
|
---|
1694 | {
|
---|
1695 | #if RTLNX_VER_MAX(2,6,11)
|
---|
1696 | RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
|
---|
1697 | #endif
|
---|
1698 | #if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
|
---|
1699 | struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
|
---|
1700 | AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
|
---|
1701 | #endif
|
---|
1702 | #if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
|
---|
1703 | /* remap_page_range() limitation on x86 */
|
---|
1704 | AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
|
---|
1705 | #endif
|
---|
1706 |
|
---|
1707 | #if defined(VBOX_USE_INSERT_PAGE) && RTLNX_VER_MIN(2,6,22)
|
---|
1708 | rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
|
---|
1709 | /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
|
---|
1710 | * See remap_pfn_range() in mm/memory.c */
|
---|
1711 | #if RTLNX_VER_MIN(3,7,0)
|
---|
1712 | vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
|
---|
1713 | #else
|
---|
1714 | vma->vm_flags |= VM_RESERVED;
|
---|
1715 | #endif
|
---|
1716 | #elif RTLNX_VER_MIN(2,6,11)
|
---|
1717 | rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
|
---|
1718 | #elif defined(VBOX_USE_PAE_HACK)
|
---|
1719 | rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
|
---|
1720 | if (!rc)
|
---|
1721 | rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
|
---|
1722 | #elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
|
---|
1723 | rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
|
---|
1724 | #else /* 2.4 */
|
---|
1725 | rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
|
---|
1726 | #endif
|
---|
1727 | if (rc)
|
---|
1728 | {
|
---|
1729 | rc = VERR_NO_MEMORY;
|
---|
1730 | break;
|
---|
1731 | }
|
---|
1732 | }
|
---|
1733 | }
|
---|
1734 | else
|
---|
1735 | {
|
---|
1736 | RTHCPHYS Phys;
|
---|
1737 | if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
|
---|
1738 | Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
|
---|
1739 | else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
|
---|
1740 | Phys = pMemLnxToMap->Core.u.Cont.Phys;
|
---|
1741 | else
|
---|
1742 | {
|
---|
1743 | AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
|
---|
1744 | Phys = NIL_RTHCPHYS;
|
---|
1745 | }
|
---|
1746 | if (Phys != NIL_RTHCPHYS)
|
---|
1747 | {
|
---|
1748 | for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
|
---|
1749 | {
|
---|
1750 | #if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
|
---|
1751 | struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
|
---|
1752 | AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
|
---|
1753 | #endif
|
---|
1754 | #if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
|
---|
1755 | /* remap_page_range() limitation on x86 */
|
---|
1756 | AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
|
---|
1757 | #endif
|
---|
1758 |
|
---|
1759 | #if RTLNX_VER_MIN(2,6,11)
|
---|
1760 | rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
|
---|
1761 | #elif defined(VBOX_USE_PAE_HACK)
|
---|
1762 | rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
|
---|
1763 | if (!rc)
|
---|
1764 | rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
|
---|
1765 | #elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
|
---|
1766 | rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
|
---|
1767 | #else /* 2.4 */
|
---|
1768 | rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
|
---|
1769 | #endif
|
---|
1770 | if (rc)
|
---|
1771 | {
|
---|
1772 | rc = VERR_NO_MEMORY;
|
---|
1773 | break;
|
---|
1774 | }
|
---|
1775 | }
|
---|
1776 | }
|
---|
1777 | }
|
---|
1778 |
|
---|
1779 | #ifdef CONFIG_NUMA_BALANCING
|
---|
1780 | # if RTLNX_VER_MAX(3,13,0) && RTLNX_RHEL_MAX(7,0)
|
---|
1781 | # define VBOX_NUMA_HACK_OLD
|
---|
1782 | # endif
|
---|
1783 | if (RT_SUCCESS(rc))
|
---|
1784 | {
|
---|
1785 | /** @todo Ugly hack! But right now we have no other means to
|
---|
1786 | * disable automatic NUMA page balancing. */
|
---|
1787 | # ifdef RT_OS_X86
|
---|
1788 | # ifdef VBOX_NUMA_HACK_OLD
|
---|
1789 | pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
|
---|
1790 | # endif
|
---|
1791 | pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
|
---|
1792 | # else
|
---|
1793 | # ifdef VBOX_NUMA_HACK_OLD
|
---|
1794 | pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
|
---|
1795 | # endif
|
---|
1796 | pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
|
---|
1797 | # endif
|
---|
1798 | }
|
---|
1799 | #endif /* CONFIG_NUMA_BALANCING */
|
---|
1800 |
|
---|
1801 | LNX_MM_UP_WRITE(pTask->mm);
|
---|
1802 |
|
---|
1803 | if (RT_SUCCESS(rc))
|
---|
1804 | {
|
---|
1805 | #ifdef VBOX_USE_PAE_HACK
|
---|
1806 | __free_page(pDummyPage);
|
---|
1807 | #endif
|
---|
1808 | pMemLnx->Core.pv = pv;
|
---|
1809 | pMemLnx->Core.u.Mapping.R0Process = R0Process;
|
---|
1810 | *ppMem = &pMemLnx->Core;
|
---|
1811 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1812 | return VINF_SUCCESS;
|
---|
1813 | }
|
---|
1814 |
|
---|
1815 | /*
|
---|
1816 | * Bail out.
|
---|
1817 | */
|
---|
1818 | rtR0MemObjLinuxDoMunmap(pv, cbSub, pTask);
|
---|
1819 | }
|
---|
1820 | rtR0MemObjDelete(&pMemLnx->Core);
|
---|
1821 | }
|
---|
1822 | #ifdef VBOX_USE_PAE_HACK
|
---|
1823 | __free_page(pDummyPage);
|
---|
1824 | #endif
|
---|
1825 |
|
---|
1826 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1827 | return rc;
|
---|
1828 | }
|
---|
1829 |
|
---|
1830 |
|
---|
1831 | DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
|
---|
1832 | {
|
---|
1833 | # ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
|
---|
1834 | /*
|
---|
1835 | * Currently only supported when we've got addresses PTEs from the kernel.
|
---|
1836 | */
|
---|
1837 | PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
|
---|
1838 | if (pMemLnx->pArea && pMemLnx->papPtesForArea)
|
---|
1839 | {
|
---|
1840 | pgprot_t const fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
|
---|
1841 | size_t const cPages = (offSub + cbSub) >> PAGE_SHIFT;
|
---|
1842 | pte_t **papPtes = pMemLnx->papPtesForArea;
|
---|
1843 | size_t i;
|
---|
1844 |
|
---|
1845 | for (i = offSub >> PAGE_SHIFT; i < cPages; i++)
|
---|
1846 | {
|
---|
1847 | set_pte(papPtes[i], mk_pte(pMemLnx->apPages[i], fPg));
|
---|
1848 | }
|
---|
1849 | preempt_disable();
|
---|
1850 | __flush_tlb_all();
|
---|
1851 | preempt_enable();
|
---|
1852 | return VINF_SUCCESS;
|
---|
1853 | }
|
---|
1854 | # endif
|
---|
1855 |
|
---|
1856 | NOREF(pMem);
|
---|
1857 | NOREF(offSub);
|
---|
1858 | NOREF(cbSub);
|
---|
1859 | NOREF(fProt);
|
---|
1860 | return VERR_NOT_SUPPORTED;
|
---|
1861 | }
|
---|
1862 |
|
---|
1863 |
|
---|
1864 | DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
|
---|
1865 | {
|
---|
1866 | PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
|
---|
1867 |
|
---|
1868 | if (pMemLnx->cPages)
|
---|
1869 | return page_to_phys(pMemLnx->apPages[iPage]);
|
---|
1870 |
|
---|
1871 | switch (pMemLnx->Core.enmType)
|
---|
1872 | {
|
---|
1873 | case RTR0MEMOBJTYPE_CONT:
|
---|
1874 | return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
|
---|
1875 |
|
---|
1876 | case RTR0MEMOBJTYPE_PHYS:
|
---|
1877 | return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
|
---|
1878 |
|
---|
1879 | /* the parent knows */
|
---|
1880 | case RTR0MEMOBJTYPE_MAPPING:
|
---|
1881 | return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
|
---|
1882 |
|
---|
1883 | /* cPages > 0 */
|
---|
1884 | case RTR0MEMOBJTYPE_LOW:
|
---|
1885 | case RTR0MEMOBJTYPE_LOCK:
|
---|
1886 | case RTR0MEMOBJTYPE_PHYS_NC:
|
---|
1887 | case RTR0MEMOBJTYPE_PAGE:
|
---|
1888 | default:
|
---|
1889 | AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
|
---|
1890 | /* fall thru */
|
---|
1891 |
|
---|
1892 | case RTR0MEMOBJTYPE_RES_VIRT:
|
---|
1893 | return NIL_RTHCPHYS;
|
---|
1894 | }
|
---|
1895 | }
|
---|
1896 |
|
---|