VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c@ 90249

Last change on this file since 90249 was 90249, checked in by vboxsync, 3 years ago

Linux: fix build when -Wimplicit-fallthrough=5 is enabled, bugref:10066.

Compiler option -Wimplicit-fallthrough=5 was added to KBUILD_CFLAGS
in kernel 5.14. This commit replaces /* fall thru */ comment with
the macro RT_FALL_THRU() in a couple of remaining places, so the warning
can be suppressed.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev Revision
File size: 65.7 KB
Line 
1/* $Id: memobj-r0drv-linux.c 90249 2021-07-20 07:59:02Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-linux-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/assert.h>
35#include <iprt/err.h>
36#include <iprt/log.h>
37#include <iprt/mem.h>
38#include <iprt/process.h>
39#include <iprt/string.h>
40#include "internal/memobj.h"
41#include "internal/iprt.h"
42
43
44/*********************************************************************************************************************************
45* Defined Constants And Macros *
46*********************************************************************************************************************************/
47/* early 2.6 kernels */
48#ifndef PAGE_SHARED_EXEC
49# define PAGE_SHARED_EXEC PAGE_SHARED
50#endif
51#ifndef PAGE_READONLY_EXEC
52# define PAGE_READONLY_EXEC PAGE_READONLY
53#endif
54
55/** @def IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
56 * Whether we use alloc_vm_area (3.2+) for executable memory.
57 * This is a must for 5.8+, but we enable it all the way back to 3.2.x for
58 * better W^R compliance (fExecutable flag). */
59#if RTLNX_VER_RANGE(3,2,0, 5,10,0) || defined(DOXYGEN_RUNNING)
60# define IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
61#endif
62/** @def IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
63 * alloc_vm_area was removed with 5.10 so we have to resort to a different way
64 * to allocate executable memory.
65 * It would be possible to remove IPRT_USE_ALLOC_VM_AREA_FOR_EXEC and use
66 * this path execlusively for 3.2+ but no time to test it really works on every
67 * supported kernel, so better play safe for now.
68 */
69#if RTLNX_VER_MIN(5,10,0) || defined(DOXYGEN_RUNNING)
70# define IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
71#endif
72
73/*
74 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
75 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
76 * It should be safe to use vm_insert_page() older kernels as well.
77 */
78#if RTLNX_VER_MIN(2,6,23)
79# define VBOX_USE_INSERT_PAGE
80#endif
81#if defined(CONFIG_X86_PAE) \
82 && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
83 || RTLNX_VER_RANGE(2,6,0, 2,6,11) )
84# define VBOX_USE_PAE_HACK
85#endif
86
87/* gfp_t was introduced in 2.6.14, define it for earlier. */
88#if RTLNX_VER_MAX(2,6,14)
89# define gfp_t unsigned
90#endif
91
92/*
93 * Wrappers around mmap_lock/mmap_sem difference.
94 */
95#if RTLNX_VER_MIN(5,8,0)
96# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_lock)
97# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_lock)
98# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_lock)
99# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_lock)
100#else
101# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_sem)
102# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_sem)
103# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_sem)
104# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_sem)
105#endif
106
107
108/*********************************************************************************************************************************
109* Structures and Typedefs *
110*********************************************************************************************************************************/
111/**
112 * The Linux version of the memory object structure.
113 */
114typedef struct RTR0MEMOBJLNX
115{
116 /** The core structure. */
117 RTR0MEMOBJINTERNAL Core;
118 /** Set if the allocation is contiguous.
119 * This means it has to be given back as one chunk. */
120 bool fContiguous;
121 /** Set if executable allocation. */
122 bool fExecutable;
123 /** Set if we've vmap'ed the memory into ring-0. */
124 bool fMappedToRing0;
125#ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
126 /** Return from alloc_vm_area() that we now need to use for executable
127 * memory. */
128 struct vm_struct *pArea;
129 /** PTE array that goes along with pArea (must be freed). */
130 pte_t **papPtesForArea;
131#endif
132 /** The pages in the apPages array. */
133 size_t cPages;
134 /** Array of struct page pointers. (variable size) */
135 struct page *apPages[1];
136} RTR0MEMOBJLNX;
137/** Pointer to the linux memory object. */
138typedef RTR0MEMOBJLNX *PRTR0MEMOBJLNX;
139
140
141static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
142
143
144/**
145 * Helper that converts from a RTR0PROCESS handle to a linux task.
146 *
147 * @returns The corresponding Linux task.
148 * @param R0Process IPRT ring-0 process handle.
149 */
150static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
151{
152 /** @todo fix rtR0ProcessToLinuxTask!! */
153 /** @todo many (all?) callers currently assume that we return 'current'! */
154 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
155}
156
157
158/**
159 * Compute order. Some functions allocate 2^order pages.
160 *
161 * @returns order.
162 * @param cPages Number of pages.
163 */
164static int rtR0MemObjLinuxOrder(size_t cPages)
165{
166 int iOrder;
167 size_t cTmp;
168
169 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
170 ;
171 if (cPages & ~((size_t)1 << iOrder))
172 ++iOrder;
173
174 return iOrder;
175}
176
177
178/**
179 * Converts from RTMEM_PROT_* to Linux PAGE_*.
180 *
181 * @returns Linux page protection constant.
182 * @param fProt The IPRT protection mask.
183 * @param fKernel Whether it applies to kernel or user space.
184 */
185static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
186{
187 switch (fProt)
188 {
189 default:
190 AssertMsgFailed(("%#x %d\n", fProt, fKernel)); RT_FALL_THRU();
191 case RTMEM_PROT_NONE:
192 return PAGE_NONE;
193
194 case RTMEM_PROT_READ:
195 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
196
197 case RTMEM_PROT_WRITE:
198 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
199 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
200
201 case RTMEM_PROT_EXEC:
202 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
203#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
204 if (fKernel)
205 {
206 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
207 pgprot_val(fPg) &= ~_PAGE_RW;
208 return fPg;
209 }
210 return PAGE_READONLY_EXEC;
211#else
212 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
213#endif
214
215 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
216 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
217 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
218 }
219}
220
221
222/**
223 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
224 * an empty user space mapping.
225 *
226 * We acquire the mmap_sem/mmap_lock of the task!
227 *
228 * @returns Pointer to the mapping.
229 * (void *)-1 on failure.
230 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
231 * @param cb The size of the mapping.
232 * @param uAlignment The alignment of the mapping.
233 * @param pTask The Linux task to create this mapping in.
234 * @param fProt The RTMEM_PROT_* mask.
235 */
236static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
237{
238 unsigned fLnxProt;
239 unsigned long ulAddr;
240
241 Assert(pTask == current); /* do_mmap */
242 RT_NOREF_PV(pTask);
243
244 /*
245 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
246 */
247 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
248 if (fProt == RTMEM_PROT_NONE)
249 fLnxProt = PROT_NONE;
250 else
251 {
252 fLnxProt = 0;
253 if (fProt & RTMEM_PROT_READ)
254 fLnxProt |= PROT_READ;
255 if (fProt & RTMEM_PROT_WRITE)
256 fLnxProt |= PROT_WRITE;
257 if (fProt & RTMEM_PROT_EXEC)
258 fLnxProt |= PROT_EXEC;
259 }
260
261 if (R3PtrFixed != (RTR3PTR)-1)
262 {
263#if RTLNX_VER_MIN(3,5,0)
264 ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
265#else
266 LNX_MM_DOWN_WRITE(pTask->mm);
267 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
268 LNX_MM_UP_WRITE(pTask->mm);
269#endif
270 }
271 else
272 {
273#if RTLNX_VER_MIN(3,5,0)
274 ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
275#else
276 LNX_MM_DOWN_WRITE(pTask->mm);
277 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
278 LNX_MM_UP_WRITE(pTask->mm);
279#endif
280 if ( !(ulAddr & ~PAGE_MASK)
281 && (ulAddr & (uAlignment - 1)))
282 {
283 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
284 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
285 * ourselves) and further by there begin two mmap strategies (top / bottom). */
286 /* For now, just ignore uAlignment requirements... */
287 }
288 }
289
290
291 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
292 return (void *)-1;
293 return (void *)ulAddr;
294}
295
296
297/**
298 * Worker that destroys a user space mapping.
299 * Undoes what rtR0MemObjLinuxDoMmap did.
300 *
301 * We acquire the mmap_sem/mmap_lock of the task!
302 *
303 * @param pv The ring-3 mapping.
304 * @param cb The size of the mapping.
305 * @param pTask The Linux task to destroy this mapping in.
306 */
307static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
308{
309#if RTLNX_VER_MIN(3,5,0)
310 Assert(pTask == current); RT_NOREF_PV(pTask);
311 vm_munmap((unsigned long)pv, cb);
312#elif defined(USE_RHEL4_MUNMAP)
313 LNX_MM_DOWN_WRITE(pTask->mm);
314 do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
315 LNX_MM_UP_WRITE(pTask->mm);
316#else
317 LNX_MM_DOWN_WRITE(pTask->mm);
318 do_munmap(pTask->mm, (unsigned long)pv, cb);
319 LNX_MM_UP_WRITE(pTask->mm);
320#endif
321}
322
323
324/**
325 * Internal worker that allocates physical pages and creates the memory object for them.
326 *
327 * @returns IPRT status code.
328 * @param ppMemLnx Where to store the memory object pointer.
329 * @param enmType The object type.
330 * @param cb The number of bytes to allocate.
331 * @param uAlignment The alignment of the physical memory.
332 * Only valid if fContiguous == true, ignored otherwise.
333 * @param fFlagsLnx The page allocation flags (GPFs).
334 * @param fContiguous Whether the allocation must be contiguous.
335 * @param fExecutable Whether the memory must be executable.
336 * @param rcNoMem What to return when we're out of pages.
337 */
338static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
339 size_t uAlignment, gfp_t fFlagsLnx, bool fContiguous, bool fExecutable, int rcNoMem)
340{
341 size_t iPage;
342 size_t const cPages = cb >> PAGE_SHIFT;
343 struct page *paPages;
344
345 /*
346 * Allocate a memory object structure that's large enough to contain
347 * the page pointer array.
348 */
349 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
350 if (!pMemLnx)
351 return VERR_NO_MEMORY;
352 pMemLnx->cPages = cPages;
353
354 if (cPages > 255)
355 {
356# ifdef __GFP_REPEAT
357 /* Try hard to allocate the memory, but the allocation attempt might fail. */
358 fFlagsLnx |= __GFP_REPEAT;
359# endif
360# ifdef __GFP_NOMEMALLOC
361 /* Introduced with Linux 2.6.12: Don't use emergency reserves */
362 fFlagsLnx |= __GFP_NOMEMALLOC;
363# endif
364 }
365
366 /*
367 * Allocate the pages.
368 * For small allocations we'll try contiguous first and then fall back on page by page.
369 */
370#if RTLNX_VER_MIN(2,4,22)
371 if ( fContiguous
372 || cb <= PAGE_SIZE * 2)
373 {
374# ifdef VBOX_USE_INSERT_PAGE
375 paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
376# else
377 paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
378# endif
379 if (paPages)
380 {
381 fContiguous = true;
382 for (iPage = 0; iPage < cPages; iPage++)
383 pMemLnx->apPages[iPage] = &paPages[iPage];
384 }
385 else if (fContiguous)
386 {
387 rtR0MemObjDelete(&pMemLnx->Core);
388 return rcNoMem;
389 }
390 }
391
392 if (!fContiguous)
393 {
394 for (iPage = 0; iPage < cPages; iPage++)
395 {
396 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
397 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
398 {
399 while (iPage-- > 0)
400 __free_page(pMemLnx->apPages[iPage]);
401 rtR0MemObjDelete(&pMemLnx->Core);
402 return rcNoMem;
403 }
404 }
405 }
406
407#else /* < 2.4.22 */
408 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
409 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
410 if (!paPages)
411 {
412 rtR0MemObjDelete(&pMemLnx->Core);
413 return rcNoMem;
414 }
415 for (iPage = 0; iPage < cPages; iPage++)
416 {
417 pMemLnx->apPages[iPage] = &paPages[iPage];
418 if (fExecutable)
419 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
420 if (PageHighMem(pMemLnx->apPages[iPage]))
421 BUG();
422 }
423
424 fContiguous = true;
425#endif /* < 2.4.22 */
426 pMemLnx->fContiguous = fContiguous;
427 pMemLnx->fExecutable = fExecutable;
428
429#if RTLNX_VER_MAX(4,5,0)
430 /*
431 * Reserve the pages.
432 *
433 * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
434 * pages. According to Michal Hocko this shouldn't be necessary anyway because
435 * as pages which are not on the LRU list are never evictable.
436 */
437 for (iPage = 0; iPage < cPages; iPage++)
438 SetPageReserved(pMemLnx->apPages[iPage]);
439#endif
440
441 /*
442 * Note that the physical address of memory allocated with alloc_pages(flags, order)
443 * is always 2^(PAGE_SHIFT+order)-aligned.
444 */
445 if ( fContiguous
446 && uAlignment > PAGE_SIZE)
447 {
448 /*
449 * Check for alignment constraints. The physical address of memory allocated with
450 * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
451 */
452 if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
453 {
454 /*
455 * This should never happen!
456 */
457 printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
458 (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
459 rtR0MemObjLinuxFreePages(pMemLnx);
460 return rcNoMem;
461 }
462 }
463
464 *ppMemLnx = pMemLnx;
465 return VINF_SUCCESS;
466}
467
468
469/**
470 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
471 *
472 * This method does NOT free the object.
473 *
474 * @param pMemLnx The object which physical pages should be freed.
475 */
476static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
477{
478 size_t iPage = pMemLnx->cPages;
479 if (iPage > 0)
480 {
481 /*
482 * Restore the page flags.
483 */
484 while (iPage-- > 0)
485 {
486#if RTLNX_VER_MAX(4,5,0)
487 /* See SetPageReserved() in rtR0MemObjLinuxAllocPages() */
488 ClearPageReserved(pMemLnx->apPages[iPage]);
489#endif
490#if RTLNX_VER_MAX(2,4,22)
491 if (pMemLnx->fExecutable)
492 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
493#endif
494 }
495
496 /*
497 * Free the pages.
498 */
499#if RTLNX_VER_MIN(2,4,22)
500 if (!pMemLnx->fContiguous)
501 {
502 iPage = pMemLnx->cPages;
503 while (iPage-- > 0)
504 __free_page(pMemLnx->apPages[iPage]);
505 }
506 else
507#endif
508 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
509
510 pMemLnx->cPages = 0;
511 }
512}
513
514
515#ifdef IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
516/**
517 * User data passed to the apply_to_page_range() callback.
518 */
519typedef struct LNXAPPLYPGRANGE
520{
521 /** Pointer to the memory object. */
522 PRTR0MEMOBJLNX pMemLnx;
523 /** The page protection flags to apply. */
524 pgprot_t fPg;
525} LNXAPPLYPGRANGE;
526/** Pointer to the user data. */
527typedef LNXAPPLYPGRANGE *PLNXAPPLYPGRANGE;
528/** Pointer to the const user data. */
529typedef const LNXAPPLYPGRANGE *PCLNXAPPLYPGRANGE;
530
531/**
532 * Callback called in apply_to_page_range().
533 *
534 * @returns Linux status code.
535 * @param pPte Pointer to the page table entry for the given address.
536 * @param uAddr The address to apply the new protection to.
537 * @param pvUser The opaque user data.
538 */
539static int rtR0MemObjLinuxApplyPageRange(pte_t *pPte, unsigned long uAddr, void *pvUser)
540{
541 PCLNXAPPLYPGRANGE pArgs = (PCLNXAPPLYPGRANGE)pvUser;
542 PRTR0MEMOBJLNX pMemLnx = pArgs->pMemLnx;
543 size_t idxPg = (uAddr - (unsigned long)pMemLnx->Core.pv) >> PAGE_SHIFT;
544
545 set_pte(pPte, mk_pte(pMemLnx->apPages[idxPg], pArgs->fPg));
546 return 0;
547}
548#endif
549
550
551/**
552 * Maps the allocation into ring-0.
553 *
554 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
555 *
556 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
557 * space, so we'll use that mapping if possible. If execute access is required, we'll
558 * play safe and do our own mapping.
559 *
560 * @returns IPRT status code.
561 * @param pMemLnx The linux memory object to map.
562 * @param fExecutable Whether execute access is required.
563 */
564static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
565{
566 int rc = VINF_SUCCESS;
567
568 /*
569 * Choose mapping strategy.
570 */
571 bool fMustMap = fExecutable
572 || !pMemLnx->fContiguous;
573 if (!fMustMap)
574 {
575 size_t iPage = pMemLnx->cPages;
576 while (iPage-- > 0)
577 if (PageHighMem(pMemLnx->apPages[iPage]))
578 {
579 fMustMap = true;
580 break;
581 }
582 }
583
584 Assert(!pMemLnx->Core.pv);
585 Assert(!pMemLnx->fMappedToRing0);
586
587 if (fMustMap)
588 {
589 /*
590 * Use vmap - 2.4.22 and later.
591 */
592#if RTLNX_VER_MIN(2,4,22)
593 pgprot_t fPg;
594 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
595# ifdef _PAGE_NX
596 if (!fExecutable)
597 pgprot_val(fPg) |= _PAGE_NX;
598# endif
599
600# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
601 if (fExecutable)
602 {
603# if RTLNX_VER_MIN(3,2,51)
604 pte_t **papPtes = (pte_t **)kmalloc_array(pMemLnx->cPages, sizeof(papPtes[0]), GFP_KERNEL);
605# else
606 pte_t **papPtes = (pte_t **)kmalloc(pMemLnx->cPages * sizeof(papPtes[0]), GFP_KERNEL);
607# endif
608 if (papPtes)
609 {
610 pMemLnx->pArea = alloc_vm_area(pMemLnx->Core.cb, papPtes); /* Note! pArea->nr_pages is not set. */
611 if (pMemLnx->pArea)
612 {
613 size_t i;
614 Assert(pMemLnx->pArea->size >= pMemLnx->Core.cb); /* Note! includes guard page. */
615 Assert(pMemLnx->pArea->addr);
616# ifdef _PAGE_NX
617 pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
618# endif
619 pMemLnx->papPtesForArea = papPtes;
620 for (i = 0; i < pMemLnx->cPages; i++)
621 *papPtes[i] = mk_pte(pMemLnx->apPages[i], fPg);
622 pMemLnx->Core.pv = pMemLnx->pArea->addr;
623 pMemLnx->fMappedToRing0 = true;
624 }
625 else
626 {
627 kfree(papPtes);
628 rc = VERR_MAP_FAILED;
629 }
630 }
631 else
632 rc = VERR_MAP_FAILED;
633 }
634 else
635# endif
636 {
637# if defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
638 if (fExecutable)
639 pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
640# endif
641
642# ifdef VM_MAP
643 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
644# else
645 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
646# endif
647 if (pMemLnx->Core.pv)
648 pMemLnx->fMappedToRing0 = true;
649 else
650 rc = VERR_MAP_FAILED;
651 }
652#else /* < 2.4.22 */
653 rc = VERR_NOT_SUPPORTED;
654#endif
655 }
656 else
657 {
658 /*
659 * Use the kernel RAM mapping.
660 */
661 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
662 Assert(pMemLnx->Core.pv);
663 }
664
665 return rc;
666}
667
668
669/**
670 * Undoes what rtR0MemObjLinuxVMap() did.
671 *
672 * @param pMemLnx The linux memory object.
673 */
674static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
675{
676#if RTLNX_VER_MIN(2,4,22)
677# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
678 if (pMemLnx->pArea)
679 {
680# if 0
681 pte_t **papPtes = pMemLnx->papPtesForArea;
682 size_t i;
683 for (i = 0; i < pMemLnx->cPages; i++)
684 *papPtes[i] = 0;
685# endif
686 free_vm_area(pMemLnx->pArea);
687 kfree(pMemLnx->papPtesForArea);
688 pMemLnx->pArea = NULL;
689 pMemLnx->papPtesForArea = NULL;
690 }
691 else
692# endif
693 if (pMemLnx->fMappedToRing0)
694 {
695 Assert(pMemLnx->Core.pv);
696 vunmap(pMemLnx->Core.pv);
697 pMemLnx->fMappedToRing0 = false;
698 }
699#else /* < 2.4.22 */
700 Assert(!pMemLnx->fMappedToRing0);
701#endif
702 pMemLnx->Core.pv = NULL;
703}
704
705
706DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
707{
708 IPRT_LINUX_SAVE_EFL_AC();
709 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
710
711 /*
712 * Release any memory that we've allocated or locked.
713 */
714 switch (pMemLnx->Core.enmType)
715 {
716 case RTR0MEMOBJTYPE_LOW:
717 case RTR0MEMOBJTYPE_PAGE:
718 case RTR0MEMOBJTYPE_CONT:
719 case RTR0MEMOBJTYPE_PHYS:
720 case RTR0MEMOBJTYPE_PHYS_NC:
721 rtR0MemObjLinuxVUnmap(pMemLnx);
722 rtR0MemObjLinuxFreePages(pMemLnx);
723 break;
724
725 case RTR0MEMOBJTYPE_LOCK:
726 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
727 {
728 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
729 size_t iPage;
730 Assert(pTask);
731 if (pTask && pTask->mm)
732 LNX_MM_DOWN_READ(pTask->mm);
733
734 iPage = pMemLnx->cPages;
735 while (iPage-- > 0)
736 {
737 if (!PageReserved(pMemLnx->apPages[iPage]))
738 SetPageDirty(pMemLnx->apPages[iPage]);
739#if RTLNX_VER_MIN(4,6,0)
740 put_page(pMemLnx->apPages[iPage]);
741#else
742 page_cache_release(pMemLnx->apPages[iPage]);
743#endif
744 }
745
746 if (pTask && pTask->mm)
747 LNX_MM_UP_READ(pTask->mm);
748 }
749 /* else: kernel memory - nothing to do here. */
750 break;
751
752 case RTR0MEMOBJTYPE_RES_VIRT:
753 Assert(pMemLnx->Core.pv);
754 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
755 {
756 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
757 Assert(pTask);
758 if (pTask && pTask->mm)
759 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
760 }
761 else
762 {
763 vunmap(pMemLnx->Core.pv);
764
765 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
766 __free_page(pMemLnx->apPages[0]);
767 pMemLnx->apPages[0] = NULL;
768 pMemLnx->cPages = 0;
769 }
770 pMemLnx->Core.pv = NULL;
771 break;
772
773 case RTR0MEMOBJTYPE_MAPPING:
774 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
775 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
776 {
777 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
778 Assert(pTask);
779 if (pTask && pTask->mm)
780 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
781 }
782 else
783 vunmap(pMemLnx->Core.pv);
784 pMemLnx->Core.pv = NULL;
785 break;
786
787 default:
788 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
789 return VERR_INTERNAL_ERROR;
790 }
791 IPRT_LINUX_RESTORE_EFL_ONLY_AC();
792 return VINF_SUCCESS;
793}
794
795
796DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
797{
798 IPRT_LINUX_SAVE_EFL_AC();
799 PRTR0MEMOBJLNX pMemLnx;
800 int rc;
801
802#if RTLNX_VER_MIN(2,4,22)
803 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
804 false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
805#else
806 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
807 false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
808#endif
809 if (RT_SUCCESS(rc))
810 {
811 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
812 if (RT_SUCCESS(rc))
813 {
814 *ppMem = &pMemLnx->Core;
815 IPRT_LINUX_RESTORE_EFL_AC();
816 return rc;
817 }
818
819 rtR0MemObjLinuxFreePages(pMemLnx);
820 rtR0MemObjDelete(&pMemLnx->Core);
821 }
822
823 IPRT_LINUX_RESTORE_EFL_AC();
824 return rc;
825}
826
827
828DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
829{
830 IPRT_LINUX_SAVE_EFL_AC();
831 PRTR0MEMOBJLNX pMemLnx;
832 int rc;
833
834 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
835#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
836 /* ZONE_DMA32: 0-4GB */
837 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
838 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
839 if (RT_FAILURE(rc))
840#endif
841#ifdef RT_ARCH_AMD64
842 /* ZONE_DMA: 0-16MB */
843 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
844 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
845#else
846# ifdef CONFIG_X86_PAE
847# endif
848 /* ZONE_NORMAL: 0-896MB */
849 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
850 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
851#endif
852 if (RT_SUCCESS(rc))
853 {
854 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
855 if (RT_SUCCESS(rc))
856 {
857 *ppMem = &pMemLnx->Core;
858 IPRT_LINUX_RESTORE_EFL_AC();
859 return rc;
860 }
861
862 rtR0MemObjLinuxFreePages(pMemLnx);
863 rtR0MemObjDelete(&pMemLnx->Core);
864 }
865
866 IPRT_LINUX_RESTORE_EFL_AC();
867 return rc;
868}
869
870
871DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
872{
873 IPRT_LINUX_SAVE_EFL_AC();
874 PRTR0MEMOBJLNX pMemLnx;
875 int rc;
876
877#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
878 /* ZONE_DMA32: 0-4GB */
879 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
880 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
881 if (RT_FAILURE(rc))
882#endif
883#ifdef RT_ARCH_AMD64
884 /* ZONE_DMA: 0-16MB */
885 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
886 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
887#else
888 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
889 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
890 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
891#endif
892 if (RT_SUCCESS(rc))
893 {
894 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
895 if (RT_SUCCESS(rc))
896 {
897#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
898 size_t iPage = pMemLnx->cPages;
899 while (iPage-- > 0)
900 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
901#endif
902 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
903 *ppMem = &pMemLnx->Core;
904 IPRT_LINUX_RESTORE_EFL_AC();
905 return rc;
906 }
907
908 rtR0MemObjLinuxFreePages(pMemLnx);
909 rtR0MemObjDelete(&pMemLnx->Core);
910 }
911
912 IPRT_LINUX_RESTORE_EFL_AC();
913 return rc;
914}
915
916
917/**
918 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
919 *
920 * @returns IPRT status code.
921 * @param ppMemLnx Where to
922 * @param enmType The object type.
923 * @param cb The size of the allocation.
924 * @param uAlignment The alignment of the physical memory.
925 * Only valid for fContiguous == true, ignored otherwise.
926 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
927 * @param fGfp The Linux GFP flags to use for the allocation.
928 */
929static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
930 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, gfp_t fGfp)
931{
932 PRTR0MEMOBJLNX pMemLnx;
933 int rc;
934
935 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
936 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
937 false /*fExecutable*/, VERR_NO_PHYS_MEMORY);
938 if (RT_FAILURE(rc))
939 return rc;
940
941 /*
942 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
943 */
944 if (PhysHighest != NIL_RTHCPHYS)
945 {
946 size_t iPage = pMemLnx->cPages;
947 while (iPage-- > 0)
948 if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
949 {
950 rtR0MemObjLinuxFreePages(pMemLnx);
951 rtR0MemObjDelete(&pMemLnx->Core);
952 return VERR_NO_MEMORY;
953 }
954 }
955
956 /*
957 * Complete the object.
958 */
959 if (enmType == RTR0MEMOBJTYPE_PHYS)
960 {
961 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
962 pMemLnx->Core.u.Phys.fAllocated = true;
963 }
964 *ppMem = &pMemLnx->Core;
965 return rc;
966}
967
968
969/**
970 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
971 *
972 * @returns IPRT status code.
973 * @param ppMem Where to store the memory object pointer on success.
974 * @param enmType The object type.
975 * @param cb The size of the allocation.
976 * @param uAlignment The alignment of the physical memory.
977 * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
978 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
979 */
980static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
981 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
982{
983 int rc;
984 IPRT_LINUX_SAVE_EFL_AC();
985
986 /*
987 * There are two clear cases and that's the <=16MB and anything-goes ones.
988 * When the physical address limit is somewhere in-between those two we'll
989 * just have to try, starting with HIGHUSER and working our way thru the
990 * different types, hoping we'll get lucky.
991 *
992 * We should probably move this physical address restriction logic up to
993 * the page alloc function as it would be more efficient there. But since
994 * we don't expect this to be a performance issue just yet it can wait.
995 */
996 if (PhysHighest == NIL_RTHCPHYS)
997 /* ZONE_HIGHMEM: the whole physical memory */
998 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
999 else if (PhysHighest <= _1M * 16)
1000 /* ZONE_DMA: 0-16MB */
1001 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
1002 else
1003 {
1004 rc = VERR_NO_MEMORY;
1005 if (RT_FAILURE(rc))
1006 /* ZONE_HIGHMEM: the whole physical memory */
1007 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
1008 if (RT_FAILURE(rc))
1009 /* ZONE_NORMAL: 0-896MB */
1010 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
1011#ifdef GFP_DMA32
1012 if (RT_FAILURE(rc))
1013 /* ZONE_DMA32: 0-4GB */
1014 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
1015#endif
1016 if (RT_FAILURE(rc))
1017 /* ZONE_DMA: 0-16MB */
1018 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
1019 }
1020 IPRT_LINUX_RESTORE_EFL_AC();
1021 return rc;
1022}
1023
1024
1025/**
1026 * Translates a kernel virtual address to a linux page structure by walking the
1027 * page tables.
1028 *
1029 * @note We do assume that the page tables will not change as we are walking
1030 * them. This assumption is rather forced by the fact that I could not
1031 * immediately see any way of preventing this from happening. So, we
1032 * take some extra care when accessing them.
1033 *
1034 * Because of this, we don't want to use this function on memory where
1035 * attribute changes to nearby pages is likely to cause large pages to
1036 * be used or split up. So, don't use this for the linear mapping of
1037 * physical memory.
1038 *
1039 * @returns Pointer to the page structur or NULL if it could not be found.
1040 * @param pv The kernel virtual address.
1041 */
1042RTDECL(struct page *) rtR0MemObjLinuxVirtToPage(void *pv)
1043{
1044 unsigned long ulAddr = (unsigned long)pv;
1045 unsigned long pfn;
1046 struct page *pPage;
1047 pte_t *pEntry;
1048 union
1049 {
1050 pgd_t Global;
1051#if RTLNX_VER_MIN(4,12,0)
1052 p4d_t Four;
1053#endif
1054#if RTLNX_VER_MIN(2,6,11)
1055 pud_t Upper;
1056#endif
1057 pmd_t Middle;
1058 pte_t Entry;
1059 } u;
1060
1061 /* Should this happen in a situation this code will be called in? And if
1062 * so, can it change under our feet? See also
1063 * "Documentation/vm/active_mm.txt" in the kernel sources. */
1064 if (RT_UNLIKELY(!current->active_mm))
1065 return NULL;
1066 u.Global = *pgd_offset(current->active_mm, ulAddr);
1067 if (RT_UNLIKELY(pgd_none(u.Global)))
1068 return NULL;
1069#if RTLNX_VER_MIN(2,6,11)
1070# if RTLNX_VER_MIN(4,12,0)
1071 u.Four = *p4d_offset(&u.Global, ulAddr);
1072 if (RT_UNLIKELY(p4d_none(u.Four)))
1073 return NULL;
1074 if (p4d_large(u.Four))
1075 {
1076 pPage = p4d_page(u.Four);
1077 AssertReturn(pPage, NULL);
1078 pfn = page_to_pfn(pPage); /* doing the safe way... */
1079 AssertCompile(P4D_SHIFT - PAGE_SHIFT < 31);
1080 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (P4D_SHIFT - PAGE_SHIFT)) - 1);
1081 return pfn_to_page(pfn);
1082 }
1083 u.Upper = *pud_offset(&u.Four, ulAddr);
1084# else /* < 4.12 */
1085 u.Upper = *pud_offset(&u.Global, ulAddr);
1086# endif /* < 4.12 */
1087 if (RT_UNLIKELY(pud_none(u.Upper)))
1088 return NULL;
1089# if RTLNX_VER_MIN(2,6,25)
1090 if (pud_large(u.Upper))
1091 {
1092 pPage = pud_page(u.Upper);
1093 AssertReturn(pPage, NULL);
1094 pfn = page_to_pfn(pPage); /* doing the safe way... */
1095 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
1096 return pfn_to_page(pfn);
1097 }
1098# endif
1099 u.Middle = *pmd_offset(&u.Upper, ulAddr);
1100#else /* < 2.6.11 */
1101 u.Middle = *pmd_offset(&u.Global, ulAddr);
1102#endif /* < 2.6.11 */
1103 if (RT_UNLIKELY(pmd_none(u.Middle)))
1104 return NULL;
1105#if RTLNX_VER_MIN(2,6,0)
1106 if (pmd_large(u.Middle))
1107 {
1108 pPage = pmd_page(u.Middle);
1109 AssertReturn(pPage, NULL);
1110 pfn = page_to_pfn(pPage); /* doing the safe way... */
1111 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
1112 return pfn_to_page(pfn);
1113 }
1114#endif
1115
1116#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
1117 pEntry = pte_offset_map(&u.Middle, ulAddr);
1118#else
1119 pEntry = pte_offset(&u.Middle, ulAddr);
1120#endif
1121 if (RT_UNLIKELY(!pEntry))
1122 return NULL;
1123 u.Entry = *pEntry;
1124#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map)
1125 pte_unmap(pEntry);
1126#endif
1127
1128 if (RT_UNLIKELY(!pte_present(u.Entry)))
1129 return NULL;
1130 return pte_page(u.Entry);
1131}
1132RT_EXPORT_SYMBOL(rtR0MemObjLinuxVirtToPage);
1133
1134
1135DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
1136{
1137 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
1138}
1139
1140
1141DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
1142{
1143 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
1144}
1145
1146
1147DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
1148{
1149 IPRT_LINUX_SAVE_EFL_AC();
1150
1151 /*
1152 * All we need to do here is to validate that we can use
1153 * ioremap on the specified address (32/64-bit dma_addr_t).
1154 */
1155 PRTR0MEMOBJLNX pMemLnx;
1156 dma_addr_t PhysAddr = Phys;
1157 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
1158
1159 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
1160 if (!pMemLnx)
1161 {
1162 IPRT_LINUX_RESTORE_EFL_AC();
1163 return VERR_NO_MEMORY;
1164 }
1165
1166 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
1167 pMemLnx->Core.u.Phys.fAllocated = false;
1168 pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
1169 Assert(!pMemLnx->cPages);
1170 *ppMem = &pMemLnx->Core;
1171 IPRT_LINUX_RESTORE_EFL_AC();
1172 return VINF_SUCCESS;
1173}
1174
1175/* openSUSE Leap 42.3 detection :-/ */
1176#if RTLNX_VER_RANGE(4,4,0, 4,6,0) && defined(FAULT_FLAG_REMOTE)
1177# define GET_USER_PAGES_API KERNEL_VERSION(4, 10, 0) /* no typo! */
1178#else
1179# define GET_USER_PAGES_API LINUX_VERSION_CODE
1180#endif
1181
1182DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
1183{
1184 IPRT_LINUX_SAVE_EFL_AC();
1185 const int cPages = cb >> PAGE_SHIFT;
1186 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1187 struct vm_area_struct **papVMAs;
1188 PRTR0MEMOBJLNX pMemLnx;
1189 int rc = VERR_NO_MEMORY;
1190 int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
1191
1192 /*
1193 * Check for valid task and size overflows.
1194 */
1195 if (!pTask)
1196 return VERR_NOT_SUPPORTED;
1197 if (((size_t)cPages << PAGE_SHIFT) != cb)
1198 return VERR_OUT_OF_RANGE;
1199
1200 /*
1201 * Allocate the memory object and a temporary buffer for the VMAs.
1202 */
1203 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
1204 if (!pMemLnx)
1205 {
1206 IPRT_LINUX_RESTORE_EFL_AC();
1207 return VERR_NO_MEMORY;
1208 }
1209
1210 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
1211 if (papVMAs)
1212 {
1213 LNX_MM_DOWN_READ(pTask->mm);
1214
1215 /*
1216 * Get user pages.
1217 */
1218/** @todo r=bird: Should we not force read access too? */
1219#if GET_USER_PAGES_API >= KERNEL_VERSION(4, 6, 0)
1220 if (R0Process == RTR0ProcHandleSelf())
1221 rc = get_user_pages(R3Ptr, /* Where from. */
1222 cPages, /* How many pages. */
1223# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1224 fWrite ? FOLL_WRITE | /* Write to memory. */
1225 FOLL_FORCE /* force write access. */
1226 : 0, /* Write to memory. */
1227# else
1228 fWrite, /* Write to memory. */
1229 fWrite, /* force write access. */
1230# endif
1231 &pMemLnx->apPages[0], /* Page array. */
1232 papVMAs); /* vmas */
1233 /*
1234 * Actually this should not happen at the moment as call this function
1235 * only for our own process.
1236 */
1237 else
1238 rc = get_user_pages_remote(
1239# if GET_USER_PAGES_API < KERNEL_VERSION(5, 9, 0)
1240 pTask, /* Task for fault accounting. */
1241# endif
1242 pTask->mm, /* Whose pages. */
1243 R3Ptr, /* Where from. */
1244 cPages, /* How many pages. */
1245# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1246 fWrite ? FOLL_WRITE | /* Write to memory. */
1247 FOLL_FORCE /* force write access. */
1248 : 0, /* Write to memory. */
1249# else
1250 fWrite, /* Write to memory. */
1251 fWrite, /* force write access. */
1252# endif
1253 &pMemLnx->apPages[0], /* Page array. */
1254 papVMAs /* vmas */
1255# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 10, 0)
1256 , NULL /* locked */
1257# endif
1258 );
1259#else /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1260 rc = get_user_pages(pTask, /* Task for fault accounting. */
1261 pTask->mm, /* Whose pages. */
1262 R3Ptr, /* Where from. */
1263 cPages, /* How many pages. */
1264/* The get_user_pages API change was back-ported to 4.4.168. */
1265# if RTLNX_VER_RANGE(4,4,168, 4,5,0)
1266 fWrite ? FOLL_WRITE | /* Write to memory. */
1267 FOLL_FORCE /* force write access. */
1268 : 0, /* Write to memory. */
1269# else
1270 fWrite, /* Write to memory. */
1271 fWrite, /* force write access. */
1272# endif
1273 &pMemLnx->apPages[0], /* Page array. */
1274 papVMAs); /* vmas */
1275#endif /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1276 if (rc == cPages)
1277 {
1278 /*
1279 * Flush dcache (required?), protect against fork and _really_ pin the page
1280 * table entries. get_user_pages() will protect against swapping out the
1281 * pages but it will NOT protect against removing page table entries. This
1282 * can be achieved with
1283 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
1284 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
1285 * Usual Linux distributions support only a limited size of locked pages
1286 * (e.g. 32KB).
1287 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
1288 * or by
1289 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
1290 * a range check.
1291 */
1292 /** @todo The Linux fork() protection will require more work if this API
1293 * is to be used for anything but locking VM pages. */
1294 while (rc-- > 0)
1295 {
1296 flush_dcache_page(pMemLnx->apPages[rc]);
1297 papVMAs[rc]->vm_flags |= VM_DONTCOPY | VM_LOCKED;
1298 }
1299
1300 LNX_MM_UP_READ(pTask->mm);
1301
1302 RTMemFree(papVMAs);
1303
1304 pMemLnx->Core.u.Lock.R0Process = R0Process;
1305 pMemLnx->cPages = cPages;
1306 Assert(!pMemLnx->fMappedToRing0);
1307 *ppMem = &pMemLnx->Core;
1308
1309 IPRT_LINUX_RESTORE_EFL_AC();
1310 return VINF_SUCCESS;
1311 }
1312
1313 /*
1314 * Failed - we need to unlock any pages that we succeeded to lock.
1315 */
1316 while (rc-- > 0)
1317 {
1318 if (!PageReserved(pMemLnx->apPages[rc]))
1319 SetPageDirty(pMemLnx->apPages[rc]);
1320#if RTLNX_VER_MIN(4,6,0)
1321 put_page(pMemLnx->apPages[rc]);
1322#else
1323 page_cache_release(pMemLnx->apPages[rc]);
1324#endif
1325 }
1326
1327 LNX_MM_UP_READ(pTask->mm);
1328
1329 RTMemFree(papVMAs);
1330 rc = VERR_LOCK_FAILED;
1331 }
1332
1333 rtR0MemObjDelete(&pMemLnx->Core);
1334 IPRT_LINUX_RESTORE_EFL_AC();
1335 return rc;
1336}
1337
1338
1339DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
1340{
1341 IPRT_LINUX_SAVE_EFL_AC();
1342 void *pvLast = (uint8_t *)pv + cb - 1;
1343 size_t const cPages = cb >> PAGE_SHIFT;
1344 PRTR0MEMOBJLNX pMemLnx;
1345 bool fLinearMapping;
1346 int rc;
1347 uint8_t *pbPage;
1348 size_t iPage;
1349 NOREF(fAccess);
1350
1351 if ( !RTR0MemKernelIsValidAddr(pv)
1352 || !RTR0MemKernelIsValidAddr(pv + cb))
1353 return VERR_INVALID_PARAMETER;
1354
1355 /*
1356 * The lower part of the kernel memory has a linear mapping between
1357 * physical and virtual addresses. So we take a short cut here. This is
1358 * assumed to be the cleanest way to handle those addresses (and the code
1359 * is well tested, though the test for determining it is not very nice).
1360 * If we ever decide it isn't we can still remove it.
1361 */
1362#if 0
1363 fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
1364#else
1365 fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
1366 && (unsigned long)pvLast < (unsigned long)high_memory;
1367#endif
1368
1369 /*
1370 * Allocate the memory object.
1371 */
1372 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
1373 if (!pMemLnx)
1374 {
1375 IPRT_LINUX_RESTORE_EFL_AC();
1376 return VERR_NO_MEMORY;
1377 }
1378
1379 /*
1380 * Gather the pages.
1381 * We ASSUME all kernel pages are non-swappable and non-movable.
1382 */
1383 rc = VINF_SUCCESS;
1384 pbPage = (uint8_t *)pvLast;
1385 iPage = cPages;
1386 if (!fLinearMapping)
1387 {
1388 while (iPage-- > 0)
1389 {
1390 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1391 if (RT_UNLIKELY(!pPage))
1392 {
1393 rc = VERR_LOCK_FAILED;
1394 break;
1395 }
1396 pMemLnx->apPages[iPage] = pPage;
1397 pbPage -= PAGE_SIZE;
1398 }
1399 }
1400 else
1401 {
1402 while (iPage-- > 0)
1403 {
1404 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
1405 pbPage -= PAGE_SIZE;
1406 }
1407 }
1408 if (RT_SUCCESS(rc))
1409 {
1410 /*
1411 * Complete the memory object and return.
1412 */
1413 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
1414 pMemLnx->cPages = cPages;
1415 Assert(!pMemLnx->fMappedToRing0);
1416 *ppMem = &pMemLnx->Core;
1417
1418 IPRT_LINUX_RESTORE_EFL_AC();
1419 return VINF_SUCCESS;
1420 }
1421
1422 rtR0MemObjDelete(&pMemLnx->Core);
1423 IPRT_LINUX_RESTORE_EFL_AC();
1424 return rc;
1425}
1426
1427
1428DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
1429{
1430#if RTLNX_VER_MIN(2,4,22)
1431 IPRT_LINUX_SAVE_EFL_AC();
1432 const size_t cPages = cb >> PAGE_SHIFT;
1433 struct page *pDummyPage;
1434 struct page **papPages;
1435
1436 /* check for unsupported stuff. */
1437 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1438 if (uAlignment > PAGE_SIZE)
1439 return VERR_NOT_SUPPORTED;
1440
1441 /*
1442 * Allocate a dummy page and create a page pointer array for vmap such that
1443 * the dummy page is mapped all over the reserved area.
1444 */
1445 pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
1446 if (pDummyPage)
1447 {
1448 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
1449 if (papPages)
1450 {
1451 void *pv;
1452 size_t iPage = cPages;
1453 while (iPage-- > 0)
1454 papPages[iPage] = pDummyPage;
1455# ifdef VM_MAP
1456 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
1457# else
1458 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
1459# endif
1460 RTMemFree(papPages);
1461 if (pv)
1462 {
1463 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1464 if (pMemLnx)
1465 {
1466 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
1467 pMemLnx->cPages = 1;
1468 pMemLnx->apPages[0] = pDummyPage;
1469 *ppMem = &pMemLnx->Core;
1470 IPRT_LINUX_RESTORE_EFL_AC();
1471 return VINF_SUCCESS;
1472 }
1473 vunmap(pv);
1474 }
1475 }
1476 __free_page(pDummyPage);
1477 }
1478 IPRT_LINUX_RESTORE_EFL_AC();
1479 return VERR_NO_MEMORY;
1480
1481#else /* < 2.4.22 */
1482 /*
1483 * Could probably use ioremap here, but the caller is in a better position than us
1484 * to select some safe physical memory.
1485 */
1486 return VERR_NOT_SUPPORTED;
1487#endif
1488}
1489
1490
1491DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
1492{
1493 IPRT_LINUX_SAVE_EFL_AC();
1494 PRTR0MEMOBJLNX pMemLnx;
1495 void *pv;
1496 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1497 if (!pTask)
1498 return VERR_NOT_SUPPORTED;
1499
1500 /*
1501 * Check that the specified alignment is supported.
1502 */
1503 if (uAlignment > PAGE_SIZE)
1504 return VERR_NOT_SUPPORTED;
1505
1506 /*
1507 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1508 */
1509 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1510 if (pv == (void *)-1)
1511 {
1512 IPRT_LINUX_RESTORE_EFL_AC();
1513 return VERR_NO_MEMORY;
1514 }
1515
1516 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1517 if (!pMemLnx)
1518 {
1519 rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
1520 IPRT_LINUX_RESTORE_EFL_AC();
1521 return VERR_NO_MEMORY;
1522 }
1523
1524 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1525 *ppMem = &pMemLnx->Core;
1526 IPRT_LINUX_RESTORE_EFL_AC();
1527 return VINF_SUCCESS;
1528}
1529
1530
1531DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
1532 void *pvFixed, size_t uAlignment,
1533 unsigned fProt, size_t offSub, size_t cbSub)
1534{
1535 int rc = VERR_NO_MEMORY;
1536 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1537 PRTR0MEMOBJLNX pMemLnx;
1538 IPRT_LINUX_SAVE_EFL_AC();
1539
1540 /* Fail if requested to do something we can't. */
1541 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1542 if (uAlignment > PAGE_SIZE)
1543 return VERR_NOT_SUPPORTED;
1544
1545 /*
1546 * Create the IPRT memory object.
1547 */
1548 if (!cbSub)
1549 cbSub = pMemLnxToMap->Core.cb - offSub;
1550 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub);
1551 if (pMemLnx)
1552 {
1553 if (pMemLnxToMap->cPages)
1554 {
1555#if RTLNX_VER_MIN(2,4,22)
1556 /*
1557 * Use vmap - 2.4.22 and later.
1558 */
1559 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1560 /** @todo We don't really care too much for EXEC here... 5.8 always adds NX. */
1561 Assert(((offSub + cbSub) >> PAGE_SHIFT) <= pMemLnxToMap->cPages);
1562# ifdef VM_MAP
1563 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_MAP, fPg);
1564# else
1565 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_ALLOC, fPg);
1566# endif
1567 if (pMemLnx->Core.pv)
1568 {
1569 pMemLnx->fMappedToRing0 = true;
1570 rc = VINF_SUCCESS;
1571 }
1572 else
1573 rc = VERR_MAP_FAILED;
1574
1575#else /* < 2.4.22 */
1576 /*
1577 * Only option here is to share mappings if possible and forget about fProt.
1578 */
1579 if (rtR0MemObjIsRing3(pMemToMap))
1580 rc = VERR_NOT_SUPPORTED;
1581 else
1582 {
1583 rc = VINF_SUCCESS;
1584 if (!pMemLnxToMap->Core.pv)
1585 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1586 if (RT_SUCCESS(rc))
1587 {
1588 Assert(pMemLnxToMap->Core.pv);
1589 pMemLnx->Core.pv = (uint8_t *)pMemLnxToMap->Core.pv + offSub;
1590 }
1591 }
1592#endif
1593 }
1594 else
1595 {
1596 /*
1597 * MMIO / physical memory.
1598 */
1599 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1600#if RTLNX_VER_MIN(2,6,25)
1601 /*
1602 * ioremap() defaults to no caching since the 2.6 kernels.
1603 * ioremap_nocache() has been removed finally in 5.6-rc1.
1604 */
1605 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1606 ? ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
1607 : ioremap_cache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
1608#else /* KERNEL_VERSION < 2.6.25 */
1609 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1610 ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
1611 : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
1612#endif /* KERNEL_VERSION < 2.6.25 */
1613 if (pMemLnx->Core.pv)
1614 {
1615 /** @todo fix protection. */
1616 rc = VINF_SUCCESS;
1617 }
1618 }
1619 if (RT_SUCCESS(rc))
1620 {
1621 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1622 *ppMem = &pMemLnx->Core;
1623 IPRT_LINUX_RESTORE_EFL_AC();
1624 return VINF_SUCCESS;
1625 }
1626 rtR0MemObjDelete(&pMemLnx->Core);
1627 }
1628
1629 IPRT_LINUX_RESTORE_EFL_AC();
1630 return rc;
1631}
1632
1633
1634#ifdef VBOX_USE_PAE_HACK
1635/**
1636 * Replace the PFN of a PTE with the address of the actual page.
1637 *
1638 * The caller maps a reserved dummy page at the address with the desired access
1639 * and flags.
1640 *
1641 * This hack is required for older Linux kernels which don't provide
1642 * remap_pfn_range().
1643 *
1644 * @returns 0 on success, -ENOMEM on failure.
1645 * @param mm The memory context.
1646 * @param ulAddr The mapping address.
1647 * @param Phys The physical address of the page to map.
1648 */
1649static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1650{
1651 int rc = -ENOMEM;
1652 pgd_t *pgd;
1653
1654 spin_lock(&mm->page_table_lock);
1655
1656 pgd = pgd_offset(mm, ulAddr);
1657 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1658 {
1659 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1660 if (!pmd_none(*pmd))
1661 {
1662 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1663 if (ptep)
1664 {
1665 pte_t pte = *ptep;
1666 pte.pte_high &= 0xfff00000;
1667 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1668 pte.pte_low &= 0x00000fff;
1669 pte.pte_low |= (Phys & 0xfffff000);
1670 set_pte(ptep, pte);
1671 pte_unmap(ptep);
1672 rc = 0;
1673 }
1674 }
1675 }
1676
1677 spin_unlock(&mm->page_table_lock);
1678 return rc;
1679}
1680#endif /* VBOX_USE_PAE_HACK */
1681
1682
1683DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
1684 unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub)
1685{
1686 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1687 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1688 int rc = VERR_NO_MEMORY;
1689 PRTR0MEMOBJLNX pMemLnx;
1690#ifdef VBOX_USE_PAE_HACK
1691 struct page *pDummyPage;
1692 RTHCPHYS DummyPhys;
1693#endif
1694 IPRT_LINUX_SAVE_EFL_AC();
1695
1696 /*
1697 * Check for restrictions.
1698 */
1699 if (!pTask)
1700 return VERR_NOT_SUPPORTED;
1701 if (uAlignment > PAGE_SIZE)
1702 return VERR_NOT_SUPPORTED;
1703
1704#ifdef VBOX_USE_PAE_HACK
1705 /*
1706 * Allocate a dummy page for use when mapping the memory.
1707 */
1708 pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
1709 if (!pDummyPage)
1710 {
1711 IPRT_LINUX_RESTORE_EFL_AC();
1712 return VERR_NO_MEMORY;
1713 }
1714 SetPageReserved(pDummyPage);
1715 DummyPhys = page_to_phys(pDummyPage);
1716#endif
1717
1718 /*
1719 * Create the IPRT memory object.
1720 */
1721 Assert(!offSub || cbSub);
1722 if (cbSub == 0)
1723 cbSub = pMemLnxToMap->Core.cb;
1724 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub);
1725 if (pMemLnx)
1726 {
1727 /*
1728 * Allocate user space mapping.
1729 */
1730 void *pv;
1731 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cbSub, uAlignment, pTask, fProt);
1732 if (pv != (void *)-1)
1733 {
1734 /*
1735 * Map page by page into the mmap area.
1736 * This is generic, paranoid and not very efficient.
1737 */
1738 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1739 unsigned long ulAddrCur = (unsigned long)pv;
1740 const size_t cPages = (offSub + cbSub) >> PAGE_SHIFT;
1741 size_t iPage;
1742
1743 LNX_MM_DOWN_WRITE(pTask->mm);
1744
1745 rc = VINF_SUCCESS;
1746 if (pMemLnxToMap->cPages)
1747 {
1748 for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1749 {
1750#if RTLNX_VER_MAX(2,6,11)
1751 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1752#endif
1753#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1754 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1755 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1756#endif
1757#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
1758 /* remap_page_range() limitation on x86 */
1759 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1760#endif
1761
1762#if defined(VBOX_USE_INSERT_PAGE) && RTLNX_VER_MIN(2,6,22)
1763 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1764 /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
1765 * See remap_pfn_range() in mm/memory.c */
1766#if RTLNX_VER_MIN(3,7,0)
1767 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1768#else
1769 vma->vm_flags |= VM_RESERVED;
1770#endif
1771#elif RTLNX_VER_MIN(2,6,11)
1772 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1773#elif defined(VBOX_USE_PAE_HACK)
1774 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1775 if (!rc)
1776 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1777#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1778 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1779#else /* 2.4 */
1780 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1781#endif
1782 if (rc)
1783 {
1784 rc = VERR_NO_MEMORY;
1785 break;
1786 }
1787 }
1788 }
1789 else
1790 {
1791 RTHCPHYS Phys;
1792 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1793 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1794 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1795 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1796 else
1797 {
1798 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1799 Phys = NIL_RTHCPHYS;
1800 }
1801 if (Phys != NIL_RTHCPHYS)
1802 {
1803 for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1804 {
1805#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1806 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1807 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1808#endif
1809#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
1810 /* remap_page_range() limitation on x86 */
1811 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1812#endif
1813
1814#if RTLNX_VER_MIN(2,6,11)
1815 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1816#elif defined(VBOX_USE_PAE_HACK)
1817 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1818 if (!rc)
1819 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1820#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1821 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1822#else /* 2.4 */
1823 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1824#endif
1825 if (rc)
1826 {
1827 rc = VERR_NO_MEMORY;
1828 break;
1829 }
1830 }
1831 }
1832 }
1833
1834#ifdef CONFIG_NUMA_BALANCING
1835# if RTLNX_VER_MAX(3,13,0) && RTLNX_RHEL_MAX(7,0)
1836# define VBOX_NUMA_HACK_OLD
1837# endif
1838 if (RT_SUCCESS(rc))
1839 {
1840 /** @todo Ugly hack! But right now we have no other means to
1841 * disable automatic NUMA page balancing. */
1842# ifdef RT_OS_X86
1843# ifdef VBOX_NUMA_HACK_OLD
1844 pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
1845# endif
1846 pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
1847# else
1848# ifdef VBOX_NUMA_HACK_OLD
1849 pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
1850# endif
1851 pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
1852# endif
1853 }
1854#endif /* CONFIG_NUMA_BALANCING */
1855
1856 LNX_MM_UP_WRITE(pTask->mm);
1857
1858 if (RT_SUCCESS(rc))
1859 {
1860#ifdef VBOX_USE_PAE_HACK
1861 __free_page(pDummyPage);
1862#endif
1863 pMemLnx->Core.pv = pv;
1864 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1865 *ppMem = &pMemLnx->Core;
1866 IPRT_LINUX_RESTORE_EFL_AC();
1867 return VINF_SUCCESS;
1868 }
1869
1870 /*
1871 * Bail out.
1872 */
1873 rtR0MemObjLinuxDoMunmap(pv, cbSub, pTask);
1874 }
1875 rtR0MemObjDelete(&pMemLnx->Core);
1876 }
1877#ifdef VBOX_USE_PAE_HACK
1878 __free_page(pDummyPage);
1879#endif
1880
1881 IPRT_LINUX_RESTORE_EFL_AC();
1882 return rc;
1883}
1884
1885
1886DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1887{
1888# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
1889 /*
1890 * Currently only supported when we've got addresses PTEs from the kernel.
1891 */
1892 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1893 if (pMemLnx->pArea && pMemLnx->papPtesForArea)
1894 {
1895 pgprot_t const fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
1896 size_t const cPages = (offSub + cbSub) >> PAGE_SHIFT;
1897 pte_t **papPtes = pMemLnx->papPtesForArea;
1898 size_t i;
1899
1900 for (i = offSub >> PAGE_SHIFT; i < cPages; i++)
1901 {
1902 set_pte(papPtes[i], mk_pte(pMemLnx->apPages[i], fPg));
1903 }
1904 preempt_disable();
1905 __flush_tlb_all();
1906 preempt_enable();
1907 return VINF_SUCCESS;
1908 }
1909# elif defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
1910 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1911 if ( pMemLnx->fExecutable
1912 && pMemLnx->fMappedToRing0)
1913 {
1914 LNXAPPLYPGRANGE Args;
1915 Args.pMemLnx = pMemLnx;
1916 Args.fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
1917 int rcLnx = apply_to_page_range(current->active_mm, (unsigned long)pMemLnx->Core.pv + offSub, cbSub,
1918 rtR0MemObjLinuxApplyPageRange, (void *)&Args);
1919 if (rcLnx)
1920 return VERR_NOT_SUPPORTED;
1921
1922 return VINF_SUCCESS;
1923 }
1924# endif
1925
1926 NOREF(pMem);
1927 NOREF(offSub);
1928 NOREF(cbSub);
1929 NOREF(fProt);
1930 return VERR_NOT_SUPPORTED;
1931}
1932
1933
1934DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1935{
1936 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1937
1938 if (pMemLnx->cPages)
1939 return page_to_phys(pMemLnx->apPages[iPage]);
1940
1941 switch (pMemLnx->Core.enmType)
1942 {
1943 case RTR0MEMOBJTYPE_CONT:
1944 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1945
1946 case RTR0MEMOBJTYPE_PHYS:
1947 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1948
1949 /* the parent knows */
1950 case RTR0MEMOBJTYPE_MAPPING:
1951 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1952
1953 /* cPages > 0 */
1954 case RTR0MEMOBJTYPE_LOW:
1955 case RTR0MEMOBJTYPE_LOCK:
1956 case RTR0MEMOBJTYPE_PHYS_NC:
1957 case RTR0MEMOBJTYPE_PAGE:
1958 default:
1959 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1960 RT_FALL_THROUGH();
1961
1962 case RTR0MEMOBJTYPE_RES_VIRT:
1963 return NIL_RTHCPHYS;
1964 }
1965}
1966
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette