VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c@ 91477

Last change on this file since 91477 was 91477, checked in by vboxsync, 3 years ago

IPRT/memobj-r0drv-linux.c: todo. bugref:10112

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev Revision
File size: 66.2 KB
Line 
1/* $Id: memobj-r0drv-linux.c 91477 2021-09-29 23:27:09Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-linux-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/assert.h>
35#include <iprt/err.h>
36#include <iprt/log.h>
37#include <iprt/mem.h>
38#include <iprt/process.h>
39#include <iprt/string.h>
40#include "internal/memobj.h"
41#include "internal/iprt.h"
42
43
44/*********************************************************************************************************************************
45* Defined Constants And Macros *
46*********************************************************************************************************************************/
47/* early 2.6 kernels */
48#ifndef PAGE_SHARED_EXEC
49# define PAGE_SHARED_EXEC PAGE_SHARED
50#endif
51#ifndef PAGE_READONLY_EXEC
52# define PAGE_READONLY_EXEC PAGE_READONLY
53#endif
54
55/** @def IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
56 * Whether we use alloc_vm_area (3.2+) for executable memory.
57 * This is a must for 5.8+, but we enable it all the way back to 3.2.x for
58 * better W^R compliance (fExecutable flag). */
59#if RTLNX_VER_RANGE(3,2,0, 5,10,0) || defined(DOXYGEN_RUNNING)
60# define IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
61#endif
62/** @def IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
63 * alloc_vm_area was removed with 5.10 so we have to resort to a different way
64 * to allocate executable memory.
65 * It would be possible to remove IPRT_USE_ALLOC_VM_AREA_FOR_EXEC and use
66 * this path execlusively for 3.2+ but no time to test it really works on every
67 * supported kernel, so better play safe for now.
68 */
69#if RTLNX_VER_MIN(5,10,0) || defined(DOXYGEN_RUNNING)
70# define IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
71#endif
72
73/*
74 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
75 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
76 * It should be safe to use vm_insert_page() older kernels as well.
77 */
78#if RTLNX_VER_MIN(2,6,23)
79# define VBOX_USE_INSERT_PAGE
80#endif
81#if defined(CONFIG_X86_PAE) \
82 && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
83 || RTLNX_VER_RANGE(2,6,0, 2,6,11) )
84# define VBOX_USE_PAE_HACK
85#endif
86
87/* gfp_t was introduced in 2.6.14, define it for earlier. */
88#if RTLNX_VER_MAX(2,6,14)
89# define gfp_t unsigned
90#endif
91
92/*
93 * Wrappers around mmap_lock/mmap_sem difference.
94 */
95#if RTLNX_VER_MIN(5,8,0)
96# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_lock)
97# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_lock)
98# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_lock)
99# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_lock)
100#else
101# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_sem)
102# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_sem)
103# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_sem)
104# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_sem)
105#endif
106
107
108/*********************************************************************************************************************************
109* Structures and Typedefs *
110*********************************************************************************************************************************/
111/**
112 * The Linux version of the memory object structure.
113 */
114typedef struct RTR0MEMOBJLNX
115{
116 /** The core structure. */
117 RTR0MEMOBJINTERNAL Core;
118 /** Set if the allocation is contiguous.
119 * This means it has to be given back as one chunk. */
120 bool fContiguous;
121 /** Set if executable allocation. */
122 bool fExecutable;
123 /** Set if we've vmap'ed the memory into ring-0. */
124 bool fMappedToRing0;
125#ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
126 /** Return from alloc_vm_area() that we now need to use for executable
127 * memory. */
128 struct vm_struct *pArea;
129 /** PTE array that goes along with pArea (must be freed). */
130 pte_t **papPtesForArea;
131#endif
132 /** The pages in the apPages array. */
133 size_t cPages;
134 /** Array of struct page pointers. (variable size) */
135 struct page *apPages[1];
136} RTR0MEMOBJLNX;
137/** Pointer to the linux memory object. */
138typedef RTR0MEMOBJLNX *PRTR0MEMOBJLNX;
139
140
141static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
142
143
144/**
145 * Helper that converts from a RTR0PROCESS handle to a linux task.
146 *
147 * @returns The corresponding Linux task.
148 * @param R0Process IPRT ring-0 process handle.
149 */
150static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
151{
152 /** @todo fix rtR0ProcessToLinuxTask!! */
153 /** @todo many (all?) callers currently assume that we return 'current'! */
154 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
155}
156
157
158/**
159 * Compute order. Some functions allocate 2^order pages.
160 *
161 * @returns order.
162 * @param cPages Number of pages.
163 */
164static int rtR0MemObjLinuxOrder(size_t cPages)
165{
166 int iOrder;
167 size_t cTmp;
168
169 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
170 ;
171 if (cPages & ~((size_t)1 << iOrder))
172 ++iOrder;
173
174 return iOrder;
175}
176
177
178/**
179 * Converts from RTMEM_PROT_* to Linux PAGE_*.
180 *
181 * @returns Linux page protection constant.
182 * @param fProt The IPRT protection mask.
183 * @param fKernel Whether it applies to kernel or user space.
184 */
185static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
186{
187 switch (fProt)
188 {
189 default:
190 AssertMsgFailed(("%#x %d\n", fProt, fKernel)); RT_FALL_THRU();
191 case RTMEM_PROT_NONE:
192 return PAGE_NONE;
193
194 case RTMEM_PROT_READ:
195 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
196
197 case RTMEM_PROT_WRITE:
198 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
199 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
200
201 case RTMEM_PROT_EXEC:
202 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
203#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
204 if (fKernel)
205 {
206 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
207 pgprot_val(fPg) &= ~_PAGE_RW;
208 return fPg;
209 }
210 return PAGE_READONLY_EXEC;
211#else
212 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
213#endif
214
215 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
216 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
217 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
218 }
219}
220
221
222/**
223 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
224 * an empty user space mapping.
225 *
226 * We acquire the mmap_sem/mmap_lock of the task!
227 *
228 * @returns Pointer to the mapping.
229 * (void *)-1 on failure.
230 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
231 * @param cb The size of the mapping.
232 * @param uAlignment The alignment of the mapping.
233 * @param pTask The Linux task to create this mapping in.
234 * @param fProt The RTMEM_PROT_* mask.
235 */
236static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
237{
238 unsigned fLnxProt;
239 unsigned long ulAddr;
240
241 Assert(pTask == current); /* do_mmap */
242 RT_NOREF_PV(pTask);
243
244 /*
245 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
246 */
247 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
248 if (fProt == RTMEM_PROT_NONE)
249 fLnxProt = PROT_NONE;
250 else
251 {
252 fLnxProt = 0;
253 if (fProt & RTMEM_PROT_READ)
254 fLnxProt |= PROT_READ;
255 if (fProt & RTMEM_PROT_WRITE)
256 fLnxProt |= PROT_WRITE;
257 if (fProt & RTMEM_PROT_EXEC)
258 fLnxProt |= PROT_EXEC;
259 }
260
261 if (R3PtrFixed != (RTR3PTR)-1)
262 {
263#if RTLNX_VER_MIN(3,5,0)
264 ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
265#else
266 LNX_MM_DOWN_WRITE(pTask->mm);
267 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
268 LNX_MM_UP_WRITE(pTask->mm);
269#endif
270 }
271 else
272 {
273#if RTLNX_VER_MIN(3,5,0)
274 ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
275#else
276 LNX_MM_DOWN_WRITE(pTask->mm);
277 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
278 LNX_MM_UP_WRITE(pTask->mm);
279#endif
280 if ( !(ulAddr & ~PAGE_MASK)
281 && (ulAddr & (uAlignment - 1)))
282 {
283 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
284 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
285 * ourselves) and further by there begin two mmap strategies (top / bottom). */
286 /* For now, just ignore uAlignment requirements... */
287 }
288 }
289
290
291 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
292 return (void *)-1;
293 return (void *)ulAddr;
294}
295
296
297/**
298 * Worker that destroys a user space mapping.
299 * Undoes what rtR0MemObjLinuxDoMmap did.
300 *
301 * We acquire the mmap_sem/mmap_lock of the task!
302 *
303 * @param pv The ring-3 mapping.
304 * @param cb The size of the mapping.
305 * @param pTask The Linux task to destroy this mapping in.
306 */
307static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
308{
309#if RTLNX_VER_MIN(3,5,0)
310 Assert(pTask == current); RT_NOREF_PV(pTask);
311 vm_munmap((unsigned long)pv, cb);
312#elif defined(USE_RHEL4_MUNMAP)
313 LNX_MM_DOWN_WRITE(pTask->mm);
314 do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
315 LNX_MM_UP_WRITE(pTask->mm);
316#else
317 LNX_MM_DOWN_WRITE(pTask->mm);
318 do_munmap(pTask->mm, (unsigned long)pv, cb);
319 LNX_MM_UP_WRITE(pTask->mm);
320#endif
321}
322
323
324/**
325 * Internal worker that allocates physical pages and creates the memory object for them.
326 *
327 * @returns IPRT status code.
328 * @param ppMemLnx Where to store the memory object pointer.
329 * @param enmType The object type.
330 * @param cb The number of bytes to allocate.
331 * @param uAlignment The alignment of the physical memory.
332 * Only valid if fContiguous == true, ignored otherwise.
333 * @param fFlagsLnx The page allocation flags (GPFs).
334 * @param fContiguous Whether the allocation must be contiguous.
335 * @param fExecutable Whether the memory must be executable.
336 * @param rcNoMem What to return when we're out of pages.
337 */
338static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
339 size_t uAlignment, gfp_t fFlagsLnx, bool fContiguous, bool fExecutable, int rcNoMem)
340{
341 size_t iPage;
342 size_t const cPages = cb >> PAGE_SHIFT;
343 struct page *paPages;
344
345 /*
346 * Allocate a memory object structure that's large enough to contain
347 * the page pointer array.
348 */
349 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
350 if (!pMemLnx)
351 return VERR_NO_MEMORY;
352 pMemLnx->cPages = cPages;
353
354 if (cPages > 255)
355 {
356# ifdef __GFP_REPEAT
357 /* Try hard to allocate the memory, but the allocation attempt might fail. */
358 fFlagsLnx |= __GFP_REPEAT;
359# endif
360# ifdef __GFP_NOMEMALLOC
361 /* Introduced with Linux 2.6.12: Don't use emergency reserves */
362 fFlagsLnx |= __GFP_NOMEMALLOC;
363# endif
364 }
365
366 /*
367 * Allocate the pages.
368 * For small allocations we'll try contiguous first and then fall back on page by page.
369 */
370#if RTLNX_VER_MIN(2,4,22)
371 if ( fContiguous
372 || cb <= PAGE_SIZE * 2)
373 {
374# ifdef VBOX_USE_INSERT_PAGE
375 paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
376# else
377 paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
378# endif
379 if (paPages)
380 {
381 fContiguous = true;
382 for (iPage = 0; iPage < cPages; iPage++)
383 pMemLnx->apPages[iPage] = &paPages[iPage];
384 }
385 else if (fContiguous)
386 {
387 rtR0MemObjDelete(&pMemLnx->Core);
388 return rcNoMem;
389 }
390 }
391
392 if (!fContiguous)
393 {
394 /** @todo Try use alloc_pages_bulk_array when available, it should be faster
395 * than a alloc_page loop. Put it in #ifdefs similar to
396 * IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC. */
397 for (iPage = 0; iPage < cPages; iPage++)
398 {
399 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
400 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
401 {
402 while (iPage-- > 0)
403 __free_page(pMemLnx->apPages[iPage]);
404 rtR0MemObjDelete(&pMemLnx->Core);
405 return rcNoMem;
406 }
407 }
408 }
409
410#else /* < 2.4.22 */
411 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
412 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
413 if (!paPages)
414 {
415 rtR0MemObjDelete(&pMemLnx->Core);
416 return rcNoMem;
417 }
418 for (iPage = 0; iPage < cPages; iPage++)
419 {
420 pMemLnx->apPages[iPage] = &paPages[iPage];
421 if (fExecutable)
422 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
423 if (PageHighMem(pMemLnx->apPages[iPage]))
424 BUG();
425 }
426
427 fContiguous = true;
428#endif /* < 2.4.22 */
429 pMemLnx->fContiguous = fContiguous;
430 pMemLnx->fExecutable = fExecutable;
431
432#if RTLNX_VER_MAX(4,5,0)
433 /*
434 * Reserve the pages.
435 *
436 * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
437 * pages. According to Michal Hocko this shouldn't be necessary anyway because
438 * as pages which are not on the LRU list are never evictable.
439 */
440 for (iPage = 0; iPage < cPages; iPage++)
441 SetPageReserved(pMemLnx->apPages[iPage]);
442#endif
443
444 /*
445 * Note that the physical address of memory allocated with alloc_pages(flags, order)
446 * is always 2^(PAGE_SHIFT+order)-aligned.
447 */
448 if ( fContiguous
449 && uAlignment > PAGE_SIZE)
450 {
451 /*
452 * Check for alignment constraints. The physical address of memory allocated with
453 * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
454 */
455 if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
456 {
457 /*
458 * This should never happen!
459 */
460 printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
461 (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
462 rtR0MemObjLinuxFreePages(pMemLnx);
463 return rcNoMem;
464 }
465 }
466
467 *ppMemLnx = pMemLnx;
468 return VINF_SUCCESS;
469}
470
471
472/**
473 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
474 *
475 * This method does NOT free the object.
476 *
477 * @param pMemLnx The object which physical pages should be freed.
478 */
479static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
480{
481 size_t iPage = pMemLnx->cPages;
482 if (iPage > 0)
483 {
484 /*
485 * Restore the page flags.
486 */
487 while (iPage-- > 0)
488 {
489#if RTLNX_VER_MAX(4,5,0)
490 /* See SetPageReserved() in rtR0MemObjLinuxAllocPages() */
491 ClearPageReserved(pMemLnx->apPages[iPage]);
492#endif
493#if RTLNX_VER_MAX(2,4,22)
494 if (pMemLnx->fExecutable)
495 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
496#endif
497 }
498
499 /*
500 * Free the pages.
501 */
502#if RTLNX_VER_MIN(2,4,22)
503 if (!pMemLnx->fContiguous)
504 {
505 iPage = pMemLnx->cPages;
506 while (iPage-- > 0)
507 __free_page(pMemLnx->apPages[iPage]);
508 }
509 else
510#endif
511 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
512
513 pMemLnx->cPages = 0;
514 }
515}
516
517
518#ifdef IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
519/**
520 * User data passed to the apply_to_page_range() callback.
521 */
522typedef struct LNXAPPLYPGRANGE
523{
524 /** Pointer to the memory object. */
525 PRTR0MEMOBJLNX pMemLnx;
526 /** The page protection flags to apply. */
527 pgprot_t fPg;
528} LNXAPPLYPGRANGE;
529/** Pointer to the user data. */
530typedef LNXAPPLYPGRANGE *PLNXAPPLYPGRANGE;
531/** Pointer to the const user data. */
532typedef const LNXAPPLYPGRANGE *PCLNXAPPLYPGRANGE;
533
534/**
535 * Callback called in apply_to_page_range().
536 *
537 * @returns Linux status code.
538 * @param pPte Pointer to the page table entry for the given address.
539 * @param uAddr The address to apply the new protection to.
540 * @param pvUser The opaque user data.
541 */
542static int rtR0MemObjLinuxApplyPageRange(pte_t *pPte, unsigned long uAddr, void *pvUser)
543{
544 PCLNXAPPLYPGRANGE pArgs = (PCLNXAPPLYPGRANGE)pvUser;
545 PRTR0MEMOBJLNX pMemLnx = pArgs->pMemLnx;
546 size_t idxPg = (uAddr - (unsigned long)pMemLnx->Core.pv) >> PAGE_SHIFT;
547
548 set_pte(pPte, mk_pte(pMemLnx->apPages[idxPg], pArgs->fPg));
549 return 0;
550}
551#endif
552
553
554/**
555 * Maps the allocation into ring-0.
556 *
557 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
558 *
559 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
560 * space, so we'll use that mapping if possible. If execute access is required, we'll
561 * play safe and do our own mapping.
562 *
563 * @returns IPRT status code.
564 * @param pMemLnx The linux memory object to map.
565 * @param fExecutable Whether execute access is required.
566 */
567static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
568{
569 int rc = VINF_SUCCESS;
570
571 /*
572 * Choose mapping strategy.
573 */
574 bool fMustMap = fExecutable
575 || !pMemLnx->fContiguous;
576 if (!fMustMap)
577 {
578 size_t iPage = pMemLnx->cPages;
579 while (iPage-- > 0)
580 if (PageHighMem(pMemLnx->apPages[iPage]))
581 {
582 fMustMap = true;
583 break;
584 }
585 }
586
587 Assert(!pMemLnx->Core.pv);
588 Assert(!pMemLnx->fMappedToRing0);
589
590 if (fMustMap)
591 {
592 /*
593 * Use vmap - 2.4.22 and later.
594 */
595#if RTLNX_VER_MIN(2,4,22)
596 pgprot_t fPg;
597 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
598# ifdef _PAGE_NX
599 if (!fExecutable)
600 pgprot_val(fPg) |= _PAGE_NX;
601# endif
602
603# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
604 if (fExecutable)
605 {
606# if RTLNX_VER_MIN(3,2,51)
607 pte_t **papPtes = (pte_t **)kmalloc_array(pMemLnx->cPages, sizeof(papPtes[0]), GFP_KERNEL);
608# else
609 pte_t **papPtes = (pte_t **)kmalloc(pMemLnx->cPages * sizeof(papPtes[0]), GFP_KERNEL);
610# endif
611 if (papPtes)
612 {
613 pMemLnx->pArea = alloc_vm_area(pMemLnx->Core.cb, papPtes); /* Note! pArea->nr_pages is not set. */
614 if (pMemLnx->pArea)
615 {
616 size_t i;
617 Assert(pMemLnx->pArea->size >= pMemLnx->Core.cb); /* Note! includes guard page. */
618 Assert(pMemLnx->pArea->addr);
619# ifdef _PAGE_NX
620 pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
621# endif
622 pMemLnx->papPtesForArea = papPtes;
623 for (i = 0; i < pMemLnx->cPages; i++)
624 *papPtes[i] = mk_pte(pMemLnx->apPages[i], fPg);
625 pMemLnx->Core.pv = pMemLnx->pArea->addr;
626 pMemLnx->fMappedToRing0 = true;
627 }
628 else
629 {
630 kfree(papPtes);
631 rc = VERR_MAP_FAILED;
632 }
633 }
634 else
635 rc = VERR_MAP_FAILED;
636 }
637 else
638# endif
639 {
640# if defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
641 if (fExecutable)
642 pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
643# endif
644
645# ifdef VM_MAP
646 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
647# else
648 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
649# endif
650 if (pMemLnx->Core.pv)
651 pMemLnx->fMappedToRing0 = true;
652 else
653 rc = VERR_MAP_FAILED;
654 }
655#else /* < 2.4.22 */
656 rc = VERR_NOT_SUPPORTED;
657#endif
658 }
659 else
660 {
661 /*
662 * Use the kernel RAM mapping.
663 */
664 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
665 Assert(pMemLnx->Core.pv);
666 }
667
668 return rc;
669}
670
671
672/**
673 * Undoes what rtR0MemObjLinuxVMap() did.
674 *
675 * @param pMemLnx The linux memory object.
676 */
677static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
678{
679#if RTLNX_VER_MIN(2,4,22)
680# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
681 if (pMemLnx->pArea)
682 {
683# if 0
684 pte_t **papPtes = pMemLnx->papPtesForArea;
685 size_t i;
686 for (i = 0; i < pMemLnx->cPages; i++)
687 *papPtes[i] = 0;
688# endif
689 free_vm_area(pMemLnx->pArea);
690 kfree(pMemLnx->papPtesForArea);
691 pMemLnx->pArea = NULL;
692 pMemLnx->papPtesForArea = NULL;
693 }
694 else
695# endif
696 if (pMemLnx->fMappedToRing0)
697 {
698 Assert(pMemLnx->Core.pv);
699 vunmap(pMemLnx->Core.pv);
700 pMemLnx->fMappedToRing0 = false;
701 }
702#else /* < 2.4.22 */
703 Assert(!pMemLnx->fMappedToRing0);
704#endif
705 pMemLnx->Core.pv = NULL;
706}
707
708
709DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
710{
711 IPRT_LINUX_SAVE_EFL_AC();
712 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
713
714 /*
715 * Release any memory that we've allocated or locked.
716 */
717 switch (pMemLnx->Core.enmType)
718 {
719 case RTR0MEMOBJTYPE_LOW:
720 case RTR0MEMOBJTYPE_PAGE:
721 case RTR0MEMOBJTYPE_CONT:
722 case RTR0MEMOBJTYPE_PHYS:
723 case RTR0MEMOBJTYPE_PHYS_NC:
724 rtR0MemObjLinuxVUnmap(pMemLnx);
725 rtR0MemObjLinuxFreePages(pMemLnx);
726 break;
727
728 case RTR0MEMOBJTYPE_LOCK:
729 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
730 {
731 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
732 size_t iPage;
733 Assert(pTask);
734 if (pTask && pTask->mm)
735 LNX_MM_DOWN_READ(pTask->mm);
736
737 iPage = pMemLnx->cPages;
738 while (iPage-- > 0)
739 {
740 if (!PageReserved(pMemLnx->apPages[iPage]))
741 SetPageDirty(pMemLnx->apPages[iPage]);
742#if RTLNX_VER_MIN(4,6,0)
743 put_page(pMemLnx->apPages[iPage]);
744#else
745 page_cache_release(pMemLnx->apPages[iPage]);
746#endif
747 }
748
749 if (pTask && pTask->mm)
750 LNX_MM_UP_READ(pTask->mm);
751 }
752 /* else: kernel memory - nothing to do here. */
753 break;
754
755 case RTR0MEMOBJTYPE_RES_VIRT:
756 Assert(pMemLnx->Core.pv);
757 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
758 {
759 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
760 Assert(pTask);
761 if (pTask && pTask->mm)
762 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
763 }
764 else
765 {
766 vunmap(pMemLnx->Core.pv);
767
768 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
769 __free_page(pMemLnx->apPages[0]);
770 pMemLnx->apPages[0] = NULL;
771 pMemLnx->cPages = 0;
772 }
773 pMemLnx->Core.pv = NULL;
774 break;
775
776 case RTR0MEMOBJTYPE_MAPPING:
777 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
778 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
779 {
780 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
781 Assert(pTask);
782 if (pTask && pTask->mm)
783 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
784 }
785 else
786 vunmap(pMemLnx->Core.pv);
787 pMemLnx->Core.pv = NULL;
788 break;
789
790 default:
791 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
792 return VERR_INTERNAL_ERROR;
793 }
794 IPRT_LINUX_RESTORE_EFL_ONLY_AC();
795 return VINF_SUCCESS;
796}
797
798
799DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
800{
801 IPRT_LINUX_SAVE_EFL_AC();
802 PRTR0MEMOBJLNX pMemLnx;
803 int rc;
804
805#if RTLNX_VER_MIN(2,4,22)
806 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
807 false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
808#else
809 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
810 false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
811#endif
812 if (RT_SUCCESS(rc))
813 {
814 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
815 if (RT_SUCCESS(rc))
816 {
817 *ppMem = &pMemLnx->Core;
818 IPRT_LINUX_RESTORE_EFL_AC();
819 return rc;
820 }
821
822 rtR0MemObjLinuxFreePages(pMemLnx);
823 rtR0MemObjDelete(&pMemLnx->Core);
824 }
825
826 IPRT_LINUX_RESTORE_EFL_AC();
827 return rc;
828}
829
830
831DECLHIDDEN(int) rtR0MemObjNativeAllocLarge(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, size_t cbLargePage, uint32_t fFlags,
832 const char *pszTag)
833{
834 return rtR0MemObjFallbackAllocLarge(ppMem, cb, cbLargePage, fFlags, pszTag);
835}
836
837
838DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
839{
840 IPRT_LINUX_SAVE_EFL_AC();
841 PRTR0MEMOBJLNX pMemLnx;
842 int rc;
843
844 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
845#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
846 /* ZONE_DMA32: 0-4GB */
847 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
848 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
849 if (RT_FAILURE(rc))
850#endif
851#ifdef RT_ARCH_AMD64
852 /* ZONE_DMA: 0-16MB */
853 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
854 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
855#else
856# ifdef CONFIG_X86_PAE
857# endif
858 /* ZONE_NORMAL: 0-896MB */
859 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
860 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
861#endif
862 if (RT_SUCCESS(rc))
863 {
864 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
865 if (RT_SUCCESS(rc))
866 {
867 *ppMem = &pMemLnx->Core;
868 IPRT_LINUX_RESTORE_EFL_AC();
869 return rc;
870 }
871
872 rtR0MemObjLinuxFreePages(pMemLnx);
873 rtR0MemObjDelete(&pMemLnx->Core);
874 }
875
876 IPRT_LINUX_RESTORE_EFL_AC();
877 return rc;
878}
879
880
881DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
882{
883 IPRT_LINUX_SAVE_EFL_AC();
884 PRTR0MEMOBJLNX pMemLnx;
885 int rc;
886
887#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
888 /* ZONE_DMA32: 0-4GB */
889 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
890 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
891 if (RT_FAILURE(rc))
892#endif
893#ifdef RT_ARCH_AMD64
894 /* ZONE_DMA: 0-16MB */
895 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
896 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
897#else
898 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
899 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
900 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
901#endif
902 if (RT_SUCCESS(rc))
903 {
904 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
905 if (RT_SUCCESS(rc))
906 {
907#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
908 size_t iPage = pMemLnx->cPages;
909 while (iPage-- > 0)
910 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
911#endif
912 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
913 *ppMem = &pMemLnx->Core;
914 IPRT_LINUX_RESTORE_EFL_AC();
915 return rc;
916 }
917
918 rtR0MemObjLinuxFreePages(pMemLnx);
919 rtR0MemObjDelete(&pMemLnx->Core);
920 }
921
922 IPRT_LINUX_RESTORE_EFL_AC();
923 return rc;
924}
925
926
927/**
928 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
929 *
930 * @returns IPRT status code.
931 * @param ppMemLnx Where to
932 * @param enmType The object type.
933 * @param cb The size of the allocation.
934 * @param uAlignment The alignment of the physical memory.
935 * Only valid for fContiguous == true, ignored otherwise.
936 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
937 * @param fGfp The Linux GFP flags to use for the allocation.
938 */
939static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
940 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, gfp_t fGfp)
941{
942 PRTR0MEMOBJLNX pMemLnx;
943 int rc;
944
945 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
946 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
947 false /*fExecutable*/, VERR_NO_PHYS_MEMORY);
948 if (RT_FAILURE(rc))
949 return rc;
950
951 /*
952 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
953 */
954 if (PhysHighest != NIL_RTHCPHYS)
955 {
956 size_t iPage = pMemLnx->cPages;
957 while (iPage-- > 0)
958 if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
959 {
960 rtR0MemObjLinuxFreePages(pMemLnx);
961 rtR0MemObjDelete(&pMemLnx->Core);
962 return VERR_NO_MEMORY;
963 }
964 }
965
966 /*
967 * Complete the object.
968 */
969 if (enmType == RTR0MEMOBJTYPE_PHYS)
970 {
971 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
972 pMemLnx->Core.u.Phys.fAllocated = true;
973 }
974 *ppMem = &pMemLnx->Core;
975 return rc;
976}
977
978
979/**
980 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
981 *
982 * @returns IPRT status code.
983 * @param ppMem Where to store the memory object pointer on success.
984 * @param enmType The object type.
985 * @param cb The size of the allocation.
986 * @param uAlignment The alignment of the physical memory.
987 * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
988 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
989 */
990static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
991 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
992{
993 int rc;
994 IPRT_LINUX_SAVE_EFL_AC();
995
996 /*
997 * There are two clear cases and that's the <=16MB and anything-goes ones.
998 * When the physical address limit is somewhere in-between those two we'll
999 * just have to try, starting with HIGHUSER and working our way thru the
1000 * different types, hoping we'll get lucky.
1001 *
1002 * We should probably move this physical address restriction logic up to
1003 * the page alloc function as it would be more efficient there. But since
1004 * we don't expect this to be a performance issue just yet it can wait.
1005 */
1006 if (PhysHighest == NIL_RTHCPHYS)
1007 /* ZONE_HIGHMEM: the whole physical memory */
1008 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
1009 else if (PhysHighest <= _1M * 16)
1010 /* ZONE_DMA: 0-16MB */
1011 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
1012 else
1013 {
1014 rc = VERR_NO_MEMORY;
1015 if (RT_FAILURE(rc))
1016 /* ZONE_HIGHMEM: the whole physical memory */
1017 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
1018 if (RT_FAILURE(rc))
1019 /* ZONE_NORMAL: 0-896MB */
1020 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
1021#ifdef GFP_DMA32
1022 if (RT_FAILURE(rc))
1023 /* ZONE_DMA32: 0-4GB */
1024 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
1025#endif
1026 if (RT_FAILURE(rc))
1027 /* ZONE_DMA: 0-16MB */
1028 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
1029 }
1030 IPRT_LINUX_RESTORE_EFL_AC();
1031 return rc;
1032}
1033
1034
1035/**
1036 * Translates a kernel virtual address to a linux page structure by walking the
1037 * page tables.
1038 *
1039 * @note We do assume that the page tables will not change as we are walking
1040 * them. This assumption is rather forced by the fact that I could not
1041 * immediately see any way of preventing this from happening. So, we
1042 * take some extra care when accessing them.
1043 *
1044 * Because of this, we don't want to use this function on memory where
1045 * attribute changes to nearby pages is likely to cause large pages to
1046 * be used or split up. So, don't use this for the linear mapping of
1047 * physical memory.
1048 *
1049 * @returns Pointer to the page structur or NULL if it could not be found.
1050 * @param pv The kernel virtual address.
1051 */
1052RTDECL(struct page *) rtR0MemObjLinuxVirtToPage(void *pv)
1053{
1054 unsigned long ulAddr = (unsigned long)pv;
1055 unsigned long pfn;
1056 struct page *pPage;
1057 pte_t *pEntry;
1058 union
1059 {
1060 pgd_t Global;
1061#if RTLNX_VER_MIN(4,12,0)
1062 p4d_t Four;
1063#endif
1064#if RTLNX_VER_MIN(2,6,11)
1065 pud_t Upper;
1066#endif
1067 pmd_t Middle;
1068 pte_t Entry;
1069 } u;
1070
1071 /* Should this happen in a situation this code will be called in? And if
1072 * so, can it change under our feet? See also
1073 * "Documentation/vm/active_mm.txt" in the kernel sources. */
1074 if (RT_UNLIKELY(!current->active_mm))
1075 return NULL;
1076 u.Global = *pgd_offset(current->active_mm, ulAddr);
1077 if (RT_UNLIKELY(pgd_none(u.Global)))
1078 return NULL;
1079#if RTLNX_VER_MIN(2,6,11)
1080# if RTLNX_VER_MIN(4,12,0)
1081 u.Four = *p4d_offset(&u.Global, ulAddr);
1082 if (RT_UNLIKELY(p4d_none(u.Four)))
1083 return NULL;
1084 if (p4d_large(u.Four))
1085 {
1086 pPage = p4d_page(u.Four);
1087 AssertReturn(pPage, NULL);
1088 pfn = page_to_pfn(pPage); /* doing the safe way... */
1089 AssertCompile(P4D_SHIFT - PAGE_SHIFT < 31);
1090 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (P4D_SHIFT - PAGE_SHIFT)) - 1);
1091 return pfn_to_page(pfn);
1092 }
1093 u.Upper = *pud_offset(&u.Four, ulAddr);
1094# else /* < 4.12 */
1095 u.Upper = *pud_offset(&u.Global, ulAddr);
1096# endif /* < 4.12 */
1097 if (RT_UNLIKELY(pud_none(u.Upper)))
1098 return NULL;
1099# if RTLNX_VER_MIN(2,6,25)
1100 if (pud_large(u.Upper))
1101 {
1102 pPage = pud_page(u.Upper);
1103 AssertReturn(pPage, NULL);
1104 pfn = page_to_pfn(pPage); /* doing the safe way... */
1105 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
1106 return pfn_to_page(pfn);
1107 }
1108# endif
1109 u.Middle = *pmd_offset(&u.Upper, ulAddr);
1110#else /* < 2.6.11 */
1111 u.Middle = *pmd_offset(&u.Global, ulAddr);
1112#endif /* < 2.6.11 */
1113 if (RT_UNLIKELY(pmd_none(u.Middle)))
1114 return NULL;
1115#if RTLNX_VER_MIN(2,6,0)
1116 if (pmd_large(u.Middle))
1117 {
1118 pPage = pmd_page(u.Middle);
1119 AssertReturn(pPage, NULL);
1120 pfn = page_to_pfn(pPage); /* doing the safe way... */
1121 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
1122 return pfn_to_page(pfn);
1123 }
1124#endif
1125
1126#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
1127 pEntry = pte_offset_map(&u.Middle, ulAddr);
1128#else
1129 pEntry = pte_offset(&u.Middle, ulAddr);
1130#endif
1131 if (RT_UNLIKELY(!pEntry))
1132 return NULL;
1133 u.Entry = *pEntry;
1134#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map)
1135 pte_unmap(pEntry);
1136#endif
1137
1138 if (RT_UNLIKELY(!pte_present(u.Entry)))
1139 return NULL;
1140 return pte_page(u.Entry);
1141}
1142RT_EXPORT_SYMBOL(rtR0MemObjLinuxVirtToPage);
1143
1144
1145DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
1146{
1147 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
1148}
1149
1150
1151DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
1152{
1153 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
1154}
1155
1156
1157DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
1158{
1159 IPRT_LINUX_SAVE_EFL_AC();
1160
1161 /*
1162 * All we need to do here is to validate that we can use
1163 * ioremap on the specified address (32/64-bit dma_addr_t).
1164 */
1165 PRTR0MEMOBJLNX pMemLnx;
1166 dma_addr_t PhysAddr = Phys;
1167 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
1168
1169 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
1170 if (!pMemLnx)
1171 {
1172 IPRT_LINUX_RESTORE_EFL_AC();
1173 return VERR_NO_MEMORY;
1174 }
1175
1176 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
1177 pMemLnx->Core.u.Phys.fAllocated = false;
1178 pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
1179 Assert(!pMemLnx->cPages);
1180 *ppMem = &pMemLnx->Core;
1181 IPRT_LINUX_RESTORE_EFL_AC();
1182 return VINF_SUCCESS;
1183}
1184
1185/* openSUSE Leap 42.3 detection :-/ */
1186#if RTLNX_VER_RANGE(4,4,0, 4,6,0) && defined(FAULT_FLAG_REMOTE)
1187# define GET_USER_PAGES_API KERNEL_VERSION(4, 10, 0) /* no typo! */
1188#else
1189# define GET_USER_PAGES_API LINUX_VERSION_CODE
1190#endif
1191
1192DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
1193{
1194 IPRT_LINUX_SAVE_EFL_AC();
1195 const int cPages = cb >> PAGE_SHIFT;
1196 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1197 struct vm_area_struct **papVMAs;
1198 PRTR0MEMOBJLNX pMemLnx;
1199 int rc = VERR_NO_MEMORY;
1200 int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
1201
1202 /*
1203 * Check for valid task and size overflows.
1204 */
1205 if (!pTask)
1206 return VERR_NOT_SUPPORTED;
1207 if (((size_t)cPages << PAGE_SHIFT) != cb)
1208 return VERR_OUT_OF_RANGE;
1209
1210 /*
1211 * Allocate the memory object and a temporary buffer for the VMAs.
1212 */
1213 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
1214 if (!pMemLnx)
1215 {
1216 IPRT_LINUX_RESTORE_EFL_AC();
1217 return VERR_NO_MEMORY;
1218 }
1219
1220 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
1221 if (papVMAs)
1222 {
1223 LNX_MM_DOWN_READ(pTask->mm);
1224
1225 /*
1226 * Get user pages.
1227 */
1228/** @todo r=bird: Should we not force read access too? */
1229#if GET_USER_PAGES_API >= KERNEL_VERSION(4, 6, 0)
1230 if (R0Process == RTR0ProcHandleSelf())
1231 rc = get_user_pages(R3Ptr, /* Where from. */
1232 cPages, /* How many pages. */
1233# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1234 fWrite ? FOLL_WRITE | /* Write to memory. */
1235 FOLL_FORCE /* force write access. */
1236 : 0, /* Write to memory. */
1237# else
1238 fWrite, /* Write to memory. */
1239 fWrite, /* force write access. */
1240# endif
1241 &pMemLnx->apPages[0], /* Page array. */
1242 papVMAs); /* vmas */
1243 /*
1244 * Actually this should not happen at the moment as call this function
1245 * only for our own process.
1246 */
1247 else
1248 rc = get_user_pages_remote(
1249# if GET_USER_PAGES_API < KERNEL_VERSION(5, 9, 0)
1250 pTask, /* Task for fault accounting. */
1251# endif
1252 pTask->mm, /* Whose pages. */
1253 R3Ptr, /* Where from. */
1254 cPages, /* How many pages. */
1255# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1256 fWrite ? FOLL_WRITE | /* Write to memory. */
1257 FOLL_FORCE /* force write access. */
1258 : 0, /* Write to memory. */
1259# else
1260 fWrite, /* Write to memory. */
1261 fWrite, /* force write access. */
1262# endif
1263 &pMemLnx->apPages[0], /* Page array. */
1264 papVMAs /* vmas */
1265# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 10, 0)
1266 , NULL /* locked */
1267# endif
1268 );
1269#else /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1270 rc = get_user_pages(pTask, /* Task for fault accounting. */
1271 pTask->mm, /* Whose pages. */
1272 R3Ptr, /* Where from. */
1273 cPages, /* How many pages. */
1274/* The get_user_pages API change was back-ported to 4.4.168. */
1275# if RTLNX_VER_RANGE(4,4,168, 4,5,0)
1276 fWrite ? FOLL_WRITE | /* Write to memory. */
1277 FOLL_FORCE /* force write access. */
1278 : 0, /* Write to memory. */
1279# else
1280 fWrite, /* Write to memory. */
1281 fWrite, /* force write access. */
1282# endif
1283 &pMemLnx->apPages[0], /* Page array. */
1284 papVMAs); /* vmas */
1285#endif /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1286 if (rc == cPages)
1287 {
1288 /*
1289 * Flush dcache (required?), protect against fork and _really_ pin the page
1290 * table entries. get_user_pages() will protect against swapping out the
1291 * pages but it will NOT protect against removing page table entries. This
1292 * can be achieved with
1293 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
1294 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
1295 * Usual Linux distributions support only a limited size of locked pages
1296 * (e.g. 32KB).
1297 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
1298 * or by
1299 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
1300 * a range check.
1301 */
1302 /** @todo The Linux fork() protection will require more work if this API
1303 * is to be used for anything but locking VM pages. */
1304 while (rc-- > 0)
1305 {
1306 flush_dcache_page(pMemLnx->apPages[rc]);
1307 papVMAs[rc]->vm_flags |= VM_DONTCOPY | VM_LOCKED;
1308 }
1309
1310 LNX_MM_UP_READ(pTask->mm);
1311
1312 RTMemFree(papVMAs);
1313
1314 pMemLnx->Core.u.Lock.R0Process = R0Process;
1315 pMemLnx->cPages = cPages;
1316 Assert(!pMemLnx->fMappedToRing0);
1317 *ppMem = &pMemLnx->Core;
1318
1319 IPRT_LINUX_RESTORE_EFL_AC();
1320 return VINF_SUCCESS;
1321 }
1322
1323 /*
1324 * Failed - we need to unlock any pages that we succeeded to lock.
1325 */
1326 while (rc-- > 0)
1327 {
1328 if (!PageReserved(pMemLnx->apPages[rc]))
1329 SetPageDirty(pMemLnx->apPages[rc]);
1330#if RTLNX_VER_MIN(4,6,0)
1331 put_page(pMemLnx->apPages[rc]);
1332#else
1333 page_cache_release(pMemLnx->apPages[rc]);
1334#endif
1335 }
1336
1337 LNX_MM_UP_READ(pTask->mm);
1338
1339 RTMemFree(papVMAs);
1340 rc = VERR_LOCK_FAILED;
1341 }
1342
1343 rtR0MemObjDelete(&pMemLnx->Core);
1344 IPRT_LINUX_RESTORE_EFL_AC();
1345 return rc;
1346}
1347
1348
1349DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
1350{
1351 IPRT_LINUX_SAVE_EFL_AC();
1352 void *pvLast = (uint8_t *)pv + cb - 1;
1353 size_t const cPages = cb >> PAGE_SHIFT;
1354 PRTR0MEMOBJLNX pMemLnx;
1355 bool fLinearMapping;
1356 int rc;
1357 uint8_t *pbPage;
1358 size_t iPage;
1359 NOREF(fAccess);
1360
1361 if ( !RTR0MemKernelIsValidAddr(pv)
1362 || !RTR0MemKernelIsValidAddr(pv + cb))
1363 return VERR_INVALID_PARAMETER;
1364
1365 /*
1366 * The lower part of the kernel memory has a linear mapping between
1367 * physical and virtual addresses. So we take a short cut here. This is
1368 * assumed to be the cleanest way to handle those addresses (and the code
1369 * is well tested, though the test for determining it is not very nice).
1370 * If we ever decide it isn't we can still remove it.
1371 */
1372#if 0
1373 fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
1374#else
1375 fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
1376 && (unsigned long)pvLast < (unsigned long)high_memory;
1377#endif
1378
1379 /*
1380 * Allocate the memory object.
1381 */
1382 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
1383 if (!pMemLnx)
1384 {
1385 IPRT_LINUX_RESTORE_EFL_AC();
1386 return VERR_NO_MEMORY;
1387 }
1388
1389 /*
1390 * Gather the pages.
1391 * We ASSUME all kernel pages are non-swappable and non-movable.
1392 */
1393 rc = VINF_SUCCESS;
1394 pbPage = (uint8_t *)pvLast;
1395 iPage = cPages;
1396 if (!fLinearMapping)
1397 {
1398 while (iPage-- > 0)
1399 {
1400 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1401 if (RT_UNLIKELY(!pPage))
1402 {
1403 rc = VERR_LOCK_FAILED;
1404 break;
1405 }
1406 pMemLnx->apPages[iPage] = pPage;
1407 pbPage -= PAGE_SIZE;
1408 }
1409 }
1410 else
1411 {
1412 while (iPage-- > 0)
1413 {
1414 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
1415 pbPage -= PAGE_SIZE;
1416 }
1417 }
1418 if (RT_SUCCESS(rc))
1419 {
1420 /*
1421 * Complete the memory object and return.
1422 */
1423 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
1424 pMemLnx->cPages = cPages;
1425 Assert(!pMemLnx->fMappedToRing0);
1426 *ppMem = &pMemLnx->Core;
1427
1428 IPRT_LINUX_RESTORE_EFL_AC();
1429 return VINF_SUCCESS;
1430 }
1431
1432 rtR0MemObjDelete(&pMemLnx->Core);
1433 IPRT_LINUX_RESTORE_EFL_AC();
1434 return rc;
1435}
1436
1437
1438DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
1439{
1440#if RTLNX_VER_MIN(2,4,22)
1441 IPRT_LINUX_SAVE_EFL_AC();
1442 const size_t cPages = cb >> PAGE_SHIFT;
1443 struct page *pDummyPage;
1444 struct page **papPages;
1445
1446 /* check for unsupported stuff. */
1447 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1448 if (uAlignment > PAGE_SIZE)
1449 return VERR_NOT_SUPPORTED;
1450
1451 /*
1452 * Allocate a dummy page and create a page pointer array for vmap such that
1453 * the dummy page is mapped all over the reserved area.
1454 */
1455 pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
1456 if (pDummyPage)
1457 {
1458 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
1459 if (papPages)
1460 {
1461 void *pv;
1462 size_t iPage = cPages;
1463 while (iPage-- > 0)
1464 papPages[iPage] = pDummyPage;
1465# ifdef VM_MAP
1466 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
1467# else
1468 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
1469# endif
1470 RTMemFree(papPages);
1471 if (pv)
1472 {
1473 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1474 if (pMemLnx)
1475 {
1476 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
1477 pMemLnx->cPages = 1;
1478 pMemLnx->apPages[0] = pDummyPage;
1479 *ppMem = &pMemLnx->Core;
1480 IPRT_LINUX_RESTORE_EFL_AC();
1481 return VINF_SUCCESS;
1482 }
1483 vunmap(pv);
1484 }
1485 }
1486 __free_page(pDummyPage);
1487 }
1488 IPRT_LINUX_RESTORE_EFL_AC();
1489 return VERR_NO_MEMORY;
1490
1491#else /* < 2.4.22 */
1492 /*
1493 * Could probably use ioremap here, but the caller is in a better position than us
1494 * to select some safe physical memory.
1495 */
1496 return VERR_NOT_SUPPORTED;
1497#endif
1498}
1499
1500
1501DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
1502{
1503 IPRT_LINUX_SAVE_EFL_AC();
1504 PRTR0MEMOBJLNX pMemLnx;
1505 void *pv;
1506 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1507 if (!pTask)
1508 return VERR_NOT_SUPPORTED;
1509
1510 /*
1511 * Check that the specified alignment is supported.
1512 */
1513 if (uAlignment > PAGE_SIZE)
1514 return VERR_NOT_SUPPORTED;
1515
1516 /*
1517 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1518 */
1519 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1520 if (pv == (void *)-1)
1521 {
1522 IPRT_LINUX_RESTORE_EFL_AC();
1523 return VERR_NO_MEMORY;
1524 }
1525
1526 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1527 if (!pMemLnx)
1528 {
1529 rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
1530 IPRT_LINUX_RESTORE_EFL_AC();
1531 return VERR_NO_MEMORY;
1532 }
1533
1534 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1535 *ppMem = &pMemLnx->Core;
1536 IPRT_LINUX_RESTORE_EFL_AC();
1537 return VINF_SUCCESS;
1538}
1539
1540
1541DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
1542 void *pvFixed, size_t uAlignment,
1543 unsigned fProt, size_t offSub, size_t cbSub)
1544{
1545 int rc = VERR_NO_MEMORY;
1546 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1547 PRTR0MEMOBJLNX pMemLnx;
1548 IPRT_LINUX_SAVE_EFL_AC();
1549
1550 /* Fail if requested to do something we can't. */
1551 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1552 if (uAlignment > PAGE_SIZE)
1553 return VERR_NOT_SUPPORTED;
1554
1555 /*
1556 * Create the IPRT memory object.
1557 */
1558 if (!cbSub)
1559 cbSub = pMemLnxToMap->Core.cb - offSub;
1560 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub);
1561 if (pMemLnx)
1562 {
1563 if (pMemLnxToMap->cPages)
1564 {
1565#if RTLNX_VER_MIN(2,4,22)
1566 /*
1567 * Use vmap - 2.4.22 and later.
1568 */
1569 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1570 /** @todo We don't really care too much for EXEC here... 5.8 always adds NX. */
1571 Assert(((offSub + cbSub) >> PAGE_SHIFT) <= pMemLnxToMap->cPages);
1572# ifdef VM_MAP
1573 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_MAP, fPg);
1574# else
1575 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_ALLOC, fPg);
1576# endif
1577 if (pMemLnx->Core.pv)
1578 {
1579 pMemLnx->fMappedToRing0 = true;
1580 rc = VINF_SUCCESS;
1581 }
1582 else
1583 rc = VERR_MAP_FAILED;
1584
1585#else /* < 2.4.22 */
1586 /*
1587 * Only option here is to share mappings if possible and forget about fProt.
1588 */
1589 if (rtR0MemObjIsRing3(pMemToMap))
1590 rc = VERR_NOT_SUPPORTED;
1591 else
1592 {
1593 rc = VINF_SUCCESS;
1594 if (!pMemLnxToMap->Core.pv)
1595 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1596 if (RT_SUCCESS(rc))
1597 {
1598 Assert(pMemLnxToMap->Core.pv);
1599 pMemLnx->Core.pv = (uint8_t *)pMemLnxToMap->Core.pv + offSub;
1600 }
1601 }
1602#endif
1603 }
1604 else
1605 {
1606 /*
1607 * MMIO / physical memory.
1608 */
1609 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1610#if RTLNX_VER_MIN(2,6,25)
1611 /*
1612 * ioremap() defaults to no caching since the 2.6 kernels.
1613 * ioremap_nocache() has been removed finally in 5.6-rc1.
1614 */
1615 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1616 ? ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
1617 : ioremap_cache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
1618#else /* KERNEL_VERSION < 2.6.25 */
1619 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1620 ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
1621 : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
1622#endif /* KERNEL_VERSION < 2.6.25 */
1623 if (pMemLnx->Core.pv)
1624 {
1625 /** @todo fix protection. */
1626 rc = VINF_SUCCESS;
1627 }
1628 }
1629 if (RT_SUCCESS(rc))
1630 {
1631 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1632 *ppMem = &pMemLnx->Core;
1633 IPRT_LINUX_RESTORE_EFL_AC();
1634 return VINF_SUCCESS;
1635 }
1636 rtR0MemObjDelete(&pMemLnx->Core);
1637 }
1638
1639 IPRT_LINUX_RESTORE_EFL_AC();
1640 return rc;
1641}
1642
1643
1644#ifdef VBOX_USE_PAE_HACK
1645/**
1646 * Replace the PFN of a PTE with the address of the actual page.
1647 *
1648 * The caller maps a reserved dummy page at the address with the desired access
1649 * and flags.
1650 *
1651 * This hack is required for older Linux kernels which don't provide
1652 * remap_pfn_range().
1653 *
1654 * @returns 0 on success, -ENOMEM on failure.
1655 * @param mm The memory context.
1656 * @param ulAddr The mapping address.
1657 * @param Phys The physical address of the page to map.
1658 */
1659static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1660{
1661 int rc = -ENOMEM;
1662 pgd_t *pgd;
1663
1664 spin_lock(&mm->page_table_lock);
1665
1666 pgd = pgd_offset(mm, ulAddr);
1667 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1668 {
1669 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1670 if (!pmd_none(*pmd))
1671 {
1672 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1673 if (ptep)
1674 {
1675 pte_t pte = *ptep;
1676 pte.pte_high &= 0xfff00000;
1677 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1678 pte.pte_low &= 0x00000fff;
1679 pte.pte_low |= (Phys & 0xfffff000);
1680 set_pte(ptep, pte);
1681 pte_unmap(ptep);
1682 rc = 0;
1683 }
1684 }
1685 }
1686
1687 spin_unlock(&mm->page_table_lock);
1688 return rc;
1689}
1690#endif /* VBOX_USE_PAE_HACK */
1691
1692
1693DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
1694 unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub)
1695{
1696 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1697 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1698 int rc = VERR_NO_MEMORY;
1699 PRTR0MEMOBJLNX pMemLnx;
1700#ifdef VBOX_USE_PAE_HACK
1701 struct page *pDummyPage;
1702 RTHCPHYS DummyPhys;
1703#endif
1704 IPRT_LINUX_SAVE_EFL_AC();
1705
1706 /*
1707 * Check for restrictions.
1708 */
1709 if (!pTask)
1710 return VERR_NOT_SUPPORTED;
1711 if (uAlignment > PAGE_SIZE)
1712 return VERR_NOT_SUPPORTED;
1713
1714#ifdef VBOX_USE_PAE_HACK
1715 /*
1716 * Allocate a dummy page for use when mapping the memory.
1717 */
1718 pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
1719 if (!pDummyPage)
1720 {
1721 IPRT_LINUX_RESTORE_EFL_AC();
1722 return VERR_NO_MEMORY;
1723 }
1724 SetPageReserved(pDummyPage);
1725 DummyPhys = page_to_phys(pDummyPage);
1726#endif
1727
1728 /*
1729 * Create the IPRT memory object.
1730 */
1731 Assert(!offSub || cbSub);
1732 if (cbSub == 0)
1733 cbSub = pMemLnxToMap->Core.cb;
1734 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub);
1735 if (pMemLnx)
1736 {
1737 /*
1738 * Allocate user space mapping.
1739 */
1740 void *pv;
1741 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cbSub, uAlignment, pTask, fProt);
1742 if (pv != (void *)-1)
1743 {
1744 /*
1745 * Map page by page into the mmap area.
1746 * This is generic, paranoid and not very efficient.
1747 */
1748 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1749 unsigned long ulAddrCur = (unsigned long)pv;
1750 const size_t cPages = (offSub + cbSub) >> PAGE_SHIFT;
1751 size_t iPage;
1752
1753 LNX_MM_DOWN_WRITE(pTask->mm);
1754
1755 rc = VINF_SUCCESS;
1756 if (pMemLnxToMap->cPages)
1757 {
1758 for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1759 {
1760#if RTLNX_VER_MAX(2,6,11)
1761 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1762#endif
1763#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1764 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1765 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1766#endif
1767#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
1768 /* remap_page_range() limitation on x86 */
1769 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1770#endif
1771
1772#if defined(VBOX_USE_INSERT_PAGE) && RTLNX_VER_MIN(2,6,22)
1773 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1774 /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
1775 * See remap_pfn_range() in mm/memory.c */
1776#if RTLNX_VER_MIN(3,7,0)
1777 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1778#else
1779 vma->vm_flags |= VM_RESERVED;
1780#endif
1781#elif RTLNX_VER_MIN(2,6,11)
1782 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1783#elif defined(VBOX_USE_PAE_HACK)
1784 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1785 if (!rc)
1786 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1787#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1788 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1789#else /* 2.4 */
1790 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1791#endif
1792 if (rc)
1793 {
1794 rc = VERR_NO_MEMORY;
1795 break;
1796 }
1797 }
1798 }
1799 else
1800 {
1801 RTHCPHYS Phys;
1802 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1803 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1804 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1805 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1806 else
1807 {
1808 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1809 Phys = NIL_RTHCPHYS;
1810 }
1811 if (Phys != NIL_RTHCPHYS)
1812 {
1813 for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1814 {
1815#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1816 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1817 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1818#endif
1819#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
1820 /* remap_page_range() limitation on x86 */
1821 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1822#endif
1823
1824#if RTLNX_VER_MIN(2,6,11)
1825 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1826#elif defined(VBOX_USE_PAE_HACK)
1827 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1828 if (!rc)
1829 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1830#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1831 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1832#else /* 2.4 */
1833 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1834#endif
1835 if (rc)
1836 {
1837 rc = VERR_NO_MEMORY;
1838 break;
1839 }
1840 }
1841 }
1842 }
1843
1844#ifdef CONFIG_NUMA_BALANCING
1845# if RTLNX_VER_MAX(3,13,0) && RTLNX_RHEL_MAX(7,0)
1846# define VBOX_NUMA_HACK_OLD
1847# endif
1848 if (RT_SUCCESS(rc))
1849 {
1850 /** @todo Ugly hack! But right now we have no other means to
1851 * disable automatic NUMA page balancing. */
1852# ifdef RT_OS_X86
1853# ifdef VBOX_NUMA_HACK_OLD
1854 pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
1855# endif
1856 pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
1857# else
1858# ifdef VBOX_NUMA_HACK_OLD
1859 pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
1860# endif
1861 pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
1862# endif
1863 }
1864#endif /* CONFIG_NUMA_BALANCING */
1865
1866 LNX_MM_UP_WRITE(pTask->mm);
1867
1868 if (RT_SUCCESS(rc))
1869 {
1870#ifdef VBOX_USE_PAE_HACK
1871 __free_page(pDummyPage);
1872#endif
1873 pMemLnx->Core.pv = pv;
1874 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1875 *ppMem = &pMemLnx->Core;
1876 IPRT_LINUX_RESTORE_EFL_AC();
1877 return VINF_SUCCESS;
1878 }
1879
1880 /*
1881 * Bail out.
1882 */
1883 rtR0MemObjLinuxDoMunmap(pv, cbSub, pTask);
1884 }
1885 rtR0MemObjDelete(&pMemLnx->Core);
1886 }
1887#ifdef VBOX_USE_PAE_HACK
1888 __free_page(pDummyPage);
1889#endif
1890
1891 IPRT_LINUX_RESTORE_EFL_AC();
1892 return rc;
1893}
1894
1895
1896DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1897{
1898# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
1899 /*
1900 * Currently only supported when we've got addresses PTEs from the kernel.
1901 */
1902 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1903 if (pMemLnx->pArea && pMemLnx->papPtesForArea)
1904 {
1905 pgprot_t const fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
1906 size_t const cPages = (offSub + cbSub) >> PAGE_SHIFT;
1907 pte_t **papPtes = pMemLnx->papPtesForArea;
1908 size_t i;
1909
1910 for (i = offSub >> PAGE_SHIFT; i < cPages; i++)
1911 {
1912 set_pte(papPtes[i], mk_pte(pMemLnx->apPages[i], fPg));
1913 }
1914 preempt_disable();
1915 __flush_tlb_all();
1916 preempt_enable();
1917 return VINF_SUCCESS;
1918 }
1919# elif defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
1920 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1921 if ( pMemLnx->fExecutable
1922 && pMemLnx->fMappedToRing0)
1923 {
1924 LNXAPPLYPGRANGE Args;
1925 Args.pMemLnx = pMemLnx;
1926 Args.fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
1927 int rcLnx = apply_to_page_range(current->active_mm, (unsigned long)pMemLnx->Core.pv + offSub, cbSub,
1928 rtR0MemObjLinuxApplyPageRange, (void *)&Args);
1929 if (rcLnx)
1930 return VERR_NOT_SUPPORTED;
1931
1932 return VINF_SUCCESS;
1933 }
1934# endif
1935
1936 NOREF(pMem);
1937 NOREF(offSub);
1938 NOREF(cbSub);
1939 NOREF(fProt);
1940 return VERR_NOT_SUPPORTED;
1941}
1942
1943
1944DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1945{
1946 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1947
1948 if (pMemLnx->cPages)
1949 return page_to_phys(pMemLnx->apPages[iPage]);
1950
1951 switch (pMemLnx->Core.enmType)
1952 {
1953 case RTR0MEMOBJTYPE_CONT:
1954 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1955
1956 case RTR0MEMOBJTYPE_PHYS:
1957 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1958
1959 /* the parent knows */
1960 case RTR0MEMOBJTYPE_MAPPING:
1961 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1962
1963 /* cPages > 0 */
1964 case RTR0MEMOBJTYPE_LOW:
1965 case RTR0MEMOBJTYPE_LOCK:
1966 case RTR0MEMOBJTYPE_PHYS_NC:
1967 case RTR0MEMOBJTYPE_PAGE:
1968 default:
1969 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1970 RT_FALL_THROUGH();
1971
1972 case RTR0MEMOBJTYPE_RES_VIRT:
1973 return NIL_RTHCPHYS;
1974 }
1975}
1976
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette