VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c@ 60453

Last change on this file since 60453 was 60453, checked in by vboxsync, 9 years ago

Runtime/Additions: Linux 4.6 fixes

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev Revision
File size: 55.6 KB
Line 
1/* $Id: memobj-r0drv-linux.c 60453 2016-04-12 13:04:28Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-linux-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/alloc.h>
35#include <iprt/assert.h>
36#include <iprt/log.h>
37#include <iprt/process.h>
38#include <iprt/string.h>
39#include "internal/memobj.h"
40
41
42/*********************************************************************************************************************************
43* Defined Constants And Macros *
44*********************************************************************************************************************************/
45/* early 2.6 kernels */
46#ifndef PAGE_SHARED_EXEC
47# define PAGE_SHARED_EXEC PAGE_SHARED
48#endif
49#ifndef PAGE_READONLY_EXEC
50# define PAGE_READONLY_EXEC PAGE_READONLY
51#endif
52
53/*
54 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
55 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
56 * It should be safe to use vm_insert_page() older kernels as well.
57 */
58#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
59# define VBOX_USE_INSERT_PAGE
60#endif
61#if defined(CONFIG_X86_PAE) \
62 && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
63 || ( LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) \
64 && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)))
65# define VBOX_USE_PAE_HACK
66#endif
67
68
69/*********************************************************************************************************************************
70* Structures and Typedefs *
71*********************************************************************************************************************************/
72/**
73 * The Darwin version of the memory object structure.
74 */
75typedef struct RTR0MEMOBJLNX
76{
77 /** The core structure. */
78 RTR0MEMOBJINTERNAL Core;
79 /** Set if the allocation is contiguous.
80 * This means it has to be given back as one chunk. */
81 bool fContiguous;
82 /** Set if we've vmap'ed the memory into ring-0. */
83 bool fMappedToRing0;
84 /** The pages in the apPages array. */
85 size_t cPages;
86 /** Array of struct page pointers. (variable size) */
87 struct page *apPages[1];
88} RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
89
90
91static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
92
93
94/**
95 * Helper that converts from a RTR0PROCESS handle to a linux task.
96 *
97 * @returns The corresponding Linux task.
98 * @param R0Process IPRT ring-0 process handle.
99 */
100static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
101{
102 /** @todo fix rtR0ProcessToLinuxTask!! */
103 /** @todo many (all?) callers currently assume that we return 'current'! */
104 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
105}
106
107
108/**
109 * Compute order. Some functions allocate 2^order pages.
110 *
111 * @returns order.
112 * @param cPages Number of pages.
113 */
114static int rtR0MemObjLinuxOrder(size_t cPages)
115{
116 int iOrder;
117 size_t cTmp;
118
119 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
120 ;
121 if (cPages & ~((size_t)1 << iOrder))
122 ++iOrder;
123
124 return iOrder;
125}
126
127
128/**
129 * Converts from RTMEM_PROT_* to Linux PAGE_*.
130 *
131 * @returns Linux page protection constant.
132 * @param fProt The IPRT protection mask.
133 * @param fKernel Whether it applies to kernel or user space.
134 */
135static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
136{
137 switch (fProt)
138 {
139 default:
140 AssertMsgFailed(("%#x %d\n", fProt, fKernel));
141 case RTMEM_PROT_NONE:
142 return PAGE_NONE;
143
144 case RTMEM_PROT_READ:
145 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
146
147 case RTMEM_PROT_WRITE:
148 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
149 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
150
151 case RTMEM_PROT_EXEC:
152 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
153#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
154 if (fKernel)
155 {
156 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
157 pgprot_val(fPg) &= ~_PAGE_RW;
158 return fPg;
159 }
160 return PAGE_READONLY_EXEC;
161#else
162 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
163#endif
164
165 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
166 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
167 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
168 }
169}
170
171
172/**
173 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
174 * an empty user space mapping.
175 *
176 * We acquire the mmap_sem of the task!
177 *
178 * @returns Pointer to the mapping.
179 * (void *)-1 on failure.
180 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
181 * @param cb The size of the mapping.
182 * @param uAlignment The alignment of the mapping.
183 * @param pTask The Linux task to create this mapping in.
184 * @param fProt The RTMEM_PROT_* mask.
185 */
186static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
187{
188 unsigned fLnxProt;
189 unsigned long ulAddr;
190
191 Assert((pTask == current)); /* do_mmap */
192
193 /*
194 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
195 */
196 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
197 if (fProt == RTMEM_PROT_NONE)
198 fLnxProt = PROT_NONE;
199 else
200 {
201 fLnxProt = 0;
202 if (fProt & RTMEM_PROT_READ)
203 fLnxProt |= PROT_READ;
204 if (fProt & RTMEM_PROT_WRITE)
205 fLnxProt |= PROT_WRITE;
206 if (fProt & RTMEM_PROT_EXEC)
207 fLnxProt |= PROT_EXEC;
208 }
209
210 if (R3PtrFixed != (RTR3PTR)-1)
211 {
212#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
213 ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
214#else
215 down_write(&pTask->mm->mmap_sem);
216 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
217 up_write(&pTask->mm->mmap_sem);
218#endif
219 }
220 else
221 {
222#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
223 ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
224#else
225 down_write(&pTask->mm->mmap_sem);
226 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
227 up_write(&pTask->mm->mmap_sem);
228#endif
229 if ( !(ulAddr & ~PAGE_MASK)
230 && (ulAddr & (uAlignment - 1)))
231 {
232 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
233 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
234 * ourselves) and further by there begin two mmap strategies (top / bottom). */
235 /* For now, just ignore uAlignment requirements... */
236 }
237 }
238
239
240 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
241 return (void *)-1;
242 return (void *)ulAddr;
243}
244
245
246/**
247 * Worker that destroys a user space mapping.
248 * Undoes what rtR0MemObjLinuxDoMmap did.
249 *
250 * We acquire the mmap_sem of the task!
251 *
252 * @param pv The ring-3 mapping.
253 * @param cb The size of the mapping.
254 * @param pTask The Linux task to destroy this mapping in.
255 */
256static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
257{
258#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
259 Assert(pTask == current);
260 vm_munmap((unsigned long)pv, cb);
261#elif defined(USE_RHEL4_MUNMAP)
262 down_write(&pTask->mm->mmap_sem);
263 do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
264 up_write(&pTask->mm->mmap_sem);
265#else
266 down_write(&pTask->mm->mmap_sem);
267 do_munmap(pTask->mm, (unsigned long)pv, cb);
268 up_write(&pTask->mm->mmap_sem);
269#endif
270}
271
272
273/**
274 * Internal worker that allocates physical pages and creates the memory object for them.
275 *
276 * @returns IPRT status code.
277 * @param ppMemLnx Where to store the memory object pointer.
278 * @param enmType The object type.
279 * @param cb The number of bytes to allocate.
280 * @param uAlignment The alignment of the physical memory.
281 * Only valid if fContiguous == true, ignored otherwise.
282 * @param fFlagsLnx The page allocation flags (GPFs).
283 * @param fContiguous Whether the allocation must be contiguous.
284 * @param rcNoMem What to return when we're out of pages.
285 */
286static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
287 size_t uAlignment, unsigned fFlagsLnx, bool fContiguous, int rcNoMem)
288{
289 size_t iPage;
290 size_t const cPages = cb >> PAGE_SHIFT;
291 struct page *paPages;
292
293 /*
294 * Allocate a memory object structure that's large enough to contain
295 * the page pointer array.
296 */
297 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
298 if (!pMemLnx)
299 return VERR_NO_MEMORY;
300 pMemLnx->cPages = cPages;
301
302 if (cPages > 255)
303 {
304# ifdef __GFP_REPEAT
305 /* Try hard to allocate the memory, but the allocation attempt might fail. */
306 fFlagsLnx |= __GFP_REPEAT;
307# endif
308# ifdef __GFP_NOMEMALLOC
309 /* Introduced with Linux 2.6.12: Don't use emergency reserves */
310 fFlagsLnx |= __GFP_NOMEMALLOC;
311# endif
312 }
313
314 /*
315 * Allocate the pages.
316 * For small allocations we'll try contiguous first and then fall back on page by page.
317 */
318#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
319 if ( fContiguous
320 || cb <= PAGE_SIZE * 2)
321 {
322# ifdef VBOX_USE_INSERT_PAGE
323 paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
324# else
325 paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
326# endif
327 if (paPages)
328 {
329 fContiguous = true;
330 for (iPage = 0; iPage < cPages; iPage++)
331 pMemLnx->apPages[iPage] = &paPages[iPage];
332 }
333 else if (fContiguous)
334 {
335 rtR0MemObjDelete(&pMemLnx->Core);
336 return rcNoMem;
337 }
338 }
339
340 if (!fContiguous)
341 {
342 for (iPage = 0; iPage < cPages; iPage++)
343 {
344 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
345 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
346 {
347 while (iPage-- > 0)
348 __free_page(pMemLnx->apPages[iPage]);
349 rtR0MemObjDelete(&pMemLnx->Core);
350 return rcNoMem;
351 }
352 }
353 }
354
355#else /* < 2.4.22 */
356 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
357 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
358 if (!paPages)
359 {
360 rtR0MemObjDelete(&pMemLnx->Core);
361 return rcNoMem;
362 }
363 for (iPage = 0; iPage < cPages; iPage++)
364 {
365 pMemLnx->apPages[iPage] = &paPages[iPage];
366 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
367 if (PageHighMem(pMemLnx->apPages[iPage]))
368 BUG();
369 }
370
371 fContiguous = true;
372#endif /* < 2.4.22 */
373 pMemLnx->fContiguous = fContiguous;
374
375#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
376 /*
377 * Reserve the pages.
378 *
379 * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
380 * pages. According to Michal Hocko this shouldn't be necessary anyway because
381 * as pages which are not on the LRU list are never evictable.
382 */
383 for (iPage = 0; iPage < cPages; iPage++)
384 SetPageReserved(pMemLnx->apPages[iPage]);
385#endif
386
387 /*
388 * Note that the physical address of memory allocated with alloc_pages(flags, order)
389 * is always 2^(PAGE_SHIFT+order)-aligned.
390 */
391 if ( fContiguous
392 && uAlignment > PAGE_SIZE)
393 {
394 /*
395 * Check for alignment constraints. The physical address of memory allocated with
396 * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
397 */
398 if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
399 {
400 /*
401 * This should never happen!
402 */
403 printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
404 (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
405 rtR0MemObjLinuxFreePages(pMemLnx);
406 return rcNoMem;
407 }
408 }
409
410 *ppMemLnx = pMemLnx;
411 return VINF_SUCCESS;
412}
413
414
415/**
416 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
417 *
418 * This method does NOT free the object.
419 *
420 * @param pMemLnx The object which physical pages should be freed.
421 */
422static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
423{
424 size_t iPage = pMemLnx->cPages;
425 if (iPage > 0)
426 {
427 /*
428 * Restore the page flags.
429 */
430 while (iPage-- > 0)
431 {
432#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
433 /*
434 * See SetPageReserved() in rtR0MemObjLinuxAllocPages()
435 */
436 ClearPageReserved(pMemLnx->apPages[iPage]);
437#endif
438#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
439#else
440 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
441#endif
442 }
443
444 /*
445 * Free the pages.
446 */
447#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
448 if (!pMemLnx->fContiguous)
449 {
450 iPage = pMemLnx->cPages;
451 while (iPage-- > 0)
452 __free_page(pMemLnx->apPages[iPage]);
453 }
454 else
455#endif
456 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
457
458 pMemLnx->cPages = 0;
459 }
460}
461
462
463/**
464 * Maps the allocation into ring-0.
465 *
466 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
467 *
468 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
469 * space, so we'll use that mapping if possible. If execute access is required, we'll
470 * play safe and do our own mapping.
471 *
472 * @returns IPRT status code.
473 * @param pMemLnx The linux memory object to map.
474 * @param fExecutable Whether execute access is required.
475 */
476static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
477{
478 int rc = VINF_SUCCESS;
479
480 /*
481 * Choose mapping strategy.
482 */
483 bool fMustMap = fExecutable
484 || !pMemLnx->fContiguous;
485 if (!fMustMap)
486 {
487 size_t iPage = pMemLnx->cPages;
488 while (iPage-- > 0)
489 if (PageHighMem(pMemLnx->apPages[iPage]))
490 {
491 fMustMap = true;
492 break;
493 }
494 }
495
496 Assert(!pMemLnx->Core.pv);
497 Assert(!pMemLnx->fMappedToRing0);
498
499 if (fMustMap)
500 {
501 /*
502 * Use vmap - 2.4.22 and later.
503 */
504#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
505 pgprot_t fPg;
506 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
507# ifdef _PAGE_NX
508 if (!fExecutable)
509 pgprot_val(fPg) |= _PAGE_NX;
510# endif
511
512# ifdef VM_MAP
513 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
514# else
515 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
516# endif
517 if (pMemLnx->Core.pv)
518 pMemLnx->fMappedToRing0 = true;
519 else
520 rc = VERR_MAP_FAILED;
521#else /* < 2.4.22 */
522 rc = VERR_NOT_SUPPORTED;
523#endif
524 }
525 else
526 {
527 /*
528 * Use the kernel RAM mapping.
529 */
530 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
531 Assert(pMemLnx->Core.pv);
532 }
533
534 return rc;
535}
536
537
538/**
539 * Undoes what rtR0MemObjLinuxVMap() did.
540 *
541 * @param pMemLnx The linux memory object.
542 */
543static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
544{
545#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
546 if (pMemLnx->fMappedToRing0)
547 {
548 Assert(pMemLnx->Core.pv);
549 vunmap(pMemLnx->Core.pv);
550 pMemLnx->fMappedToRing0 = false;
551 }
552#else /* < 2.4.22 */
553 Assert(!pMemLnx->fMappedToRing0);
554#endif
555 pMemLnx->Core.pv = NULL;
556}
557
558
559DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
560{
561 IPRT_LINUX_SAVE_EFL_AC();
562 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
563
564 /*
565 * Release any memory that we've allocated or locked.
566 */
567 switch (pMemLnx->Core.enmType)
568 {
569 case RTR0MEMOBJTYPE_LOW:
570 case RTR0MEMOBJTYPE_PAGE:
571 case RTR0MEMOBJTYPE_CONT:
572 case RTR0MEMOBJTYPE_PHYS:
573 case RTR0MEMOBJTYPE_PHYS_NC:
574 rtR0MemObjLinuxVUnmap(pMemLnx);
575 rtR0MemObjLinuxFreePages(pMemLnx);
576 break;
577
578 case RTR0MEMOBJTYPE_LOCK:
579 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
580 {
581 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
582 size_t iPage;
583 Assert(pTask);
584 if (pTask && pTask->mm)
585 down_read(&pTask->mm->mmap_sem);
586
587 iPage = pMemLnx->cPages;
588 while (iPage-- > 0)
589 {
590 if (!PageReserved(pMemLnx->apPages[iPage]))
591 SetPageDirty(pMemLnx->apPages[iPage]);
592#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
593 put_page(pMemLnx->apPages[iPage]);
594#else
595 page_cache_release(pMemLnx->apPages[iPage]);
596#endif
597 }
598
599 if (pTask && pTask->mm)
600 up_read(&pTask->mm->mmap_sem);
601 }
602 /* else: kernel memory - nothing to do here. */
603 break;
604
605 case RTR0MEMOBJTYPE_RES_VIRT:
606 Assert(pMemLnx->Core.pv);
607 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
608 {
609 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
610 Assert(pTask);
611 if (pTask && pTask->mm)
612 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
613 }
614 else
615 {
616 vunmap(pMemLnx->Core.pv);
617
618 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
619 __free_page(pMemLnx->apPages[0]);
620 pMemLnx->apPages[0] = NULL;
621 pMemLnx->cPages = 0;
622 }
623 pMemLnx->Core.pv = NULL;
624 break;
625
626 case RTR0MEMOBJTYPE_MAPPING:
627 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
628 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
629 {
630 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
631 Assert(pTask);
632 if (pTask && pTask->mm)
633 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
634 }
635 else
636 vunmap(pMemLnx->Core.pv);
637 pMemLnx->Core.pv = NULL;
638 break;
639
640 default:
641 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
642 return VERR_INTERNAL_ERROR;
643 }
644 IPRT_LINUX_RESTORE_EFL_ONLY_AC();
645 return VINF_SUCCESS;
646}
647
648
649DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
650{
651 IPRT_LINUX_SAVE_EFL_AC();
652 PRTR0MEMOBJLNX pMemLnx;
653 int rc;
654
655#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
656 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
657 false /* non-contiguous */, VERR_NO_MEMORY);
658#else
659 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
660 false /* non-contiguous */, VERR_NO_MEMORY);
661#endif
662 if (RT_SUCCESS(rc))
663 {
664 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
665 if (RT_SUCCESS(rc))
666 {
667 *ppMem = &pMemLnx->Core;
668 IPRT_LINUX_RESTORE_EFL_AC();
669 return rc;
670 }
671
672 rtR0MemObjLinuxFreePages(pMemLnx);
673 rtR0MemObjDelete(&pMemLnx->Core);
674 }
675
676 IPRT_LINUX_RESTORE_EFL_AC();
677 return rc;
678}
679
680
681DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
682{
683 IPRT_LINUX_SAVE_EFL_AC();
684 PRTR0MEMOBJLNX pMemLnx;
685 int rc;
686
687 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
688#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
689 /* ZONE_DMA32: 0-4GB */
690 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
691 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
692 if (RT_FAILURE(rc))
693#endif
694#ifdef RT_ARCH_AMD64
695 /* ZONE_DMA: 0-16MB */
696 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
697 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
698#else
699# ifdef CONFIG_X86_PAE
700# endif
701 /* ZONE_NORMAL: 0-896MB */
702 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
703 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
704#endif
705 if (RT_SUCCESS(rc))
706 {
707 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
708 if (RT_SUCCESS(rc))
709 {
710 *ppMem = &pMemLnx->Core;
711 IPRT_LINUX_RESTORE_EFL_AC();
712 return rc;
713 }
714
715 rtR0MemObjLinuxFreePages(pMemLnx);
716 rtR0MemObjDelete(&pMemLnx->Core);
717 }
718
719 IPRT_LINUX_RESTORE_EFL_AC();
720 return rc;
721}
722
723
724DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
725{
726 IPRT_LINUX_SAVE_EFL_AC();
727 PRTR0MEMOBJLNX pMemLnx;
728 int rc;
729
730#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
731 /* ZONE_DMA32: 0-4GB */
732 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
733 true /* contiguous */, VERR_NO_CONT_MEMORY);
734 if (RT_FAILURE(rc))
735#endif
736#ifdef RT_ARCH_AMD64
737 /* ZONE_DMA: 0-16MB */
738 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
739 true /* contiguous */, VERR_NO_CONT_MEMORY);
740#else
741 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
742 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
743 true /* contiguous */, VERR_NO_CONT_MEMORY);
744#endif
745 if (RT_SUCCESS(rc))
746 {
747 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
748 if (RT_SUCCESS(rc))
749 {
750#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
751 size_t iPage = pMemLnx->cPages;
752 while (iPage-- > 0)
753 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
754#endif
755 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
756 *ppMem = &pMemLnx->Core;
757 IPRT_LINUX_RESTORE_EFL_AC();
758 return rc;
759 }
760
761 rtR0MemObjLinuxFreePages(pMemLnx);
762 rtR0MemObjDelete(&pMemLnx->Core);
763 }
764
765 IPRT_LINUX_RESTORE_EFL_AC();
766 return rc;
767}
768
769
770/**
771 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
772 *
773 * @returns IPRT status code.
774 * @param ppMemLnx Where to
775 * @param enmType The object type.
776 * @param cb The size of the allocation.
777 * @param uAlignment The alignment of the physical memory.
778 * Only valid for fContiguous == true, ignored otherwise.
779 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
780 * @param fGfp The Linux GFP flags to use for the allocation.
781 */
782static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
783 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, unsigned fGfp)
784{
785 PRTR0MEMOBJLNX pMemLnx;
786 int rc;
787
788 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
789 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
790 VERR_NO_PHYS_MEMORY);
791 if (RT_FAILURE(rc))
792 return rc;
793
794 /*
795 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
796 */
797 if (PhysHighest != NIL_RTHCPHYS)
798 {
799 size_t iPage = pMemLnx->cPages;
800 while (iPage-- > 0)
801 if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
802 {
803 rtR0MemObjLinuxFreePages(pMemLnx);
804 rtR0MemObjDelete(&pMemLnx->Core);
805 return VERR_NO_MEMORY;
806 }
807 }
808
809 /*
810 * Complete the object.
811 */
812 if (enmType == RTR0MEMOBJTYPE_PHYS)
813 {
814 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
815 pMemLnx->Core.u.Phys.fAllocated = true;
816 }
817 *ppMem = &pMemLnx->Core;
818 return rc;
819}
820
821
822/**
823 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
824 *
825 * @returns IPRT status code.
826 * @param ppMem Where to store the memory object pointer on success.
827 * @param enmType The object type.
828 * @param cb The size of the allocation.
829 * @param uAlignment The alignment of the physical memory.
830 * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
831 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
832 */
833static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
834 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
835{
836 int rc;
837 IPRT_LINUX_SAVE_EFL_AC();
838
839 /*
840 * There are two clear cases and that's the <=16MB and anything-goes ones.
841 * When the physical address limit is somewhere in-between those two we'll
842 * just have to try, starting with HIGHUSER and working our way thru the
843 * different types, hoping we'll get lucky.
844 *
845 * We should probably move this physical address restriction logic up to
846 * the page alloc function as it would be more efficient there. But since
847 * we don't expect this to be a performance issue just yet it can wait.
848 */
849 if (PhysHighest == NIL_RTHCPHYS)
850 /* ZONE_HIGHMEM: the whole physical memory */
851 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
852 else if (PhysHighest <= _1M * 16)
853 /* ZONE_DMA: 0-16MB */
854 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
855 else
856 {
857 rc = VERR_NO_MEMORY;
858 if (RT_FAILURE(rc))
859 /* ZONE_HIGHMEM: the whole physical memory */
860 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
861 if (RT_FAILURE(rc))
862 /* ZONE_NORMAL: 0-896MB */
863 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
864#ifdef GFP_DMA32
865 if (RT_FAILURE(rc))
866 /* ZONE_DMA32: 0-4GB */
867 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
868#endif
869 if (RT_FAILURE(rc))
870 /* ZONE_DMA: 0-16MB */
871 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
872 }
873 IPRT_LINUX_RESTORE_EFL_AC();
874 return rc;
875}
876
877
878/**
879 * Translates a kernel virtual address to a linux page structure by walking the
880 * page tables.
881 *
882 * @note We do assume that the page tables will not change as we are walking
883 * them. This assumption is rather forced by the fact that I could not
884 * immediately see any way of preventing this from happening. So, we
885 * take some extra care when accessing them.
886 *
887 * Because of this, we don't want to use this function on memory where
888 * attribute changes to nearby pages is likely to cause large pages to
889 * be used or split up. So, don't use this for the linear mapping of
890 * physical memory.
891 *
892 * @returns Pointer to the page structur or NULL if it could not be found.
893 * @param pv The kernel virtual address.
894 */
895static struct page *rtR0MemObjLinuxVirtToPage(void *pv)
896{
897 unsigned long ulAddr = (unsigned long)pv;
898 unsigned long pfn;
899 struct page *pPage;
900 pte_t *pEntry;
901 union
902 {
903 pgd_t Global;
904#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
905 pud_t Upper;
906#endif
907 pmd_t Middle;
908 pte_t Entry;
909 } u;
910
911 /* Should this happen in a situation this code will be called in? And if
912 * so, can it change under our feet? See also
913 * "Documentation/vm/active_mm.txt" in the kernel sources. */
914 if (RT_UNLIKELY(!current->active_mm))
915 return NULL;
916 u.Global = *pgd_offset(current->active_mm, ulAddr);
917 if (RT_UNLIKELY(pgd_none(u.Global)))
918 return NULL;
919
920#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
921 u.Upper = *pud_offset(&u.Global, ulAddr);
922 if (RT_UNLIKELY(pud_none(u.Upper)))
923 return NULL;
924# if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)
925 if (pud_large(u.Upper))
926 {
927 pPage = pud_page(u.Upper);
928 AssertReturn(pPage, NULL);
929 pfn = page_to_pfn(pPage); /* doing the safe way... */
930 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
931 return pfn_to_page(pfn);
932 }
933# endif
934
935 u.Middle = *pmd_offset(&u.Upper, ulAddr);
936#else /* < 2.6.11 */
937 u.Middle = *pmd_offset(&u.Global, ulAddr);
938#endif /* < 2.6.11 */
939 if (RT_UNLIKELY(pmd_none(u.Middle)))
940 return NULL;
941#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
942 if (pmd_large(u.Middle))
943 {
944 pPage = pmd_page(u.Middle);
945 AssertReturn(pPage, NULL);
946 pfn = page_to_pfn(pPage); /* doing the safe way... */
947 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
948 return pfn_to_page(pfn);
949 }
950#endif
951
952#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
953 pEntry = pte_offset_map(&u.Middle, ulAddr);
954#else
955 pEntry = pte_offset(&u.Middle, ulAddr);
956#endif
957 if (RT_UNLIKELY(!pEntry))
958 return NULL;
959 u.Entry = *pEntry;
960#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map)
961 pte_unmap(pEntry);
962#endif
963
964 if (RT_UNLIKELY(!pte_present(u.Entry)))
965 return NULL;
966 return pte_page(u.Entry);
967}
968
969
970DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
971{
972 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
973}
974
975
976DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
977{
978 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
979}
980
981
982DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
983{
984 IPRT_LINUX_SAVE_EFL_AC();
985
986 /*
987 * All we need to do here is to validate that we can use
988 * ioremap on the specified address (32/64-bit dma_addr_t).
989 */
990 PRTR0MEMOBJLNX pMemLnx;
991 dma_addr_t PhysAddr = Phys;
992 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
993
994 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
995 if (!pMemLnx)
996 {
997 IPRT_LINUX_RESTORE_EFL_AC();
998 return VERR_NO_MEMORY;
999 }
1000
1001 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
1002 pMemLnx->Core.u.Phys.fAllocated = false;
1003 pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
1004 Assert(!pMemLnx->cPages);
1005 *ppMem = &pMemLnx->Core;
1006 IPRT_LINUX_RESTORE_EFL_AC();
1007 return VINF_SUCCESS;
1008}
1009
1010
1011DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
1012{
1013 IPRT_LINUX_SAVE_EFL_AC();
1014 const int cPages = cb >> PAGE_SHIFT;
1015 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1016 struct vm_area_struct **papVMAs;
1017 PRTR0MEMOBJLNX pMemLnx;
1018 int rc = VERR_NO_MEMORY;
1019 int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
1020
1021 /*
1022 * Check for valid task and size overflows.
1023 */
1024 if (!pTask)
1025 return VERR_NOT_SUPPORTED;
1026 if (((size_t)cPages << PAGE_SHIFT) != cb)
1027 return VERR_OUT_OF_RANGE;
1028
1029 /*
1030 * Allocate the memory object and a temporary buffer for the VMAs.
1031 */
1032 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
1033 if (!pMemLnx)
1034 {
1035 IPRT_LINUX_RESTORE_EFL_AC();
1036 return VERR_NO_MEMORY;
1037 }
1038
1039 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
1040 if (papVMAs)
1041 {
1042 down_read(&pTask->mm->mmap_sem);
1043
1044 /*
1045 * Get user pages.
1046 */
1047 rc = get_user_pages(pTask, /* Task for fault accounting. */
1048 pTask->mm, /* Whose pages. */
1049 R3Ptr, /* Where from. */
1050 cPages, /* How many pages. */
1051 fWrite, /* Write to memory. */
1052 fWrite, /* force write access. */
1053 &pMemLnx->apPages[0], /* Page array. */
1054 papVMAs); /* vmas */
1055 if (rc == cPages)
1056 {
1057 /*
1058 * Flush dcache (required?), protect against fork and _really_ pin the page
1059 * table entries. get_user_pages() will protect against swapping out the
1060 * pages but it will NOT protect against removing page table entries. This
1061 * can be achieved with
1062 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
1063 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
1064 * Usual Linux distributions support only a limited size of locked pages
1065 * (e.g. 32KB).
1066 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
1067 * or by
1068 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
1069 * a range check.
1070 */
1071 /** @todo The Linux fork() protection will require more work if this API
1072 * is to be used for anything but locking VM pages. */
1073 while (rc-- > 0)
1074 {
1075 flush_dcache_page(pMemLnx->apPages[rc]);
1076 papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED);
1077 }
1078
1079 up_read(&pTask->mm->mmap_sem);
1080
1081 RTMemFree(papVMAs);
1082
1083 pMemLnx->Core.u.Lock.R0Process = R0Process;
1084 pMemLnx->cPages = cPages;
1085 Assert(!pMemLnx->fMappedToRing0);
1086 *ppMem = &pMemLnx->Core;
1087
1088 IPRT_LINUX_RESTORE_EFL_AC();
1089 return VINF_SUCCESS;
1090 }
1091
1092 /*
1093 * Failed - we need to unlock any pages that we succeeded to lock.
1094 */
1095 while (rc-- > 0)
1096 {
1097 if (!PageReserved(pMemLnx->apPages[rc]))
1098 SetPageDirty(pMemLnx->apPages[rc]);
1099#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
1100 put_page(pMemLnx->apPages[rc]);
1101#else
1102 page_cache_release(pMemLnx->apPages[rc]);
1103#endif
1104 }
1105
1106 up_read(&pTask->mm->mmap_sem);
1107
1108 RTMemFree(papVMAs);
1109 rc = VERR_LOCK_FAILED;
1110 }
1111
1112 rtR0MemObjDelete(&pMemLnx->Core);
1113 IPRT_LINUX_RESTORE_EFL_AC();
1114 return rc;
1115}
1116
1117
1118DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
1119{
1120 IPRT_LINUX_SAVE_EFL_AC();
1121 void *pvLast = (uint8_t *)pv + cb - 1;
1122 size_t const cPages = cb >> PAGE_SHIFT;
1123 PRTR0MEMOBJLNX pMemLnx;
1124 bool fLinearMapping;
1125 int rc;
1126 uint8_t *pbPage;
1127 size_t iPage;
1128 NOREF(fAccess);
1129
1130 if ( !RTR0MemKernelIsValidAddr(pv)
1131 || !RTR0MemKernelIsValidAddr(pv + cb))
1132 return VERR_INVALID_PARAMETER;
1133
1134 /*
1135 * The lower part of the kernel memory has a linear mapping between
1136 * physical and virtual addresses. So we take a short cut here. This is
1137 * assumed to be the cleanest way to handle those addresses (and the code
1138 * is well tested, though the test for determining it is not very nice).
1139 * If we ever decide it isn't we can still remove it.
1140 */
1141#if 0
1142 fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
1143#else
1144 fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
1145 && (unsigned long)pvLast < (unsigned long)high_memory;
1146#endif
1147
1148 /*
1149 * Allocate the memory object.
1150 */
1151 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
1152 if (!pMemLnx)
1153 {
1154 IPRT_LINUX_RESTORE_EFL_AC();
1155 return VERR_NO_MEMORY;
1156 }
1157
1158 /*
1159 * Gather the pages.
1160 * We ASSUME all kernel pages are non-swappable and non-movable.
1161 */
1162 rc = VINF_SUCCESS;
1163 pbPage = (uint8_t *)pvLast;
1164 iPage = cPages;
1165 if (!fLinearMapping)
1166 {
1167 while (iPage-- > 0)
1168 {
1169 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1170 if (RT_UNLIKELY(!pPage))
1171 {
1172 rc = VERR_LOCK_FAILED;
1173 break;
1174 }
1175 pMemLnx->apPages[iPage] = pPage;
1176 pbPage -= PAGE_SIZE;
1177 }
1178 }
1179 else
1180 {
1181 while (iPage-- > 0)
1182 {
1183 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
1184 pbPage -= PAGE_SIZE;
1185 }
1186 }
1187 if (RT_SUCCESS(rc))
1188 {
1189 /*
1190 * Complete the memory object and return.
1191 */
1192 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
1193 pMemLnx->cPages = cPages;
1194 Assert(!pMemLnx->fMappedToRing0);
1195 *ppMem = &pMemLnx->Core;
1196
1197 IPRT_LINUX_RESTORE_EFL_AC();
1198 return VINF_SUCCESS;
1199 }
1200
1201 rtR0MemObjDelete(&pMemLnx->Core);
1202 IPRT_LINUX_RESTORE_EFL_AC();
1203 return rc;
1204}
1205
1206
1207DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
1208{
1209#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1210 IPRT_LINUX_SAVE_EFL_AC();
1211 const size_t cPages = cb >> PAGE_SHIFT;
1212 struct page *pDummyPage;
1213 struct page **papPages;
1214
1215 /* check for unsupported stuff. */
1216 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1217 if (uAlignment > PAGE_SIZE)
1218 return VERR_NOT_SUPPORTED;
1219
1220 /*
1221 * Allocate a dummy page and create a page pointer array for vmap such that
1222 * the dummy page is mapped all over the reserved area.
1223 */
1224 pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
1225 if (pDummyPage)
1226 {
1227 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
1228 if (papPages)
1229 {
1230 void *pv;
1231 size_t iPage = cPages;
1232 while (iPage-- > 0)
1233 papPages[iPage] = pDummyPage;
1234# ifdef VM_MAP
1235 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
1236# else
1237 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
1238# endif
1239 RTMemFree(papPages);
1240 if (pv)
1241 {
1242 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1243 if (pMemLnx)
1244 {
1245 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
1246 pMemLnx->cPages = 1;
1247 pMemLnx->apPages[0] = pDummyPage;
1248 *ppMem = &pMemLnx->Core;
1249 IPRT_LINUX_RESTORE_EFL_AC();
1250 return VINF_SUCCESS;
1251 }
1252 vunmap(pv);
1253 }
1254 }
1255 __free_page(pDummyPage);
1256 }
1257 IPRT_LINUX_RESTORE_EFL_AC();
1258 return VERR_NO_MEMORY;
1259
1260#else /* < 2.4.22 */
1261 /*
1262 * Could probably use ioremap here, but the caller is in a better position than us
1263 * to select some safe physical memory.
1264 */
1265 return VERR_NOT_SUPPORTED;
1266#endif
1267}
1268
1269
1270DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
1271{
1272 IPRT_LINUX_SAVE_EFL_AC();
1273 PRTR0MEMOBJLNX pMemLnx;
1274 void *pv;
1275 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1276 if (!pTask)
1277 return VERR_NOT_SUPPORTED;
1278
1279 /*
1280 * Check that the specified alignment is supported.
1281 */
1282 if (uAlignment > PAGE_SIZE)
1283 return VERR_NOT_SUPPORTED;
1284
1285 /*
1286 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1287 */
1288 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1289 if (pv == (void *)-1)
1290 {
1291 IPRT_LINUX_RESTORE_EFL_AC();
1292 return VERR_NO_MEMORY;
1293 }
1294
1295 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1296 if (!pMemLnx)
1297 {
1298 rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
1299 IPRT_LINUX_RESTORE_EFL_AC();
1300 return VERR_NO_MEMORY;
1301 }
1302
1303 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1304 *ppMem = &pMemLnx->Core;
1305 IPRT_LINUX_RESTORE_EFL_AC();
1306 return VINF_SUCCESS;
1307}
1308
1309
1310DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
1311 void *pvFixed, size_t uAlignment,
1312 unsigned fProt, size_t offSub, size_t cbSub)
1313{
1314 int rc = VERR_NO_MEMORY;
1315 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1316 PRTR0MEMOBJLNX pMemLnx;
1317 IPRT_LINUX_SAVE_EFL_AC();
1318
1319 /* Fail if requested to do something we can't. */
1320 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
1321 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1322 if (uAlignment > PAGE_SIZE)
1323 return VERR_NOT_SUPPORTED;
1324
1325 /*
1326 * Create the IPRT memory object.
1327 */
1328 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1329 if (pMemLnx)
1330 {
1331 if (pMemLnxToMap->cPages)
1332 {
1333#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1334 /*
1335 * Use vmap - 2.4.22 and later.
1336 */
1337 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1338# ifdef VM_MAP
1339 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
1340# else
1341 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
1342# endif
1343 if (pMemLnx->Core.pv)
1344 {
1345 pMemLnx->fMappedToRing0 = true;
1346 rc = VINF_SUCCESS;
1347 }
1348 else
1349 rc = VERR_MAP_FAILED;
1350
1351#else /* < 2.4.22 */
1352 /*
1353 * Only option here is to share mappings if possible and forget about fProt.
1354 */
1355 if (rtR0MemObjIsRing3(pMemToMap))
1356 rc = VERR_NOT_SUPPORTED;
1357 else
1358 {
1359 rc = VINF_SUCCESS;
1360 if (!pMemLnxToMap->Core.pv)
1361 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1362 if (RT_SUCCESS(rc))
1363 {
1364 Assert(pMemLnxToMap->Core.pv);
1365 pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
1366 }
1367 }
1368#endif
1369 }
1370 else
1371 {
1372 /*
1373 * MMIO / physical memory.
1374 */
1375 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1376 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1377 ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb)
1378 : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
1379 if (pMemLnx->Core.pv)
1380 {
1381 /** @todo fix protection. */
1382 rc = VINF_SUCCESS;
1383 }
1384 }
1385 if (RT_SUCCESS(rc))
1386 {
1387 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1388 *ppMem = &pMemLnx->Core;
1389 IPRT_LINUX_RESTORE_EFL_AC();
1390 return VINF_SUCCESS;
1391 }
1392 rtR0MemObjDelete(&pMemLnx->Core);
1393 }
1394
1395 IPRT_LINUX_RESTORE_EFL_AC();
1396 return rc;
1397}
1398
1399
1400#ifdef VBOX_USE_PAE_HACK
1401/**
1402 * Replace the PFN of a PTE with the address of the actual page.
1403 *
1404 * The caller maps a reserved dummy page at the address with the desired access
1405 * and flags.
1406 *
1407 * This hack is required for older Linux kernels which don't provide
1408 * remap_pfn_range().
1409 *
1410 * @returns 0 on success, -ENOMEM on failure.
1411 * @param mm The memory context.
1412 * @param ulAddr The mapping address.
1413 * @param Phys The physical address of the page to map.
1414 */
1415static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1416{
1417 int rc = -ENOMEM;
1418 pgd_t *pgd;
1419
1420 spin_lock(&mm->page_table_lock);
1421
1422 pgd = pgd_offset(mm, ulAddr);
1423 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1424 {
1425 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1426 if (!pmd_none(*pmd))
1427 {
1428 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1429 if (ptep)
1430 {
1431 pte_t pte = *ptep;
1432 pte.pte_high &= 0xfff00000;
1433 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1434 pte.pte_low &= 0x00000fff;
1435 pte.pte_low |= (Phys & 0xfffff000);
1436 set_pte(ptep, pte);
1437 pte_unmap(ptep);
1438 rc = 0;
1439 }
1440 }
1441 }
1442
1443 spin_unlock(&mm->page_table_lock);
1444 return rc;
1445}
1446#endif /* VBOX_USE_PAE_HACK */
1447
1448
1449DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed,
1450 size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
1451{
1452 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1453 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1454 int rc = VERR_NO_MEMORY;
1455 PRTR0MEMOBJLNX pMemLnx;
1456#ifdef VBOX_USE_PAE_HACK
1457 struct page *pDummyPage;
1458 RTHCPHYS DummyPhys;
1459#endif
1460 IPRT_LINUX_SAVE_EFL_AC();
1461
1462 /*
1463 * Check for restrictions.
1464 */
1465 if (!pTask)
1466 return VERR_NOT_SUPPORTED;
1467 if (uAlignment > PAGE_SIZE)
1468 return VERR_NOT_SUPPORTED;
1469
1470#ifdef VBOX_USE_PAE_HACK
1471 /*
1472 * Allocate a dummy page for use when mapping the memory.
1473 */
1474 pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
1475 if (!pDummyPage)
1476 {
1477 IPRT_LINUX_RESTORE_EFL_AC();
1478 return VERR_NO_MEMORY;
1479 }
1480 SetPageReserved(pDummyPage);
1481 DummyPhys = page_to_phys(pDummyPage);
1482#endif
1483
1484 /*
1485 * Create the IPRT memory object.
1486 */
1487 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1488 if (pMemLnx)
1489 {
1490 /*
1491 * Allocate user space mapping.
1492 */
1493 void *pv;
1494 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
1495 if (pv != (void *)-1)
1496 {
1497 /*
1498 * Map page by page into the mmap area.
1499 * This is generic, paranoid and not very efficient.
1500 */
1501 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1502 unsigned long ulAddrCur = (unsigned long)pv;
1503 const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
1504 size_t iPage;
1505
1506 down_write(&pTask->mm->mmap_sem);
1507
1508 rc = VINF_SUCCESS;
1509 if (pMemLnxToMap->cPages)
1510 {
1511 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1512 {
1513#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)
1514 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1515#endif
1516#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1517 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1518 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1519#endif
1520#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1521 /* remap_page_range() limitation on x86 */
1522 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1523#endif
1524
1525#if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
1526 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1527 /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
1528 * See remap_pfn_range() in mm/memory.c */
1529#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)
1530 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1531#else
1532 vma->vm_flags |= VM_RESERVED;
1533#endif
1534#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1535 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1536#elif defined(VBOX_USE_PAE_HACK)
1537 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1538 if (!rc)
1539 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1540#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1541 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1542#else /* 2.4 */
1543 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1544#endif
1545 if (rc)
1546 {
1547 rc = VERR_NO_MEMORY;
1548 break;
1549 }
1550 }
1551 }
1552 else
1553 {
1554 RTHCPHYS Phys;
1555 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1556 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1557 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1558 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1559 else
1560 {
1561 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1562 Phys = NIL_RTHCPHYS;
1563 }
1564 if (Phys != NIL_RTHCPHYS)
1565 {
1566 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1567 {
1568#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1569 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1570 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1571#endif
1572#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1573 /* remap_page_range() limitation on x86 */
1574 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1575#endif
1576
1577#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1578 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1579#elif defined(VBOX_USE_PAE_HACK)
1580 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1581 if (!rc)
1582 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1583#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1584 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1585#else /* 2.4 */
1586 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1587#endif
1588 if (rc)
1589 {
1590 rc = VERR_NO_MEMORY;
1591 break;
1592 }
1593 }
1594 }
1595 }
1596
1597#ifdef CONFIG_NUMA_BALANCING
1598# if LINUX_VERSION_CODE < KERNEL_VERSION(3, 13, 0)
1599# ifdef RHEL_RELEASE_CODE
1600# if RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7, 0)
1601# define VBOX_NUMA_HACK_OLD
1602# endif
1603# endif
1604# endif
1605 if (RT_SUCCESS(rc))
1606 {
1607 /** @todo Ugly hack! But right now we have no other means to
1608 * disable automatic NUMA page balancing. */
1609# ifdef RT_OS_X86
1610# ifdef VBOX_NUMA_HACK_OLD
1611 pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
1612# endif
1613 pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
1614# else
1615# ifdef VBOX_NUMA_HACK_OLD
1616 pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
1617# endif
1618 pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
1619# endif
1620 }
1621#endif /* CONFIG_NUMA_BALANCING */
1622
1623 up_write(&pTask->mm->mmap_sem);
1624
1625 if (RT_SUCCESS(rc))
1626 {
1627#ifdef VBOX_USE_PAE_HACK
1628 __free_page(pDummyPage);
1629#endif
1630 pMemLnx->Core.pv = pv;
1631 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1632 *ppMem = &pMemLnx->Core;
1633 IPRT_LINUX_RESTORE_EFL_AC();
1634 return VINF_SUCCESS;
1635 }
1636
1637 /*
1638 * Bail out.
1639 */
1640 rtR0MemObjLinuxDoMunmap(pv, pMemLnxToMap->Core.cb, pTask);
1641 }
1642 rtR0MemObjDelete(&pMemLnx->Core);
1643 }
1644#ifdef VBOX_USE_PAE_HACK
1645 __free_page(pDummyPage);
1646#endif
1647
1648 IPRT_LINUX_RESTORE_EFL_AC();
1649 return rc;
1650}
1651
1652
1653DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1654{
1655 NOREF(pMem);
1656 NOREF(offSub);
1657 NOREF(cbSub);
1658 NOREF(fProt);
1659 return VERR_NOT_SUPPORTED;
1660}
1661
1662
1663DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1664{
1665 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1666
1667 if (pMemLnx->cPages)
1668 return page_to_phys(pMemLnx->apPages[iPage]);
1669
1670 switch (pMemLnx->Core.enmType)
1671 {
1672 case RTR0MEMOBJTYPE_CONT:
1673 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1674
1675 case RTR0MEMOBJTYPE_PHYS:
1676 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1677
1678 /* the parent knows */
1679 case RTR0MEMOBJTYPE_MAPPING:
1680 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1681
1682 /* cPages > 0 */
1683 case RTR0MEMOBJTYPE_LOW:
1684 case RTR0MEMOBJTYPE_LOCK:
1685 case RTR0MEMOBJTYPE_PHYS_NC:
1686 case RTR0MEMOBJTYPE_PAGE:
1687 default:
1688 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1689 /* fall thru */
1690
1691 case RTR0MEMOBJTYPE_RES_VIRT:
1692 return NIL_RTHCPHYS;
1693 }
1694}
1695
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette