VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c@ 26864

Last change on this file since 26864 was 26864, checked in by vboxsync, 15 years ago

Runtime/r0drv/memobj-linux: alignment for rtR0MemObjNativeAllocPhys()

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev
File size: 45.2 KB
Line 
1/* $Revision: 26864 $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 *
26 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
27 * Clara, CA 95054 USA or visit http://www.sun.com if you need
28 * additional information or have any questions.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-linux-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/alloc.h>
39#include <iprt/assert.h>
40#include <iprt/log.h>
41#include <iprt/process.h>
42#include <iprt/string.h>
43#include "internal/memobj.h"
44
45
46/*******************************************************************************
47* Defined Constants And Macros *
48*******************************************************************************/
49/* early 2.6 kernels */
50#ifndef PAGE_SHARED_EXEC
51# define PAGE_SHARED_EXEC PAGE_SHARED
52#endif
53#ifndef PAGE_READONLY_EXEC
54# define PAGE_READONLY_EXEC PAGE_READONLY
55#endif
56
57/*
58 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
59 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
60 * It should be safe to use vm_insert_page() older kernels as well.
61 */
62#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
63# define VBOX_USE_INSERT_PAGE
64#endif
65#if defined(CONFIG_X86_PAE) \
66 && ( HAVE_26_STYLE_REMAP_PAGE_RANGE \
67 || (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)))
68# define VBOX_USE_PAE_HACK
69#endif
70
71
72/*******************************************************************************
73* Structures and Typedefs *
74*******************************************************************************/
75/**
76 * The Darwin version of the memory object structure.
77 */
78typedef struct RTR0MEMOBJLNX
79{
80 /** The core structure. */
81 RTR0MEMOBJINTERNAL Core;
82 /** Set if the allocation is contiguous.
83 * This means it has to be given back as one chunk. */
84 bool fContiguous;
85 /** Set if we've vmap'ed thed memory into ring-0. */
86 bool fMappedToRing0;
87 /** The pages in the apPages array. */
88 size_t cPages;
89 /** Array of struct page pointers. (variable size) */
90 struct page *apPages[1];
91} RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
92
93
94/**
95 * Helper that converts from a RTR0PROCESS handle to a linux task.
96 *
97 * @returns The corresponding Linux task.
98 * @param R0Process IPRT ring-0 process handle.
99 */
100struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
101{
102 /** @todo fix rtR0ProcessToLinuxTask!! */
103 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
104}
105
106
107/**
108 * Compute order. Some functions allocate 2^order pages.
109 *
110 * @returns order.
111 * @param cPages Number of pages.
112 */
113static int rtR0MemObjLinuxOrder(size_t cPages)
114{
115 int iOrder;
116 size_t cTmp;
117
118 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
119 ;
120 if (cPages & ~((size_t)1 << iOrder))
121 ++iOrder;
122
123 return iOrder;
124}
125
126
127/**
128 * Converts from RTMEM_PROT_* to Linux PAGE_*.
129 *
130 * @returns Linux page protection constant.
131 * @param fProt The IPRT protection mask.
132 * @param fKernel Whether it applies to kernel or user space.
133 */
134static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
135{
136 switch (fProt)
137 {
138 default:
139 AssertMsgFailed(("%#x %d\n", fProt, fKernel));
140 case RTMEM_PROT_NONE:
141 return PAGE_NONE;
142
143 case RTMEM_PROT_READ:
144 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
145
146 case RTMEM_PROT_WRITE:
147 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
148 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
149
150 case RTMEM_PROT_EXEC:
151 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
152#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
153 if (fKernel)
154 {
155 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
156 pgprot_val(fPg) &= ~_PAGE_RW;
157 return fPg;
158 }
159 return PAGE_READONLY_EXEC;
160#else
161 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
162#endif
163
164 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
165 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
166 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
167 }
168}
169
170
171/**
172 * Internal worker that allocates physical pages and creates the memory object for them.
173 *
174 * @returns IPRT status code.
175 * @param ppMemLnx Where to store the memory object pointer.
176 * @param enmType The object type.
177 * @param cb The number of bytes to allocate.
178 * @param fFlagsLnx The page allocation flags (GPFs).
179 * @param fContiguous Whether the allocation must be contiguous.
180 */
181static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb, unsigned fFlagsLnx, bool fContiguous)
182{
183 size_t iPage;
184 size_t cPages = cb >> PAGE_SHIFT;
185 struct page *paPages;
186
187 /*
188 * Allocate a memory object structure that's large enough to contain
189 * the page pointer array.
190 */
191 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
192 if (!pMemLnx)
193 return VERR_NO_MEMORY;
194 pMemLnx->cPages = cPages;
195
196 /*
197 * Allocate the pages.
198 * For small allocations we'll try contiguous first and then fall back on page by page.
199 */
200#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
201 if ( fContiguous
202 || cb <= PAGE_SIZE * 2)
203 {
204#ifdef VBOX_USE_INSERT_PAGE
205 paPages = alloc_pages(fFlagsLnx | __GFP_COMP, rtR0MemObjLinuxOrder(cb >> PAGE_SHIFT));
206#else
207 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cb >> PAGE_SHIFT));
208#endif
209 if (paPages)
210 {
211 fContiguous = true;
212 for (iPage = 0; iPage < cPages; iPage++)
213 pMemLnx->apPages[iPage] = &paPages[iPage];
214 }
215 else if (fContiguous)
216 {
217 rtR0MemObjDelete(&pMemLnx->Core);
218 return VERR_NO_MEMORY;
219 }
220 }
221
222 if (!fContiguous)
223 {
224 for (iPage = 0; iPage < cPages; iPage++)
225 {
226 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx);
227 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
228 {
229 while (iPage-- > 0)
230 __free_page(pMemLnx->apPages[iPage]);
231 rtR0MemObjDelete(&pMemLnx->Core);
232 return VERR_NO_MEMORY;
233 }
234 }
235 }
236
237#else /* < 2.4.22 */
238 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
239 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cb >> PAGE_SHIFT));
240 if (!paPages)
241 {
242 rtR0MemObjDelete(&pMemLnx->Core);
243 return VERR_NO_MEMORY;
244 }
245 for (iPage = 0; iPage < cPages; iPage++)
246 {
247 pMemLnx->apPages[iPage] = &paPages[iPage];
248 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
249 if (PageHighMem(pMemLnx->apPages[iPage]))
250 BUG();
251 }
252
253 fContiguous = true;
254#endif /* < 2.4.22 */
255 pMemLnx->fContiguous = fContiguous;
256
257 /*
258 * Reserve the pages.
259 */
260 for (iPage = 0; iPage < cPages; iPage++)
261 SetPageReserved(pMemLnx->apPages[iPage]);
262
263 *ppMemLnx = pMemLnx;
264 return VINF_SUCCESS;
265}
266
267
268/**
269 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
270 *
271 * This method does NOT free the object.
272 *
273 * @param pMemLnx The object which physical pages should be freed.
274 */
275static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
276{
277 size_t iPage = pMemLnx->cPages;
278 if (iPage > 0)
279 {
280 /*
281 * Restore the page flags.
282 */
283 while (iPage-- > 0)
284 {
285 ClearPageReserved(pMemLnx->apPages[iPage]);
286#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
287#else
288 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
289#endif
290 }
291
292 /*
293 * Free the pages.
294 */
295#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
296 if (!pMemLnx->fContiguous)
297 {
298 iPage = pMemLnx->cPages;
299 while (iPage-- > 0)
300 __free_page(pMemLnx->apPages[iPage]);
301 }
302 else
303#endif
304 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
305
306 pMemLnx->cPages = 0;
307 }
308}
309
310
311/**
312 * Maps the allocation into ring-0.
313 *
314 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
315 *
316 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
317 * space, so we'll use that mapping if possible. If execute access is required, we'll
318 * play safe and do our own mapping.
319 *
320 * @returns IPRT status code.
321 * @param pMemLnx The linux memory object to map.
322 * @param fExecutable Whether execute access is required.
323 */
324static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
325{
326 int rc = VINF_SUCCESS;
327
328 /*
329 * Choose mapping strategy.
330 */
331 bool fMustMap = fExecutable
332 || !pMemLnx->fContiguous;
333 if (!fMustMap)
334 {
335 size_t iPage = pMemLnx->cPages;
336 while (iPage-- > 0)
337 if (PageHighMem(pMemLnx->apPages[iPage]))
338 {
339 fMustMap = true;
340 break;
341 }
342 }
343
344 Assert(!pMemLnx->Core.pv);
345 Assert(!pMemLnx->fMappedToRing0);
346
347 if (fMustMap)
348 {
349 /*
350 * Use vmap - 2.4.22 and later.
351 */
352#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
353 pgprot_t fPg;
354 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
355# ifdef _PAGE_NX
356 if (!fExecutable)
357 pgprot_val(fPg) |= _PAGE_NX;
358# endif
359
360# ifdef VM_MAP
361 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
362# else
363 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
364# endif
365 if (pMemLnx->Core.pv)
366 pMemLnx->fMappedToRing0 = true;
367 else
368 rc = VERR_MAP_FAILED;
369#else /* < 2.4.22 */
370 rc = VERR_NOT_SUPPORTED;
371#endif
372 }
373 else
374 {
375 /*
376 * Use the kernel RAM mapping.
377 */
378 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
379 Assert(pMemLnx->Core.pv);
380 }
381
382 return rc;
383}
384
385
386/**
387 * Undos what rtR0MemObjLinuxVMap() did.
388 *
389 * @param pMemLnx The linux memory object.
390 */
391static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
392{
393#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
394 if (pMemLnx->fMappedToRing0)
395 {
396 Assert(pMemLnx->Core.pv);
397 vunmap(pMemLnx->Core.pv);
398 pMemLnx->fMappedToRing0 = false;
399 }
400#else /* < 2.4.22 */
401 Assert(!pMemLnx->fMappedToRing0);
402#endif
403 pMemLnx->Core.pv = NULL;
404}
405
406
407int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
408{
409 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
410
411 /*
412 * Release any memory that we've allocated or locked.
413 */
414 switch (pMemLnx->Core.enmType)
415 {
416 case RTR0MEMOBJTYPE_LOW:
417 case RTR0MEMOBJTYPE_PAGE:
418 case RTR0MEMOBJTYPE_CONT:
419 case RTR0MEMOBJTYPE_PHYS:
420 case RTR0MEMOBJTYPE_PHYS_NC:
421 rtR0MemObjLinuxVUnmap(pMemLnx);
422 rtR0MemObjLinuxFreePages(pMemLnx);
423 break;
424
425 case RTR0MEMOBJTYPE_LOCK:
426 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
427 {
428 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
429 size_t iPage;
430 Assert(pTask);
431 if (pTask && pTask->mm)
432 down_read(&pTask->mm->mmap_sem);
433
434 iPage = pMemLnx->cPages;
435 while (iPage-- > 0)
436 {
437 if (!PageReserved(pMemLnx->apPages[iPage]))
438 SetPageDirty(pMemLnx->apPages[iPage]);
439 page_cache_release(pMemLnx->apPages[iPage]);
440 }
441
442 if (pTask && pTask->mm)
443 up_read(&pTask->mm->mmap_sem);
444 }
445 /* else: kernel memory - nothing to do here. */
446 break;
447
448 case RTR0MEMOBJTYPE_RES_VIRT:
449 Assert(pMemLnx->Core.pv);
450 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
451 {
452 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
453 Assert(pTask);
454 if (pTask && pTask->mm)
455 {
456 down_write(&pTask->mm->mmap_sem);
457 MY_DO_MUNMAP(pTask->mm, (unsigned long)pMemLnx->Core.pv, pMemLnx->Core.cb);
458 up_write(&pTask->mm->mmap_sem);
459 }
460 }
461 else
462 {
463 vunmap(pMemLnx->Core.pv);
464
465 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
466 __free_page(pMemLnx->apPages[0]);
467 pMemLnx->apPages[0] = NULL;
468 pMemLnx->cPages = 0;
469 }
470 pMemLnx->Core.pv = NULL;
471 break;
472
473 case RTR0MEMOBJTYPE_MAPPING:
474 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
475 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
476 {
477 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
478 Assert(pTask);
479 if (pTask && pTask->mm)
480 {
481 down_write(&pTask->mm->mmap_sem);
482 MY_DO_MUNMAP(pTask->mm, (unsigned long)pMemLnx->Core.pv, pMemLnx->Core.cb);
483 up_write(&pTask->mm->mmap_sem);
484 }
485 }
486 else
487 vunmap(pMemLnx->Core.pv);
488 pMemLnx->Core.pv = NULL;
489 break;
490
491 default:
492 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
493 return VERR_INTERNAL_ERROR;
494 }
495 return VINF_SUCCESS;
496}
497
498
499int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
500{
501 PRTR0MEMOBJLNX pMemLnx;
502 int rc;
503
504#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
505 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, GFP_HIGHUSER, false /* non-contiguous */);
506#else
507 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, GFP_USER, false /* non-contiguous */);
508#endif
509 if (RT_SUCCESS(rc))
510 {
511 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
512 if (RT_SUCCESS(rc))
513 {
514 *ppMem = &pMemLnx->Core;
515 return rc;
516 }
517
518 rtR0MemObjLinuxFreePages(pMemLnx);
519 rtR0MemObjDelete(&pMemLnx->Core);
520 }
521
522 return rc;
523}
524
525
526int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
527{
528 PRTR0MEMOBJLNX pMemLnx;
529 int rc;
530
531 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
532#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
533 /* ZONE_DMA32: 0-4GB */
534 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, GFP_DMA32, false /* non-contiguous */);
535 if (RT_FAILURE(rc))
536#endif
537#ifdef RT_ARCH_AMD64
538 /* ZONE_DMA: 0-16MB */
539 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, GFP_DMA, false /* non-contiguous */);
540#else
541# ifdef CONFIG_X86_PAE
542# endif
543 /* ZONE_NORMAL: 0-896MB */
544 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, GFP_USER, false /* non-contiguous */);
545#endif
546 if (RT_SUCCESS(rc))
547 {
548 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
549 if (RT_SUCCESS(rc))
550 {
551 *ppMem = &pMemLnx->Core;
552 return rc;
553 }
554
555 rtR0MemObjLinuxFreePages(pMemLnx);
556 rtR0MemObjDelete(&pMemLnx->Core);
557 }
558
559 return rc;
560}
561
562
563int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
564{
565 PRTR0MEMOBJLNX pMemLnx;
566 int rc;
567
568#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
569 /* ZONE_DMA32: 0-4GB */
570 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, GFP_DMA32, true /* contiguous */);
571 if (RT_FAILURE(rc))
572#endif
573#ifdef RT_ARCH_AMD64
574 /* ZONE_DMA: 0-16MB */
575 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, GFP_DMA, true /* contiguous */);
576#else
577 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
578 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, GFP_USER, true /* contiguous */);
579#endif
580 if (RT_SUCCESS(rc))
581 {
582 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
583 if (RT_SUCCESS(rc))
584 {
585#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
586 size_t iPage = pMemLnx->cPages;
587 while (iPage-- > 0)
588 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
589#endif
590 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
591 *ppMem = &pMemLnx->Core;
592 return rc;
593 }
594
595 rtR0MemObjLinuxFreePages(pMemLnx);
596 rtR0MemObjDelete(&pMemLnx->Core);
597 }
598
599 return rc;
600}
601
602
603/**
604 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
605 *
606 * @returns IPRT status.
607 * @param ppMemLnx Where to
608 * @param enmType The object type.
609 * @param cb The size of the allocation.
610 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
611 * @param fGfp The Linux GFP flags to use for the allocation.
612 */
613static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, RTHCPHYS PhysHighest, unsigned fGfp)
614{
615 PRTR0MEMOBJLNX pMemLnx;
616 int rc;
617
618 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, fGfp,
619 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */);
620 if (RT_FAILURE(rc))
621 return rc;
622
623 /*
624 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
625 */
626 if (PhysHighest != NIL_RTHCPHYS)
627 {
628 size_t iPage = pMemLnx->cPages;
629 while (iPage-- > 0)
630 if (page_to_phys(pMemLnx->apPages[iPage]) >= PhysHighest)
631 {
632 rtR0MemObjLinuxFreePages(pMemLnx);
633 rtR0MemObjDelete(&pMemLnx->Core);
634 return VERR_NO_MEMORY;
635 }
636 }
637
638 /*
639 * Complete the object.
640 */
641 if (enmType == RTR0MEMOBJTYPE_PHYS)
642 {
643 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
644 pMemLnx->Core.u.Phys.fAllocated = true;
645 }
646 *ppMem = &pMemLnx->Core;
647 return rc;
648}
649
650
651/**
652 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
653 *
654 * @returns IPRT status.
655 * @param ppMem Where to store the memory object pointer on success.
656 * @param enmType The object type.
657 * @param cb The size of the allocation.
658 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
659 */
660static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, RTHCPHYS PhysHighest)
661{
662 int rc;
663
664 /*
665 * There are two clear cases and that's the <=16MB and anything-goes ones.
666 * When the physical address limit is somewhere inbetween those two we'll
667 * just have to try, starting with HIGHUSER and working our way thru the
668 * different types, hoping we'll get lucky.
669 *
670 * We should probably move this physical address restriction logic up to
671 * the page alloc function as it would be more efficient there. But since
672 * we don't expect this to be a performance issue just yet it can wait.
673 */
674 if (PhysHighest == NIL_RTHCPHYS)
675 /* ZONE_HIGHMEM: the whole physical memory */
676 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_HIGHUSER);
677 else if (PhysHighest <= _1M * 16)
678 /* ZONE_DMA: 0-16MB */
679 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_DMA);
680 else
681 {
682 rc = VERR_NO_MEMORY;
683 if (RT_FAILURE(rc))
684 /* ZONE_HIGHMEM: the whole physical memory */
685 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_HIGHUSER);
686 if (RT_FAILURE(rc))
687 /* ZONE_NORMAL: 0-896MB */
688 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_USER);
689#ifdef GFP_DMA32
690 if (RT_FAILURE(rc))
691 /* ZONE_DMA32: 0-4GB */
692 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_DMA32);
693#endif
694 if (RT_FAILURE(rc))
695 /* ZONE_DMA: 0-16MB */
696 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_DMA);
697 }
698 return rc;
699}
700
701
702int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
703{
704 /*
705 * Contiguous physical memory: Check for the alignment of the physical address.
706 * Use the knowledge that we are using alloc_pages(flags, order) for allocating
707 * contiguous physical memory which is always aligned at 2^(PAGE_SHIFT+order).
708 */
709 if (uAlignment > cb)
710 return VERR_NOT_SUPPORTED;
711
712 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, PhysHighest);
713}
714
715
716int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
717{
718 /*
719 * Non-contiguous memory.
720 */
721 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PhysHighest);
722}
723
724
725int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
726{
727 /*
728 * All we need to do here is to validate that we can use
729 * ioremap on the specified address (32/64-bit dma_addr_t).
730 */
731 PRTR0MEMOBJLNX pMemLnx;
732 dma_addr_t PhysAddr = Phys;
733 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
734
735 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
736 if (!pMemLnx)
737 return VERR_NO_MEMORY;
738
739 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
740 pMemLnx->Core.u.Phys.fAllocated = false;
741 Assert(!pMemLnx->cPages);
742 *ppMem = &pMemLnx->Core;
743 return VINF_SUCCESS;
744}
745
746
747int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
748{
749 const int cPages = cb >> PAGE_SHIFT;
750 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
751 struct vm_area_struct **papVMAs;
752 PRTR0MEMOBJLNX pMemLnx;
753 int rc = VERR_NO_MEMORY;
754 NOREF(fAccess);
755
756 /*
757 * Check for valid task and size overflows.
758 */
759 if (!pTask)
760 return VERR_NOT_SUPPORTED;
761 if (((size_t)cPages << PAGE_SHIFT) != cb)
762 return VERR_OUT_OF_RANGE;
763
764 /*
765 * Allocate the memory object and a temporary buffer for the VMAs.
766 */
767 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
768 if (!pMemLnx)
769 return VERR_NO_MEMORY;
770
771 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
772 if (papVMAs)
773 {
774 down_read(&pTask->mm->mmap_sem);
775
776 /*
777 * Get user pages.
778 */
779 rc = get_user_pages(pTask, /* Task for fault acounting. */
780 pTask->mm, /* Whose pages. */
781 R3Ptr, /* Where from. */
782 cPages, /* How many pages. */
783 1, /* Write to memory. */
784 0, /* force. */
785 &pMemLnx->apPages[0], /* Page array. */
786 papVMAs); /* vmas */
787 if (rc == cPages)
788 {
789 /*
790 * Flush dcache (required?), protect against fork and _really_ pin the page
791 * table entries. get_user_pages() will protect against swapping out the
792 * pages but it will NOT protect against removing page table entries. This
793 * can be achieved with
794 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
795 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
796 * Usual Linux distributions support only a limited size of locked pages
797 * (e.g. 32KB).
798 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
799 * or by
800 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
801 * a range check.
802 */
803 /** @todo The Linux fork() protection will require more work if this API
804 * is to be used for anything but locking VM pages. */
805 while (rc-- > 0)
806 {
807 flush_dcache_page(pMemLnx->apPages[rc]);
808 papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED);
809 }
810
811 up_read(&pTask->mm->mmap_sem);
812
813 RTMemFree(papVMAs);
814
815 pMemLnx->Core.u.Lock.R0Process = R0Process;
816 pMemLnx->cPages = cPages;
817 Assert(!pMemLnx->fMappedToRing0);
818 *ppMem = &pMemLnx->Core;
819
820 return VINF_SUCCESS;
821 }
822
823 /*
824 * Failed - we need to unlock any pages that we succeeded to lock.
825 */
826 while (rc-- > 0)
827 {
828 if (!PageReserved(pMemLnx->apPages[rc]))
829 SetPageDirty(pMemLnx->apPages[rc]);
830 page_cache_release(pMemLnx->apPages[rc]);
831 }
832
833 up_read(&pTask->mm->mmap_sem);
834
835 RTMemFree(papVMAs);
836 rc = VERR_LOCK_FAILED;
837 }
838
839 rtR0MemObjDelete(&pMemLnx->Core);
840 return rc;
841}
842
843
844int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
845{
846 void *pvLast = (uint8_t *)pv + cb - 1;
847 size_t const cPages = cb >> PAGE_SHIFT;
848 PRTR0MEMOBJLNX pMemLnx;
849 bool fLinearMapping;
850 int rc;
851 uint8_t *pbPage;
852 size_t iPage;
853 NOREF(fAccess);
854
855 /*
856 * Classify the memory and check that we can deal with it.
857 */
858#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
859 fLinearMapping = virt_addr_valid(pvLast) && virt_addr_valid(pv);
860#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 0)
861 fLinearMapping = VALID_PAGE(virt_to_page(pvLast)) && VALID_PAGE(virt_to_page(pv));
862#else
863# error "not supported"
864#endif
865 if (!fLinearMapping)
866 {
867#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 19)
868 if ( !RTR0MemKernelIsValidAddr(pv)
869 || !RTR0MemKernelIsValidAddr(pv + cb))
870#endif
871 return VERR_INVALID_PARAMETER;
872 }
873
874 /*
875 * Allocate the memory object.
876 */
877 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
878 if (!pMemLnx)
879 return VERR_NO_MEMORY;
880
881 /*
882 * Gather the pages.
883 * We ASSUME all kernel pages are non-swappable.
884 */
885 rc = VINF_SUCCESS;
886 pbPage = (uint8_t *)pvLast;
887 iPage = cPages;
888#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 19)
889 if (!fLinearMapping)
890 {
891 while (iPage-- > 0)
892 {
893 struct page *pPage = vmalloc_to_page(pbPage);
894 if (RT_UNLIKELY(!pPage))
895 {
896 rc = VERR_LOCK_FAILED;
897 break;
898 }
899 pMemLnx->apPages[iPage] = pPage;
900 pbPage -= PAGE_SIZE;
901 }
902 }
903 else
904#endif
905 {
906 while (iPage-- > 0)
907 {
908 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
909 pbPage -= PAGE_SIZE;
910 }
911 }
912 if (RT_SUCCESS(rc))
913 {
914 /*
915 * Complete the memory object and return.
916 */
917 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
918 pMemLnx->cPages = cPages;
919 Assert(!pMemLnx->fMappedToRing0);
920 *ppMem = &pMemLnx->Core;
921
922 return VINF_SUCCESS;
923 }
924
925 rtR0MemObjDelete(&pMemLnx->Core);
926 return rc;
927}
928
929
930int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
931{
932#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
933 const size_t cPages = cb >> PAGE_SHIFT;
934 struct page *pDummyPage;
935 struct page **papPages;
936
937 /* check for unsupported stuff. */
938 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
939 if (uAlignment > PAGE_SIZE)
940 return VERR_NOT_SUPPORTED;
941
942 /*
943 * Allocate a dummy page and create a page pointer array for vmap such that
944 * the dummy page is mapped all over the reserved area.
945 */
946 pDummyPage = alloc_page(GFP_HIGHUSER);
947 if (!pDummyPage)
948 return VERR_NO_MEMORY;
949 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
950 if (papPages)
951 {
952 void *pv;
953 size_t iPage = cPages;
954 while (iPage-- > 0)
955 papPages[iPage] = pDummyPage;
956# ifdef VM_MAP
957 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
958# else
959 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
960# endif
961 RTMemFree(papPages);
962 if (pv)
963 {
964 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
965 if (pMemLnx)
966 {
967 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
968 pMemLnx->cPages = 1;
969 pMemLnx->apPages[0] = pDummyPage;
970 *ppMem = &pMemLnx->Core;
971 return VINF_SUCCESS;
972 }
973 vunmap(pv);
974 }
975 }
976 __free_page(pDummyPage);
977 return VERR_NO_MEMORY;
978
979#else /* < 2.4.22 */
980 /*
981 * Could probably use ioremap here, but the caller is in a better position than us
982 * to select some safe physical memory.
983 */
984 return VERR_NOT_SUPPORTED;
985#endif
986}
987
988
989/**
990 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
991 * an empty user space mapping.
992 *
993 * The caller takes care of acquiring the mmap_sem of the task.
994 *
995 * @returns Pointer to the mapping.
996 * (void *)-1 on failure.
997 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
998 * @param cb The size of the mapping.
999 * @param uAlignment The alignment of the mapping.
1000 * @param pTask The Linux task to create this mapping in.
1001 * @param fProt The RTMEM_PROT_* mask.
1002 */
1003static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
1004{
1005 unsigned fLnxProt;
1006 unsigned long ulAddr;
1007
1008 /*
1009 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
1010 */
1011 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
1012 if (fProt == RTMEM_PROT_NONE)
1013 fLnxProt = PROT_NONE;
1014 else
1015 {
1016 fLnxProt = 0;
1017 if (fProt & RTMEM_PROT_READ)
1018 fLnxProt |= PROT_READ;
1019 if (fProt & RTMEM_PROT_WRITE)
1020 fLnxProt |= PROT_WRITE;
1021 if (fProt & RTMEM_PROT_EXEC)
1022 fLnxProt |= PROT_EXEC;
1023 }
1024
1025 if (R3PtrFixed != (RTR3PTR)-1)
1026 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
1027 else
1028 {
1029 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
1030 if ( !(ulAddr & ~PAGE_MASK)
1031 && (ulAddr & (uAlignment - 1)))
1032 {
1033 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
1034 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
1035 * ourselves) and further by there begin two mmap strategies (top / bottom). */
1036 /* For now, just ignore uAlignment requirements... */
1037 }
1038 }
1039 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
1040 return (void *)-1;
1041 return (void *)ulAddr;
1042}
1043
1044
1045int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
1046{
1047 PRTR0MEMOBJLNX pMemLnx;
1048 void *pv;
1049 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1050 if (!pTask)
1051 return VERR_NOT_SUPPORTED;
1052
1053 /*
1054 * Check that the specified alignment is supported.
1055 */
1056 if (uAlignment > PAGE_SIZE)
1057 return VERR_NOT_SUPPORTED;
1058
1059 /*
1060 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1061 */
1062 down_write(&pTask->mm->mmap_sem);
1063 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1064 up_write(&pTask->mm->mmap_sem);
1065 if (pv == (void *)-1)
1066 return VERR_NO_MEMORY;
1067
1068 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1069 if (!pMemLnx)
1070 {
1071 down_write(&pTask->mm->mmap_sem);
1072 MY_DO_MUNMAP(pTask->mm, (unsigned long)pv, cb);
1073 up_write(&pTask->mm->mmap_sem);
1074 return VERR_NO_MEMORY;
1075 }
1076
1077 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1078 *ppMem = &pMemLnx->Core;
1079 return VINF_SUCCESS;
1080}
1081
1082
1083int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
1084 unsigned fProt, size_t offSub, size_t cbSub)
1085{
1086 int rc = VERR_NO_MEMORY;
1087 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1088 PRTR0MEMOBJLNX pMemLnx;
1089
1090 /* Fail if requested to do something we can't. */
1091 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
1092 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1093 if (uAlignment > PAGE_SIZE)
1094 return VERR_NOT_SUPPORTED;
1095
1096 /*
1097 * Create the IPRT memory object.
1098 */
1099 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1100 if (pMemLnx)
1101 {
1102 if (pMemLnxToMap->cPages)
1103 {
1104#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1105 /*
1106 * Use vmap - 2.4.22 and later.
1107 */
1108 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1109# ifdef VM_MAP
1110 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
1111# else
1112 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
1113# endif
1114 if (pMemLnx->Core.pv)
1115 {
1116 pMemLnx->fMappedToRing0 = true;
1117 rc = VINF_SUCCESS;
1118 }
1119 else
1120 rc = VERR_MAP_FAILED;
1121
1122#else /* < 2.4.22 */
1123 /*
1124 * Only option here is to share mappings if possible and forget about fProt.
1125 */
1126 if (rtR0MemObjIsRing3(pMemToMap))
1127 rc = VERR_NOT_SUPPORTED;
1128 else
1129 {
1130 rc = VINF_SUCCESS;
1131 if (!pMemLnxToMap->Core.pv)
1132 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1133 if (RT_SUCCESS(rc))
1134 {
1135 Assert(pMemLnxToMap->Core.pv);
1136 pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
1137 }
1138 }
1139#endif
1140 }
1141 else
1142 {
1143 /*
1144 * MMIO / physical memory.
1145 */
1146 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1147 pMemLnx->Core.pv = ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
1148 if (pMemLnx->Core.pv)
1149 {
1150 /** @todo fix protection. */
1151 rc = VINF_SUCCESS;
1152 }
1153 }
1154 if (RT_SUCCESS(rc))
1155 {
1156 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1157 *ppMem = &pMemLnx->Core;
1158 return VINF_SUCCESS;
1159 }
1160 rtR0MemObjDelete(&pMemLnx->Core);
1161 }
1162
1163 return rc;
1164}
1165
1166
1167#ifdef VBOX_USE_PAE_HACK
1168/**
1169 * Replace the PFN of a PTE with the address of the actual page.
1170 *
1171 * The caller maps a reserved dummy page at the address with the desired access
1172 * and flags.
1173 *
1174 * This hack is required for older Linux kernels which don't provide
1175 * remap_pfn_range().
1176 *
1177 * @returns 0 on success, -ENOMEM on failure.
1178 * @param mm The memory context.
1179 * @param ulAddr The mapping address.
1180 * @param Phys The physical address of the page to map.
1181 */
1182static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1183{
1184 int rc = -ENOMEM;
1185 pgd_t *pgd;
1186
1187 spin_lock(&mm->page_table_lock);
1188
1189 pgd = pgd_offset(mm, ulAddr);
1190 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1191 {
1192 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1193 if (!pmd_none(*pmd))
1194 {
1195 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1196 if (ptep)
1197 {
1198 pte_t pte = *ptep;
1199 pte.pte_high &= 0xfff00000;
1200 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1201 pte.pte_low &= 0x00000fff;
1202 pte.pte_low |= (Phys & 0xfffff000);
1203 set_pte(ptep, pte);
1204 pte_unmap(ptep);
1205 rc = 0;
1206 }
1207 }
1208 }
1209
1210 spin_unlock(&mm->page_table_lock);
1211 return rc;
1212}
1213#endif /* VBOX_USE_PAE_HACK */
1214
1215
1216int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
1217{
1218 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1219 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1220 int rc = VERR_NO_MEMORY;
1221 PRTR0MEMOBJLNX pMemLnx;
1222#ifdef VBOX_USE_PAE_HACK
1223 struct page *pDummyPage;
1224 RTHCPHYS DummyPhys;
1225#endif
1226
1227 /*
1228 * Check for restrictions.
1229 */
1230 if (!pTask)
1231 return VERR_NOT_SUPPORTED;
1232 if (uAlignment > PAGE_SIZE)
1233 return VERR_NOT_SUPPORTED;
1234
1235#ifdef VBOX_USE_PAE_HACK
1236 /*
1237 * Allocate a dummy page for use when mapping the memory.
1238 */
1239 pDummyPage = alloc_page(GFP_USER);
1240 if (!pDummyPage)
1241 return VERR_NO_MEMORY;
1242 SetPageReserved(pDummyPage);
1243 DummyPhys = page_to_phys(pDummyPage);
1244#endif
1245
1246 /*
1247 * Create the IPRT memory object.
1248 */
1249 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1250 if (pMemLnx)
1251 {
1252 /*
1253 * Allocate user space mapping.
1254 */
1255 void *pv;
1256 down_write(&pTask->mm->mmap_sem);
1257 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
1258 if (pv != (void *)-1)
1259 {
1260 /*
1261 * Map page by page into the mmap area.
1262 * This is generic, paranoid and not very efficient.
1263 */
1264 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1265 unsigned long ulAddrCur = (unsigned long)pv;
1266 const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
1267 size_t iPage;
1268
1269 rc = 0;
1270 if (pMemLnxToMap->cPages)
1271 {
1272 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1273 {
1274#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)
1275 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1276#endif
1277#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1278 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1279 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1280#endif
1281#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1282 /* remap_page_range() limitation on x86 */
1283 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1284#endif
1285
1286#if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
1287 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1288 vma->vm_flags |= VM_RESERVED; /* This flag helps making 100% sure some bad stuff wont happen (swap, core, ++). */
1289#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1290 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1291#elif defined(VBOX_USE_PAE_HACK)
1292 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1293 if (!rc)
1294 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1295#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1296 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1297#else /* 2.4 */
1298 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1299#endif
1300 if (rc)
1301 {
1302 rc = VERR_NO_MEMORY;
1303 break;
1304 }
1305 }
1306 }
1307 else
1308 {
1309 RTHCPHYS Phys;
1310 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1311 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1312 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1313 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1314 else
1315 {
1316 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1317 Phys = NIL_RTHCPHYS;
1318 }
1319 if (Phys != NIL_RTHCPHYS)
1320 {
1321 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1322 {
1323#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1324 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1325 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1326#endif
1327#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1328 /* remap_page_range() limitation on x86 */
1329 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1330#endif
1331
1332#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1333 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1334#elif defined(VBOX_USE_PAE_HACK)
1335 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1336 if (!rc)
1337 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1338#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1339 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1340#else /* 2.4 */
1341 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1342#endif
1343 if (rc)
1344 {
1345 rc = VERR_NO_MEMORY;
1346 break;
1347 }
1348 }
1349 }
1350 }
1351 if (!rc)
1352 {
1353 up_write(&pTask->mm->mmap_sem);
1354#ifdef VBOX_USE_PAE_HACK
1355 __free_page(pDummyPage);
1356#endif
1357
1358 pMemLnx->Core.pv = pv;
1359 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1360 *ppMem = &pMemLnx->Core;
1361 return VINF_SUCCESS;
1362 }
1363
1364 /*
1365 * Bail out.
1366 */
1367 MY_DO_MUNMAP(pTask->mm, (unsigned long)pv, pMemLnxToMap->Core.cb);
1368 }
1369 up_write(&pTask->mm->mmap_sem);
1370 rtR0MemObjDelete(&pMemLnx->Core);
1371 }
1372#ifdef VBOX_USE_PAE_HACK
1373 __free_page(pDummyPage);
1374#endif
1375
1376 return rc;
1377}
1378
1379
1380int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1381{
1382 NOREF(pMem);
1383 NOREF(offSub);
1384 NOREF(cbSub);
1385 NOREF(fProt);
1386 return VERR_NOT_SUPPORTED;
1387}
1388
1389
1390RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1391{
1392 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1393
1394 if (pMemLnx->cPages)
1395 return page_to_phys(pMemLnx->apPages[iPage]);
1396
1397 switch (pMemLnx->Core.enmType)
1398 {
1399 case RTR0MEMOBJTYPE_CONT:
1400 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1401
1402 case RTR0MEMOBJTYPE_PHYS:
1403 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1404
1405 /* the parent knows */
1406 case RTR0MEMOBJTYPE_MAPPING:
1407 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1408
1409 /* cPages > 0 */
1410 case RTR0MEMOBJTYPE_LOW:
1411 case RTR0MEMOBJTYPE_LOCK:
1412 case RTR0MEMOBJTYPE_PHYS_NC:
1413 case RTR0MEMOBJTYPE_PAGE:
1414 default:
1415 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1416 /* fall thru */
1417
1418 case RTR0MEMOBJTYPE_RES_VIRT:
1419 return NIL_RTHCPHYS;
1420 }
1421}
1422
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette