VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c@ 91479

Last change on this file since 91479 was 91479, checked in by vboxsync, 3 years ago

IPRT/memobj: Passing pszTag around...

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev Revision
File size: 66.4 KB
Line 
1/* $Id: memobj-r0drv-linux.c 91479 2021-09-29 23:43:57Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-linux-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/assert.h>
35#include <iprt/err.h>
36#include <iprt/log.h>
37#include <iprt/mem.h>
38#include <iprt/process.h>
39#include <iprt/string.h>
40#include "internal/memobj.h"
41#include "internal/iprt.h"
42
43
44/*********************************************************************************************************************************
45* Defined Constants And Macros *
46*********************************************************************************************************************************/
47/* early 2.6 kernels */
48#ifndef PAGE_SHARED_EXEC
49# define PAGE_SHARED_EXEC PAGE_SHARED
50#endif
51#ifndef PAGE_READONLY_EXEC
52# define PAGE_READONLY_EXEC PAGE_READONLY
53#endif
54
55/** @def IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
56 * Whether we use alloc_vm_area (3.2+) for executable memory.
57 * This is a must for 5.8+, but we enable it all the way back to 3.2.x for
58 * better W^R compliance (fExecutable flag). */
59#if RTLNX_VER_RANGE(3,2,0, 5,10,0) || defined(DOXYGEN_RUNNING)
60# define IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
61#endif
62/** @def IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
63 * alloc_vm_area was removed with 5.10 so we have to resort to a different way
64 * to allocate executable memory.
65 * It would be possible to remove IPRT_USE_ALLOC_VM_AREA_FOR_EXEC and use
66 * this path execlusively for 3.2+ but no time to test it really works on every
67 * supported kernel, so better play safe for now.
68 */
69#if RTLNX_VER_MIN(5,10,0) || defined(DOXYGEN_RUNNING)
70# define IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
71#endif
72
73/*
74 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
75 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
76 * It should be safe to use vm_insert_page() older kernels as well.
77 */
78#if RTLNX_VER_MIN(2,6,23)
79# define VBOX_USE_INSERT_PAGE
80#endif
81#if defined(CONFIG_X86_PAE) \
82 && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
83 || RTLNX_VER_RANGE(2,6,0, 2,6,11) )
84# define VBOX_USE_PAE_HACK
85#endif
86
87/* gfp_t was introduced in 2.6.14, define it for earlier. */
88#if RTLNX_VER_MAX(2,6,14)
89# define gfp_t unsigned
90#endif
91
92/*
93 * Wrappers around mmap_lock/mmap_sem difference.
94 */
95#if RTLNX_VER_MIN(5,8,0)
96# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_lock)
97# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_lock)
98# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_lock)
99# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_lock)
100#else
101# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_sem)
102# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_sem)
103# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_sem)
104# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_sem)
105#endif
106
107
108/*********************************************************************************************************************************
109* Structures and Typedefs *
110*********************************************************************************************************************************/
111/**
112 * The Linux version of the memory object structure.
113 */
114typedef struct RTR0MEMOBJLNX
115{
116 /** The core structure. */
117 RTR0MEMOBJINTERNAL Core;
118 /** Set if the allocation is contiguous.
119 * This means it has to be given back as one chunk. */
120 bool fContiguous;
121 /** Set if executable allocation. */
122 bool fExecutable;
123 /** Set if we've vmap'ed the memory into ring-0. */
124 bool fMappedToRing0;
125#ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
126 /** Return from alloc_vm_area() that we now need to use for executable
127 * memory. */
128 struct vm_struct *pArea;
129 /** PTE array that goes along with pArea (must be freed). */
130 pte_t **papPtesForArea;
131#endif
132 /** The pages in the apPages array. */
133 size_t cPages;
134 /** Array of struct page pointers. (variable size) */
135 struct page *apPages[1];
136} RTR0MEMOBJLNX;
137/** Pointer to the linux memory object. */
138typedef RTR0MEMOBJLNX *PRTR0MEMOBJLNX;
139
140
141static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
142
143
144/**
145 * Helper that converts from a RTR0PROCESS handle to a linux task.
146 *
147 * @returns The corresponding Linux task.
148 * @param R0Process IPRT ring-0 process handle.
149 */
150static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
151{
152 /** @todo fix rtR0ProcessToLinuxTask!! */
153 /** @todo many (all?) callers currently assume that we return 'current'! */
154 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
155}
156
157
158/**
159 * Compute order. Some functions allocate 2^order pages.
160 *
161 * @returns order.
162 * @param cPages Number of pages.
163 */
164static int rtR0MemObjLinuxOrder(size_t cPages)
165{
166 int iOrder;
167 size_t cTmp;
168
169 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
170 ;
171 if (cPages & ~((size_t)1 << iOrder))
172 ++iOrder;
173
174 return iOrder;
175}
176
177
178/**
179 * Converts from RTMEM_PROT_* to Linux PAGE_*.
180 *
181 * @returns Linux page protection constant.
182 * @param fProt The IPRT protection mask.
183 * @param fKernel Whether it applies to kernel or user space.
184 */
185static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
186{
187 switch (fProt)
188 {
189 default:
190 AssertMsgFailed(("%#x %d\n", fProt, fKernel)); RT_FALL_THRU();
191 case RTMEM_PROT_NONE:
192 return PAGE_NONE;
193
194 case RTMEM_PROT_READ:
195 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
196
197 case RTMEM_PROT_WRITE:
198 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
199 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
200
201 case RTMEM_PROT_EXEC:
202 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
203#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
204 if (fKernel)
205 {
206 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
207 pgprot_val(fPg) &= ~_PAGE_RW;
208 return fPg;
209 }
210 return PAGE_READONLY_EXEC;
211#else
212 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
213#endif
214
215 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
216 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
217 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
218 }
219}
220
221
222/**
223 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
224 * an empty user space mapping.
225 *
226 * We acquire the mmap_sem/mmap_lock of the task!
227 *
228 * @returns Pointer to the mapping.
229 * (void *)-1 on failure.
230 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
231 * @param cb The size of the mapping.
232 * @param uAlignment The alignment of the mapping.
233 * @param pTask The Linux task to create this mapping in.
234 * @param fProt The RTMEM_PROT_* mask.
235 */
236static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
237{
238 unsigned fLnxProt;
239 unsigned long ulAddr;
240
241 Assert(pTask == current); /* do_mmap */
242 RT_NOREF_PV(pTask);
243
244 /*
245 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
246 */
247 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
248 if (fProt == RTMEM_PROT_NONE)
249 fLnxProt = PROT_NONE;
250 else
251 {
252 fLnxProt = 0;
253 if (fProt & RTMEM_PROT_READ)
254 fLnxProt |= PROT_READ;
255 if (fProt & RTMEM_PROT_WRITE)
256 fLnxProt |= PROT_WRITE;
257 if (fProt & RTMEM_PROT_EXEC)
258 fLnxProt |= PROT_EXEC;
259 }
260
261 if (R3PtrFixed != (RTR3PTR)-1)
262 {
263#if RTLNX_VER_MIN(3,5,0)
264 ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
265#else
266 LNX_MM_DOWN_WRITE(pTask->mm);
267 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
268 LNX_MM_UP_WRITE(pTask->mm);
269#endif
270 }
271 else
272 {
273#if RTLNX_VER_MIN(3,5,0)
274 ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
275#else
276 LNX_MM_DOWN_WRITE(pTask->mm);
277 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
278 LNX_MM_UP_WRITE(pTask->mm);
279#endif
280 if ( !(ulAddr & ~PAGE_MASK)
281 && (ulAddr & (uAlignment - 1)))
282 {
283 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
284 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
285 * ourselves) and further by there begin two mmap strategies (top / bottom). */
286 /* For now, just ignore uAlignment requirements... */
287 }
288 }
289
290
291 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
292 return (void *)-1;
293 return (void *)ulAddr;
294}
295
296
297/**
298 * Worker that destroys a user space mapping.
299 * Undoes what rtR0MemObjLinuxDoMmap did.
300 *
301 * We acquire the mmap_sem/mmap_lock of the task!
302 *
303 * @param pv The ring-3 mapping.
304 * @param cb The size of the mapping.
305 * @param pTask The Linux task to destroy this mapping in.
306 */
307static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
308{
309#if RTLNX_VER_MIN(3,5,0)
310 Assert(pTask == current); RT_NOREF_PV(pTask);
311 vm_munmap((unsigned long)pv, cb);
312#elif defined(USE_RHEL4_MUNMAP)
313 LNX_MM_DOWN_WRITE(pTask->mm);
314 do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
315 LNX_MM_UP_WRITE(pTask->mm);
316#else
317 LNX_MM_DOWN_WRITE(pTask->mm);
318 do_munmap(pTask->mm, (unsigned long)pv, cb);
319 LNX_MM_UP_WRITE(pTask->mm);
320#endif
321}
322
323
324/**
325 * Internal worker that allocates physical pages and creates the memory object for them.
326 *
327 * @returns IPRT status code.
328 * @param ppMemLnx Where to store the memory object pointer.
329 * @param enmType The object type.
330 * @param cb The number of bytes to allocate.
331 * @param uAlignment The alignment of the physical memory.
332 * Only valid if fContiguous == true, ignored otherwise.
333 * @param fFlagsLnx The page allocation flags (GPFs).
334 * @param fContiguous Whether the allocation must be contiguous.
335 * @param fExecutable Whether the memory must be executable.
336 * @param rcNoMem What to return when we're out of pages.
337 */
338static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
339 size_t uAlignment, gfp_t fFlagsLnx, bool fContiguous, bool fExecutable, int rcNoMem)
340{
341 size_t iPage;
342 size_t const cPages = cb >> PAGE_SHIFT;
343 struct page *paPages;
344
345 /*
346 * Allocate a memory object structure that's large enough to contain
347 * the page pointer array.
348 */
349 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), enmType,
350 NULL, cb, NULL);
351 if (!pMemLnx)
352 return VERR_NO_MEMORY;
353 pMemLnx->cPages = cPages;
354
355 if (cPages > 255)
356 {
357# ifdef __GFP_REPEAT
358 /* Try hard to allocate the memory, but the allocation attempt might fail. */
359 fFlagsLnx |= __GFP_REPEAT;
360# endif
361# ifdef __GFP_NOMEMALLOC
362 /* Introduced with Linux 2.6.12: Don't use emergency reserves */
363 fFlagsLnx |= __GFP_NOMEMALLOC;
364# endif
365 }
366
367 /*
368 * Allocate the pages.
369 * For small allocations we'll try contiguous first and then fall back on page by page.
370 */
371#if RTLNX_VER_MIN(2,4,22)
372 if ( fContiguous
373 || cb <= PAGE_SIZE * 2)
374 {
375# ifdef VBOX_USE_INSERT_PAGE
376 paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
377# else
378 paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
379# endif
380 if (paPages)
381 {
382 fContiguous = true;
383 for (iPage = 0; iPage < cPages; iPage++)
384 pMemLnx->apPages[iPage] = &paPages[iPage];
385 }
386 else if (fContiguous)
387 {
388 rtR0MemObjDelete(&pMemLnx->Core);
389 return rcNoMem;
390 }
391 }
392
393 if (!fContiguous)
394 {
395 /** @todo Try use alloc_pages_bulk_array when available, it should be faster
396 * than a alloc_page loop. Put it in #ifdefs similar to
397 * IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC. */
398 for (iPage = 0; iPage < cPages; iPage++)
399 {
400 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
401 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
402 {
403 while (iPage-- > 0)
404 __free_page(pMemLnx->apPages[iPage]);
405 rtR0MemObjDelete(&pMemLnx->Core);
406 return rcNoMem;
407 }
408 }
409 }
410
411#else /* < 2.4.22 */
412 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
413 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
414 if (!paPages)
415 {
416 rtR0MemObjDelete(&pMemLnx->Core);
417 return rcNoMem;
418 }
419 for (iPage = 0; iPage < cPages; iPage++)
420 {
421 pMemLnx->apPages[iPage] = &paPages[iPage];
422 if (fExecutable)
423 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
424 if (PageHighMem(pMemLnx->apPages[iPage]))
425 BUG();
426 }
427
428 fContiguous = true;
429#endif /* < 2.4.22 */
430 pMemLnx->fContiguous = fContiguous;
431 pMemLnx->fExecutable = fExecutable;
432
433#if RTLNX_VER_MAX(4,5,0)
434 /*
435 * Reserve the pages.
436 *
437 * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
438 * pages. According to Michal Hocko this shouldn't be necessary anyway because
439 * as pages which are not on the LRU list are never evictable.
440 */
441 for (iPage = 0; iPage < cPages; iPage++)
442 SetPageReserved(pMemLnx->apPages[iPage]);
443#endif
444
445 /*
446 * Note that the physical address of memory allocated with alloc_pages(flags, order)
447 * is always 2^(PAGE_SHIFT+order)-aligned.
448 */
449 if ( fContiguous
450 && uAlignment > PAGE_SIZE)
451 {
452 /*
453 * Check for alignment constraints. The physical address of memory allocated with
454 * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
455 */
456 if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
457 {
458 /*
459 * This should never happen!
460 */
461 printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
462 (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
463 rtR0MemObjLinuxFreePages(pMemLnx);
464 return rcNoMem;
465 }
466 }
467
468 *ppMemLnx = pMemLnx;
469 return VINF_SUCCESS;
470}
471
472
473/**
474 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
475 *
476 * This method does NOT free the object.
477 *
478 * @param pMemLnx The object which physical pages should be freed.
479 */
480static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
481{
482 size_t iPage = pMemLnx->cPages;
483 if (iPage > 0)
484 {
485 /*
486 * Restore the page flags.
487 */
488 while (iPage-- > 0)
489 {
490#if RTLNX_VER_MAX(4,5,0)
491 /* See SetPageReserved() in rtR0MemObjLinuxAllocPages() */
492 ClearPageReserved(pMemLnx->apPages[iPage]);
493#endif
494#if RTLNX_VER_MAX(2,4,22)
495 if (pMemLnx->fExecutable)
496 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
497#endif
498 }
499
500 /*
501 * Free the pages.
502 */
503#if RTLNX_VER_MIN(2,4,22)
504 if (!pMemLnx->fContiguous)
505 {
506 iPage = pMemLnx->cPages;
507 while (iPage-- > 0)
508 __free_page(pMemLnx->apPages[iPage]);
509 }
510 else
511#endif
512 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
513
514 pMemLnx->cPages = 0;
515 }
516}
517
518
519#ifdef IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
520/**
521 * User data passed to the apply_to_page_range() callback.
522 */
523typedef struct LNXAPPLYPGRANGE
524{
525 /** Pointer to the memory object. */
526 PRTR0MEMOBJLNX pMemLnx;
527 /** The page protection flags to apply. */
528 pgprot_t fPg;
529} LNXAPPLYPGRANGE;
530/** Pointer to the user data. */
531typedef LNXAPPLYPGRANGE *PLNXAPPLYPGRANGE;
532/** Pointer to the const user data. */
533typedef const LNXAPPLYPGRANGE *PCLNXAPPLYPGRANGE;
534
535/**
536 * Callback called in apply_to_page_range().
537 *
538 * @returns Linux status code.
539 * @param pPte Pointer to the page table entry for the given address.
540 * @param uAddr The address to apply the new protection to.
541 * @param pvUser The opaque user data.
542 */
543static int rtR0MemObjLinuxApplyPageRange(pte_t *pPte, unsigned long uAddr, void *pvUser)
544{
545 PCLNXAPPLYPGRANGE pArgs = (PCLNXAPPLYPGRANGE)pvUser;
546 PRTR0MEMOBJLNX pMemLnx = pArgs->pMemLnx;
547 size_t idxPg = (uAddr - (unsigned long)pMemLnx->Core.pv) >> PAGE_SHIFT;
548
549 set_pte(pPte, mk_pte(pMemLnx->apPages[idxPg], pArgs->fPg));
550 return 0;
551}
552#endif
553
554
555/**
556 * Maps the allocation into ring-0.
557 *
558 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
559 *
560 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
561 * space, so we'll use that mapping if possible. If execute access is required, we'll
562 * play safe and do our own mapping.
563 *
564 * @returns IPRT status code.
565 * @param pMemLnx The linux memory object to map.
566 * @param fExecutable Whether execute access is required.
567 */
568static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
569{
570 int rc = VINF_SUCCESS;
571
572 /*
573 * Choose mapping strategy.
574 */
575 bool fMustMap = fExecutable
576 || !pMemLnx->fContiguous;
577 if (!fMustMap)
578 {
579 size_t iPage = pMemLnx->cPages;
580 while (iPage-- > 0)
581 if (PageHighMem(pMemLnx->apPages[iPage]))
582 {
583 fMustMap = true;
584 break;
585 }
586 }
587
588 Assert(!pMemLnx->Core.pv);
589 Assert(!pMemLnx->fMappedToRing0);
590
591 if (fMustMap)
592 {
593 /*
594 * Use vmap - 2.4.22 and later.
595 */
596#if RTLNX_VER_MIN(2,4,22)
597 pgprot_t fPg;
598 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
599# ifdef _PAGE_NX
600 if (!fExecutable)
601 pgprot_val(fPg) |= _PAGE_NX;
602# endif
603
604# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
605 if (fExecutable)
606 {
607# if RTLNX_VER_MIN(3,2,51)
608 pte_t **papPtes = (pte_t **)kmalloc_array(pMemLnx->cPages, sizeof(papPtes[0]), GFP_KERNEL);
609# else
610 pte_t **papPtes = (pte_t **)kmalloc(pMemLnx->cPages * sizeof(papPtes[0]), GFP_KERNEL);
611# endif
612 if (papPtes)
613 {
614 pMemLnx->pArea = alloc_vm_area(pMemLnx->Core.cb, papPtes); /* Note! pArea->nr_pages is not set. */
615 if (pMemLnx->pArea)
616 {
617 size_t i;
618 Assert(pMemLnx->pArea->size >= pMemLnx->Core.cb); /* Note! includes guard page. */
619 Assert(pMemLnx->pArea->addr);
620# ifdef _PAGE_NX
621 pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
622# endif
623 pMemLnx->papPtesForArea = papPtes;
624 for (i = 0; i < pMemLnx->cPages; i++)
625 *papPtes[i] = mk_pte(pMemLnx->apPages[i], fPg);
626 pMemLnx->Core.pv = pMemLnx->pArea->addr;
627 pMemLnx->fMappedToRing0 = true;
628 }
629 else
630 {
631 kfree(papPtes);
632 rc = VERR_MAP_FAILED;
633 }
634 }
635 else
636 rc = VERR_MAP_FAILED;
637 }
638 else
639# endif
640 {
641# if defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
642 if (fExecutable)
643 pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
644# endif
645
646# ifdef VM_MAP
647 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
648# else
649 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
650# endif
651 if (pMemLnx->Core.pv)
652 pMemLnx->fMappedToRing0 = true;
653 else
654 rc = VERR_MAP_FAILED;
655 }
656#else /* < 2.4.22 */
657 rc = VERR_NOT_SUPPORTED;
658#endif
659 }
660 else
661 {
662 /*
663 * Use the kernel RAM mapping.
664 */
665 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
666 Assert(pMemLnx->Core.pv);
667 }
668
669 return rc;
670}
671
672
673/**
674 * Undoes what rtR0MemObjLinuxVMap() did.
675 *
676 * @param pMemLnx The linux memory object.
677 */
678static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
679{
680#if RTLNX_VER_MIN(2,4,22)
681# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
682 if (pMemLnx->pArea)
683 {
684# if 0
685 pte_t **papPtes = pMemLnx->papPtesForArea;
686 size_t i;
687 for (i = 0; i < pMemLnx->cPages; i++)
688 *papPtes[i] = 0;
689# endif
690 free_vm_area(pMemLnx->pArea);
691 kfree(pMemLnx->papPtesForArea);
692 pMemLnx->pArea = NULL;
693 pMemLnx->papPtesForArea = NULL;
694 }
695 else
696# endif
697 if (pMemLnx->fMappedToRing0)
698 {
699 Assert(pMemLnx->Core.pv);
700 vunmap(pMemLnx->Core.pv);
701 pMemLnx->fMappedToRing0 = false;
702 }
703#else /* < 2.4.22 */
704 Assert(!pMemLnx->fMappedToRing0);
705#endif
706 pMemLnx->Core.pv = NULL;
707}
708
709
710DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
711{
712 IPRT_LINUX_SAVE_EFL_AC();
713 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
714
715 /*
716 * Release any memory that we've allocated or locked.
717 */
718 switch (pMemLnx->Core.enmType)
719 {
720 case RTR0MEMOBJTYPE_LOW:
721 case RTR0MEMOBJTYPE_PAGE:
722 case RTR0MEMOBJTYPE_CONT:
723 case RTR0MEMOBJTYPE_PHYS:
724 case RTR0MEMOBJTYPE_PHYS_NC:
725 rtR0MemObjLinuxVUnmap(pMemLnx);
726 rtR0MemObjLinuxFreePages(pMemLnx);
727 break;
728
729 case RTR0MEMOBJTYPE_LOCK:
730 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
731 {
732 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
733 size_t iPage;
734 Assert(pTask);
735 if (pTask && pTask->mm)
736 LNX_MM_DOWN_READ(pTask->mm);
737
738 iPage = pMemLnx->cPages;
739 while (iPage-- > 0)
740 {
741 if (!PageReserved(pMemLnx->apPages[iPage]))
742 SetPageDirty(pMemLnx->apPages[iPage]);
743#if RTLNX_VER_MIN(4,6,0)
744 put_page(pMemLnx->apPages[iPage]);
745#else
746 page_cache_release(pMemLnx->apPages[iPage]);
747#endif
748 }
749
750 if (pTask && pTask->mm)
751 LNX_MM_UP_READ(pTask->mm);
752 }
753 /* else: kernel memory - nothing to do here. */
754 break;
755
756 case RTR0MEMOBJTYPE_RES_VIRT:
757 Assert(pMemLnx->Core.pv);
758 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
759 {
760 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
761 Assert(pTask);
762 if (pTask && pTask->mm)
763 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
764 }
765 else
766 {
767 vunmap(pMemLnx->Core.pv);
768
769 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
770 __free_page(pMemLnx->apPages[0]);
771 pMemLnx->apPages[0] = NULL;
772 pMemLnx->cPages = 0;
773 }
774 pMemLnx->Core.pv = NULL;
775 break;
776
777 case RTR0MEMOBJTYPE_MAPPING:
778 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
779 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
780 {
781 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
782 Assert(pTask);
783 if (pTask && pTask->mm)
784 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
785 }
786 else
787 vunmap(pMemLnx->Core.pv);
788 pMemLnx->Core.pv = NULL;
789 break;
790
791 default:
792 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
793 return VERR_INTERNAL_ERROR;
794 }
795 IPRT_LINUX_RESTORE_EFL_ONLY_AC();
796 return VINF_SUCCESS;
797}
798
799
800DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
801{
802 IPRT_LINUX_SAVE_EFL_AC();
803 PRTR0MEMOBJLNX pMemLnx;
804 int rc;
805
806#if RTLNX_VER_MIN(2,4,22)
807 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
808 false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
809#else
810 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
811 false /* non-contiguous */, fExecutable, VERR_NO_MEMORY);
812#endif
813 if (RT_SUCCESS(rc))
814 {
815 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
816 if (RT_SUCCESS(rc))
817 {
818 *ppMem = &pMemLnx->Core;
819 IPRT_LINUX_RESTORE_EFL_AC();
820 return rc;
821 }
822
823 rtR0MemObjLinuxFreePages(pMemLnx);
824 rtR0MemObjDelete(&pMemLnx->Core);
825 }
826
827 IPRT_LINUX_RESTORE_EFL_AC();
828 return rc;
829}
830
831
832DECLHIDDEN(int) rtR0MemObjNativeAllocLarge(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, size_t cbLargePage, uint32_t fFlags,
833 const char *pszTag)
834{
835 return rtR0MemObjFallbackAllocLarge(ppMem, cb, cbLargePage, fFlags, pszTag);
836}
837
838
839DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
840{
841 IPRT_LINUX_SAVE_EFL_AC();
842 PRTR0MEMOBJLNX pMemLnx;
843 int rc;
844
845 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
846#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
847 /* ZONE_DMA32: 0-4GB */
848 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
849 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
850 if (RT_FAILURE(rc))
851#endif
852#ifdef RT_ARCH_AMD64
853 /* ZONE_DMA: 0-16MB */
854 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
855 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
856#else
857# ifdef CONFIG_X86_PAE
858# endif
859 /* ZONE_NORMAL: 0-896MB */
860 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
861 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY);
862#endif
863 if (RT_SUCCESS(rc))
864 {
865 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
866 if (RT_SUCCESS(rc))
867 {
868 *ppMem = &pMemLnx->Core;
869 IPRT_LINUX_RESTORE_EFL_AC();
870 return rc;
871 }
872
873 rtR0MemObjLinuxFreePages(pMemLnx);
874 rtR0MemObjDelete(&pMemLnx->Core);
875 }
876
877 IPRT_LINUX_RESTORE_EFL_AC();
878 return rc;
879}
880
881
882DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
883{
884 IPRT_LINUX_SAVE_EFL_AC();
885 PRTR0MEMOBJLNX pMemLnx;
886 int rc;
887
888#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
889 /* ZONE_DMA32: 0-4GB */
890 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
891 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
892 if (RT_FAILURE(rc))
893#endif
894#ifdef RT_ARCH_AMD64
895 /* ZONE_DMA: 0-16MB */
896 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
897 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
898#else
899 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
900 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
901 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY);
902#endif
903 if (RT_SUCCESS(rc))
904 {
905 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
906 if (RT_SUCCESS(rc))
907 {
908#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
909 size_t iPage = pMemLnx->cPages;
910 while (iPage-- > 0)
911 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
912#endif
913 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
914 *ppMem = &pMemLnx->Core;
915 IPRT_LINUX_RESTORE_EFL_AC();
916 return rc;
917 }
918
919 rtR0MemObjLinuxFreePages(pMemLnx);
920 rtR0MemObjDelete(&pMemLnx->Core);
921 }
922
923 IPRT_LINUX_RESTORE_EFL_AC();
924 return rc;
925}
926
927
928/**
929 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
930 *
931 * @returns IPRT status code.
932 * @param ppMemLnx Where to
933 * @param enmType The object type.
934 * @param cb The size of the allocation.
935 * @param uAlignment The alignment of the physical memory.
936 * Only valid for fContiguous == true, ignored otherwise.
937 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
938 * @param fGfp The Linux GFP flags to use for the allocation.
939 */
940static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
941 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, gfp_t fGfp)
942{
943 PRTR0MEMOBJLNX pMemLnx;
944 int rc;
945
946 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
947 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
948 false /*fExecutable*/, VERR_NO_PHYS_MEMORY);
949 if (RT_FAILURE(rc))
950 return rc;
951
952 /*
953 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
954 */
955 if (PhysHighest != NIL_RTHCPHYS)
956 {
957 size_t iPage = pMemLnx->cPages;
958 while (iPage-- > 0)
959 if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
960 {
961 rtR0MemObjLinuxFreePages(pMemLnx);
962 rtR0MemObjDelete(&pMemLnx->Core);
963 return VERR_NO_MEMORY;
964 }
965 }
966
967 /*
968 * Complete the object.
969 */
970 if (enmType == RTR0MEMOBJTYPE_PHYS)
971 {
972 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
973 pMemLnx->Core.u.Phys.fAllocated = true;
974 }
975 *ppMem = &pMemLnx->Core;
976 return rc;
977}
978
979
980/**
981 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
982 *
983 * @returns IPRT status code.
984 * @param ppMem Where to store the memory object pointer on success.
985 * @param enmType The object type.
986 * @param cb The size of the allocation.
987 * @param uAlignment The alignment of the physical memory.
988 * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
989 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
990 */
991static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
992 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
993{
994 int rc;
995 IPRT_LINUX_SAVE_EFL_AC();
996
997 /*
998 * There are two clear cases and that's the <=16MB and anything-goes ones.
999 * When the physical address limit is somewhere in-between those two we'll
1000 * just have to try, starting with HIGHUSER and working our way thru the
1001 * different types, hoping we'll get lucky.
1002 *
1003 * We should probably move this physical address restriction logic up to
1004 * the page alloc function as it would be more efficient there. But since
1005 * we don't expect this to be a performance issue just yet it can wait.
1006 */
1007 if (PhysHighest == NIL_RTHCPHYS)
1008 /* ZONE_HIGHMEM: the whole physical memory */
1009 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
1010 else if (PhysHighest <= _1M * 16)
1011 /* ZONE_DMA: 0-16MB */
1012 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
1013 else
1014 {
1015 rc = VERR_NO_MEMORY;
1016 if (RT_FAILURE(rc))
1017 /* ZONE_HIGHMEM: the whole physical memory */
1018 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
1019 if (RT_FAILURE(rc))
1020 /* ZONE_NORMAL: 0-896MB */
1021 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
1022#ifdef GFP_DMA32
1023 if (RT_FAILURE(rc))
1024 /* ZONE_DMA32: 0-4GB */
1025 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
1026#endif
1027 if (RT_FAILURE(rc))
1028 /* ZONE_DMA: 0-16MB */
1029 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
1030 }
1031 IPRT_LINUX_RESTORE_EFL_AC();
1032 return rc;
1033}
1034
1035
1036/**
1037 * Translates a kernel virtual address to a linux page structure by walking the
1038 * page tables.
1039 *
1040 * @note We do assume that the page tables will not change as we are walking
1041 * them. This assumption is rather forced by the fact that I could not
1042 * immediately see any way of preventing this from happening. So, we
1043 * take some extra care when accessing them.
1044 *
1045 * Because of this, we don't want to use this function on memory where
1046 * attribute changes to nearby pages is likely to cause large pages to
1047 * be used or split up. So, don't use this for the linear mapping of
1048 * physical memory.
1049 *
1050 * @returns Pointer to the page structur or NULL if it could not be found.
1051 * @param pv The kernel virtual address.
1052 */
1053RTDECL(struct page *) rtR0MemObjLinuxVirtToPage(void *pv)
1054{
1055 unsigned long ulAddr = (unsigned long)pv;
1056 unsigned long pfn;
1057 struct page *pPage;
1058 pte_t *pEntry;
1059 union
1060 {
1061 pgd_t Global;
1062#if RTLNX_VER_MIN(4,12,0)
1063 p4d_t Four;
1064#endif
1065#if RTLNX_VER_MIN(2,6,11)
1066 pud_t Upper;
1067#endif
1068 pmd_t Middle;
1069 pte_t Entry;
1070 } u;
1071
1072 /* Should this happen in a situation this code will be called in? And if
1073 * so, can it change under our feet? See also
1074 * "Documentation/vm/active_mm.txt" in the kernel sources. */
1075 if (RT_UNLIKELY(!current->active_mm))
1076 return NULL;
1077 u.Global = *pgd_offset(current->active_mm, ulAddr);
1078 if (RT_UNLIKELY(pgd_none(u.Global)))
1079 return NULL;
1080#if RTLNX_VER_MIN(2,6,11)
1081# if RTLNX_VER_MIN(4,12,0)
1082 u.Four = *p4d_offset(&u.Global, ulAddr);
1083 if (RT_UNLIKELY(p4d_none(u.Four)))
1084 return NULL;
1085 if (p4d_large(u.Four))
1086 {
1087 pPage = p4d_page(u.Four);
1088 AssertReturn(pPage, NULL);
1089 pfn = page_to_pfn(pPage); /* doing the safe way... */
1090 AssertCompile(P4D_SHIFT - PAGE_SHIFT < 31);
1091 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (P4D_SHIFT - PAGE_SHIFT)) - 1);
1092 return pfn_to_page(pfn);
1093 }
1094 u.Upper = *pud_offset(&u.Four, ulAddr);
1095# else /* < 4.12 */
1096 u.Upper = *pud_offset(&u.Global, ulAddr);
1097# endif /* < 4.12 */
1098 if (RT_UNLIKELY(pud_none(u.Upper)))
1099 return NULL;
1100# if RTLNX_VER_MIN(2,6,25)
1101 if (pud_large(u.Upper))
1102 {
1103 pPage = pud_page(u.Upper);
1104 AssertReturn(pPage, NULL);
1105 pfn = page_to_pfn(pPage); /* doing the safe way... */
1106 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
1107 return pfn_to_page(pfn);
1108 }
1109# endif
1110 u.Middle = *pmd_offset(&u.Upper, ulAddr);
1111#else /* < 2.6.11 */
1112 u.Middle = *pmd_offset(&u.Global, ulAddr);
1113#endif /* < 2.6.11 */
1114 if (RT_UNLIKELY(pmd_none(u.Middle)))
1115 return NULL;
1116#if RTLNX_VER_MIN(2,6,0)
1117 if (pmd_large(u.Middle))
1118 {
1119 pPage = pmd_page(u.Middle);
1120 AssertReturn(pPage, NULL);
1121 pfn = page_to_pfn(pPage); /* doing the safe way... */
1122 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
1123 return pfn_to_page(pfn);
1124 }
1125#endif
1126
1127#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
1128 pEntry = pte_offset_map(&u.Middle, ulAddr);
1129#else
1130 pEntry = pte_offset(&u.Middle, ulAddr);
1131#endif
1132 if (RT_UNLIKELY(!pEntry))
1133 return NULL;
1134 u.Entry = *pEntry;
1135#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map)
1136 pte_unmap(pEntry);
1137#endif
1138
1139 if (RT_UNLIKELY(!pte_present(u.Entry)))
1140 return NULL;
1141 return pte_page(u.Entry);
1142}
1143RT_EXPORT_SYMBOL(rtR0MemObjLinuxVirtToPage);
1144
1145
1146DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
1147{
1148 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
1149}
1150
1151
1152DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
1153{
1154 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
1155}
1156
1157
1158DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
1159{
1160 IPRT_LINUX_SAVE_EFL_AC();
1161
1162 /*
1163 * All we need to do here is to validate that we can use
1164 * ioremap on the specified address (32/64-bit dma_addr_t).
1165 */
1166 PRTR0MEMOBJLNX pMemLnx;
1167 dma_addr_t PhysAddr = Phys;
1168 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
1169
1170 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb, NULL);
1171 if (!pMemLnx)
1172 {
1173 IPRT_LINUX_RESTORE_EFL_AC();
1174 return VERR_NO_MEMORY;
1175 }
1176
1177 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
1178 pMemLnx->Core.u.Phys.fAllocated = false;
1179 pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
1180 Assert(!pMemLnx->cPages);
1181 *ppMem = &pMemLnx->Core;
1182 IPRT_LINUX_RESTORE_EFL_AC();
1183 return VINF_SUCCESS;
1184}
1185
1186/* openSUSE Leap 42.3 detection :-/ */
1187#if RTLNX_VER_RANGE(4,4,0, 4,6,0) && defined(FAULT_FLAG_REMOTE)
1188# define GET_USER_PAGES_API KERNEL_VERSION(4, 10, 0) /* no typo! */
1189#else
1190# define GET_USER_PAGES_API LINUX_VERSION_CODE
1191#endif
1192
1193DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
1194{
1195 IPRT_LINUX_SAVE_EFL_AC();
1196 const int cPages = cb >> PAGE_SHIFT;
1197 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1198 struct vm_area_struct **papVMAs;
1199 PRTR0MEMOBJLNX pMemLnx;
1200 int rc = VERR_NO_MEMORY;
1201 int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
1202
1203 /*
1204 * Check for valid task and size overflows.
1205 */
1206 if (!pTask)
1207 return VERR_NOT_SUPPORTED;
1208 if (((size_t)cPages << PAGE_SHIFT) != cb)
1209 return VERR_OUT_OF_RANGE;
1210
1211 /*
1212 * Allocate the memory object and a temporary buffer for the VMAs.
1213 */
1214 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK,
1215 (void *)R3Ptr, cb, NULL);
1216 if (!pMemLnx)
1217 {
1218 IPRT_LINUX_RESTORE_EFL_AC();
1219 return VERR_NO_MEMORY;
1220 }
1221
1222 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
1223 if (papVMAs)
1224 {
1225 LNX_MM_DOWN_READ(pTask->mm);
1226
1227 /*
1228 * Get user pages.
1229 */
1230/** @todo r=bird: Should we not force read access too? */
1231#if GET_USER_PAGES_API >= KERNEL_VERSION(4, 6, 0)
1232 if (R0Process == RTR0ProcHandleSelf())
1233 rc = get_user_pages(R3Ptr, /* Where from. */
1234 cPages, /* How many pages. */
1235# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1236 fWrite ? FOLL_WRITE | /* Write to memory. */
1237 FOLL_FORCE /* force write access. */
1238 : 0, /* Write to memory. */
1239# else
1240 fWrite, /* Write to memory. */
1241 fWrite, /* force write access. */
1242# endif
1243 &pMemLnx->apPages[0], /* Page array. */
1244 papVMAs); /* vmas */
1245 /*
1246 * Actually this should not happen at the moment as call this function
1247 * only for our own process.
1248 */
1249 else
1250 rc = get_user_pages_remote(
1251# if GET_USER_PAGES_API < KERNEL_VERSION(5, 9, 0)
1252 pTask, /* Task for fault accounting. */
1253# endif
1254 pTask->mm, /* Whose pages. */
1255 R3Ptr, /* Where from. */
1256 cPages, /* How many pages. */
1257# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1258 fWrite ? FOLL_WRITE | /* Write to memory. */
1259 FOLL_FORCE /* force write access. */
1260 : 0, /* Write to memory. */
1261# else
1262 fWrite, /* Write to memory. */
1263 fWrite, /* force write access. */
1264# endif
1265 &pMemLnx->apPages[0], /* Page array. */
1266 papVMAs /* vmas */
1267# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 10, 0)
1268 , NULL /* locked */
1269# endif
1270 );
1271#else /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1272 rc = get_user_pages(pTask, /* Task for fault accounting. */
1273 pTask->mm, /* Whose pages. */
1274 R3Ptr, /* Where from. */
1275 cPages, /* How many pages. */
1276/* The get_user_pages API change was back-ported to 4.4.168. */
1277# if RTLNX_VER_RANGE(4,4,168, 4,5,0)
1278 fWrite ? FOLL_WRITE | /* Write to memory. */
1279 FOLL_FORCE /* force write access. */
1280 : 0, /* Write to memory. */
1281# else
1282 fWrite, /* Write to memory. */
1283 fWrite, /* force write access. */
1284# endif
1285 &pMemLnx->apPages[0], /* Page array. */
1286 papVMAs); /* vmas */
1287#endif /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1288 if (rc == cPages)
1289 {
1290 /*
1291 * Flush dcache (required?), protect against fork and _really_ pin the page
1292 * table entries. get_user_pages() will protect against swapping out the
1293 * pages but it will NOT protect against removing page table entries. This
1294 * can be achieved with
1295 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
1296 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
1297 * Usual Linux distributions support only a limited size of locked pages
1298 * (e.g. 32KB).
1299 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
1300 * or by
1301 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
1302 * a range check.
1303 */
1304 /** @todo The Linux fork() protection will require more work if this API
1305 * is to be used for anything but locking VM pages. */
1306 while (rc-- > 0)
1307 {
1308 flush_dcache_page(pMemLnx->apPages[rc]);
1309 papVMAs[rc]->vm_flags |= VM_DONTCOPY | VM_LOCKED;
1310 }
1311
1312 LNX_MM_UP_READ(pTask->mm);
1313
1314 RTMemFree(papVMAs);
1315
1316 pMemLnx->Core.u.Lock.R0Process = R0Process;
1317 pMemLnx->cPages = cPages;
1318 Assert(!pMemLnx->fMappedToRing0);
1319 *ppMem = &pMemLnx->Core;
1320
1321 IPRT_LINUX_RESTORE_EFL_AC();
1322 return VINF_SUCCESS;
1323 }
1324
1325 /*
1326 * Failed - we need to unlock any pages that we succeeded to lock.
1327 */
1328 while (rc-- > 0)
1329 {
1330 if (!PageReserved(pMemLnx->apPages[rc]))
1331 SetPageDirty(pMemLnx->apPages[rc]);
1332#if RTLNX_VER_MIN(4,6,0)
1333 put_page(pMemLnx->apPages[rc]);
1334#else
1335 page_cache_release(pMemLnx->apPages[rc]);
1336#endif
1337 }
1338
1339 LNX_MM_UP_READ(pTask->mm);
1340
1341 RTMemFree(papVMAs);
1342 rc = VERR_LOCK_FAILED;
1343 }
1344
1345 rtR0MemObjDelete(&pMemLnx->Core);
1346 IPRT_LINUX_RESTORE_EFL_AC();
1347 return rc;
1348}
1349
1350
1351DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
1352{
1353 IPRT_LINUX_SAVE_EFL_AC();
1354 void *pvLast = (uint8_t *)pv + cb - 1;
1355 size_t const cPages = cb >> PAGE_SHIFT;
1356 PRTR0MEMOBJLNX pMemLnx;
1357 bool fLinearMapping;
1358 int rc;
1359 uint8_t *pbPage;
1360 size_t iPage;
1361 NOREF(fAccess);
1362
1363 if ( !RTR0MemKernelIsValidAddr(pv)
1364 || !RTR0MemKernelIsValidAddr(pv + cb))
1365 return VERR_INVALID_PARAMETER;
1366
1367 /*
1368 * The lower part of the kernel memory has a linear mapping between
1369 * physical and virtual addresses. So we take a short cut here. This is
1370 * assumed to be the cleanest way to handle those addresses (and the code
1371 * is well tested, though the test for determining it is not very nice).
1372 * If we ever decide it isn't we can still remove it.
1373 */
1374#if 0
1375 fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
1376#else
1377 fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
1378 && (unsigned long)pvLast < (unsigned long)high_memory;
1379#endif
1380
1381 /*
1382 * Allocate the memory object.
1383 */
1384 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb, NULL);
1385 if (!pMemLnx)
1386 {
1387 IPRT_LINUX_RESTORE_EFL_AC();
1388 return VERR_NO_MEMORY;
1389 }
1390
1391 /*
1392 * Gather the pages.
1393 * We ASSUME all kernel pages are non-swappable and non-movable.
1394 */
1395 rc = VINF_SUCCESS;
1396 pbPage = (uint8_t *)pvLast;
1397 iPage = cPages;
1398 if (!fLinearMapping)
1399 {
1400 while (iPage-- > 0)
1401 {
1402 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1403 if (RT_UNLIKELY(!pPage))
1404 {
1405 rc = VERR_LOCK_FAILED;
1406 break;
1407 }
1408 pMemLnx->apPages[iPage] = pPage;
1409 pbPage -= PAGE_SIZE;
1410 }
1411 }
1412 else
1413 {
1414 while (iPage-- > 0)
1415 {
1416 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
1417 pbPage -= PAGE_SIZE;
1418 }
1419 }
1420 if (RT_SUCCESS(rc))
1421 {
1422 /*
1423 * Complete the memory object and return.
1424 */
1425 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
1426 pMemLnx->cPages = cPages;
1427 Assert(!pMemLnx->fMappedToRing0);
1428 *ppMem = &pMemLnx->Core;
1429
1430 IPRT_LINUX_RESTORE_EFL_AC();
1431 return VINF_SUCCESS;
1432 }
1433
1434 rtR0MemObjDelete(&pMemLnx->Core);
1435 IPRT_LINUX_RESTORE_EFL_AC();
1436 return rc;
1437}
1438
1439
1440DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
1441{
1442#if RTLNX_VER_MIN(2,4,22)
1443 IPRT_LINUX_SAVE_EFL_AC();
1444 const size_t cPages = cb >> PAGE_SHIFT;
1445 struct page *pDummyPage;
1446 struct page **papPages;
1447
1448 /* check for unsupported stuff. */
1449 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1450 if (uAlignment > PAGE_SIZE)
1451 return VERR_NOT_SUPPORTED;
1452
1453 /*
1454 * Allocate a dummy page and create a page pointer array for vmap such that
1455 * the dummy page is mapped all over the reserved area.
1456 */
1457 pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
1458 if (pDummyPage)
1459 {
1460 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
1461 if (papPages)
1462 {
1463 void *pv;
1464 size_t iPage = cPages;
1465 while (iPage-- > 0)
1466 papPages[iPage] = pDummyPage;
1467# ifdef VM_MAP
1468 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
1469# else
1470 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
1471# endif
1472 RTMemFree(papPages);
1473 if (pv)
1474 {
1475 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb, NULL);
1476 if (pMemLnx)
1477 {
1478 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
1479 pMemLnx->cPages = 1;
1480 pMemLnx->apPages[0] = pDummyPage;
1481 *ppMem = &pMemLnx->Core;
1482 IPRT_LINUX_RESTORE_EFL_AC();
1483 return VINF_SUCCESS;
1484 }
1485 vunmap(pv);
1486 }
1487 }
1488 __free_page(pDummyPage);
1489 }
1490 IPRT_LINUX_RESTORE_EFL_AC();
1491 return VERR_NO_MEMORY;
1492
1493#else /* < 2.4.22 */
1494 /*
1495 * Could probably use ioremap here, but the caller is in a better position than us
1496 * to select some safe physical memory.
1497 */
1498 return VERR_NOT_SUPPORTED;
1499#endif
1500}
1501
1502
1503DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
1504{
1505 IPRT_LINUX_SAVE_EFL_AC();
1506 PRTR0MEMOBJLNX pMemLnx;
1507 void *pv;
1508 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1509 if (!pTask)
1510 return VERR_NOT_SUPPORTED;
1511
1512 /*
1513 * Check that the specified alignment is supported.
1514 */
1515 if (uAlignment > PAGE_SIZE)
1516 return VERR_NOT_SUPPORTED;
1517
1518 /*
1519 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1520 */
1521 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1522 if (pv == (void *)-1)
1523 {
1524 IPRT_LINUX_RESTORE_EFL_AC();
1525 return VERR_NO_MEMORY;
1526 }
1527
1528 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb, NULL);
1529 if (!pMemLnx)
1530 {
1531 rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
1532 IPRT_LINUX_RESTORE_EFL_AC();
1533 return VERR_NO_MEMORY;
1534 }
1535
1536 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1537 *ppMem = &pMemLnx->Core;
1538 IPRT_LINUX_RESTORE_EFL_AC();
1539 return VINF_SUCCESS;
1540}
1541
1542
1543DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
1544 unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag)
1545{
1546 int rc = VERR_NO_MEMORY;
1547 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1548 PRTR0MEMOBJLNX pMemLnx;
1549 IPRT_LINUX_SAVE_EFL_AC();
1550
1551 /* Fail if requested to do something we can't. */
1552 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1553 if (uAlignment > PAGE_SIZE)
1554 return VERR_NOT_SUPPORTED;
1555
1556 /*
1557 * Create the IPRT memory object.
1558 */
1559 if (!cbSub)
1560 cbSub = pMemLnxToMap->Core.cb - offSub;
1561 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub, pszTag);
1562 if (pMemLnx)
1563 {
1564 if (pMemLnxToMap->cPages)
1565 {
1566#if RTLNX_VER_MIN(2,4,22)
1567 /*
1568 * Use vmap - 2.4.22 and later.
1569 */
1570 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1571 /** @todo We don't really care too much for EXEC here... 5.8 always adds NX. */
1572 Assert(((offSub + cbSub) >> PAGE_SHIFT) <= pMemLnxToMap->cPages);
1573# ifdef VM_MAP
1574 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_MAP, fPg);
1575# else
1576 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_ALLOC, fPg);
1577# endif
1578 if (pMemLnx->Core.pv)
1579 {
1580 pMemLnx->fMappedToRing0 = true;
1581 rc = VINF_SUCCESS;
1582 }
1583 else
1584 rc = VERR_MAP_FAILED;
1585
1586#else /* < 2.4.22 */
1587 /*
1588 * Only option here is to share mappings if possible and forget about fProt.
1589 */
1590 if (rtR0MemObjIsRing3(pMemToMap))
1591 rc = VERR_NOT_SUPPORTED;
1592 else
1593 {
1594 rc = VINF_SUCCESS;
1595 if (!pMemLnxToMap->Core.pv)
1596 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1597 if (RT_SUCCESS(rc))
1598 {
1599 Assert(pMemLnxToMap->Core.pv);
1600 pMemLnx->Core.pv = (uint8_t *)pMemLnxToMap->Core.pv + offSub;
1601 }
1602 }
1603#endif
1604 }
1605 else
1606 {
1607 /*
1608 * MMIO / physical memory.
1609 */
1610 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1611#if RTLNX_VER_MIN(2,6,25)
1612 /*
1613 * ioremap() defaults to no caching since the 2.6 kernels.
1614 * ioremap_nocache() has been removed finally in 5.6-rc1.
1615 */
1616 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1617 ? ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
1618 : ioremap_cache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
1619#else /* KERNEL_VERSION < 2.6.25 */
1620 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1621 ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
1622 : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
1623#endif /* KERNEL_VERSION < 2.6.25 */
1624 if (pMemLnx->Core.pv)
1625 {
1626 /** @todo fix protection. */
1627 rc = VINF_SUCCESS;
1628 }
1629 }
1630 if (RT_SUCCESS(rc))
1631 {
1632 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1633 *ppMem = &pMemLnx->Core;
1634 IPRT_LINUX_RESTORE_EFL_AC();
1635 return VINF_SUCCESS;
1636 }
1637 rtR0MemObjDelete(&pMemLnx->Core);
1638 }
1639
1640 IPRT_LINUX_RESTORE_EFL_AC();
1641 return rc;
1642}
1643
1644
1645#ifdef VBOX_USE_PAE_HACK
1646/**
1647 * Replace the PFN of a PTE with the address of the actual page.
1648 *
1649 * The caller maps a reserved dummy page at the address with the desired access
1650 * and flags.
1651 *
1652 * This hack is required for older Linux kernels which don't provide
1653 * remap_pfn_range().
1654 *
1655 * @returns 0 on success, -ENOMEM on failure.
1656 * @param mm The memory context.
1657 * @param ulAddr The mapping address.
1658 * @param Phys The physical address of the page to map.
1659 */
1660static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1661{
1662 int rc = -ENOMEM;
1663 pgd_t *pgd;
1664
1665 spin_lock(&mm->page_table_lock);
1666
1667 pgd = pgd_offset(mm, ulAddr);
1668 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1669 {
1670 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1671 if (!pmd_none(*pmd))
1672 {
1673 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1674 if (ptep)
1675 {
1676 pte_t pte = *ptep;
1677 pte.pte_high &= 0xfff00000;
1678 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1679 pte.pte_low &= 0x00000fff;
1680 pte.pte_low |= (Phys & 0xfffff000);
1681 set_pte(ptep, pte);
1682 pte_unmap(ptep);
1683 rc = 0;
1684 }
1685 }
1686 }
1687
1688 spin_unlock(&mm->page_table_lock);
1689 return rc;
1690}
1691#endif /* VBOX_USE_PAE_HACK */
1692
1693
1694DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
1695 unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub, const char *pszTag)
1696{
1697 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1698 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1699 int rc = VERR_NO_MEMORY;
1700 PRTR0MEMOBJLNX pMemLnx;
1701#ifdef VBOX_USE_PAE_HACK
1702 struct page *pDummyPage;
1703 RTHCPHYS DummyPhys;
1704#endif
1705 IPRT_LINUX_SAVE_EFL_AC();
1706
1707 /*
1708 * Check for restrictions.
1709 */
1710 if (!pTask)
1711 return VERR_NOT_SUPPORTED;
1712 if (uAlignment > PAGE_SIZE)
1713 return VERR_NOT_SUPPORTED;
1714
1715#ifdef VBOX_USE_PAE_HACK
1716 /*
1717 * Allocate a dummy page for use when mapping the memory.
1718 */
1719 pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
1720 if (!pDummyPage)
1721 {
1722 IPRT_LINUX_RESTORE_EFL_AC();
1723 return VERR_NO_MEMORY;
1724 }
1725 SetPageReserved(pDummyPage);
1726 DummyPhys = page_to_phys(pDummyPage);
1727#endif
1728
1729 /*
1730 * Create the IPRT memory object.
1731 */
1732 Assert(!offSub || cbSub);
1733 if (cbSub == 0)
1734 cbSub = pMemLnxToMap->Core.cb;
1735 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub, pszTag);
1736 if (pMemLnx)
1737 {
1738 /*
1739 * Allocate user space mapping.
1740 */
1741 void *pv;
1742 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cbSub, uAlignment, pTask, fProt);
1743 if (pv != (void *)-1)
1744 {
1745 /*
1746 * Map page by page into the mmap area.
1747 * This is generic, paranoid and not very efficient.
1748 */
1749 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1750 unsigned long ulAddrCur = (unsigned long)pv;
1751 const size_t cPages = (offSub + cbSub) >> PAGE_SHIFT;
1752 size_t iPage;
1753
1754 LNX_MM_DOWN_WRITE(pTask->mm);
1755
1756 rc = VINF_SUCCESS;
1757 if (pMemLnxToMap->cPages)
1758 {
1759 for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1760 {
1761#if RTLNX_VER_MAX(2,6,11)
1762 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1763#endif
1764#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1765 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1766 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1767#endif
1768#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
1769 /* remap_page_range() limitation on x86 */
1770 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1771#endif
1772
1773#if defined(VBOX_USE_INSERT_PAGE) && RTLNX_VER_MIN(2,6,22)
1774 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1775 /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
1776 * See remap_pfn_range() in mm/memory.c */
1777#if RTLNX_VER_MIN(3,7,0)
1778 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1779#else
1780 vma->vm_flags |= VM_RESERVED;
1781#endif
1782#elif RTLNX_VER_MIN(2,6,11)
1783 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1784#elif defined(VBOX_USE_PAE_HACK)
1785 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1786 if (!rc)
1787 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1788#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1789 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1790#else /* 2.4 */
1791 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1792#endif
1793 if (rc)
1794 {
1795 rc = VERR_NO_MEMORY;
1796 break;
1797 }
1798 }
1799 }
1800 else
1801 {
1802 RTHCPHYS Phys;
1803 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1804 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1805 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1806 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1807 else
1808 {
1809 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1810 Phys = NIL_RTHCPHYS;
1811 }
1812 if (Phys != NIL_RTHCPHYS)
1813 {
1814 for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1815 {
1816#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1817 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1818 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1819#endif
1820#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
1821 /* remap_page_range() limitation on x86 */
1822 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1823#endif
1824
1825#if RTLNX_VER_MIN(2,6,11)
1826 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1827#elif defined(VBOX_USE_PAE_HACK)
1828 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1829 if (!rc)
1830 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1831#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1832 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1833#else /* 2.4 */
1834 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1835#endif
1836 if (rc)
1837 {
1838 rc = VERR_NO_MEMORY;
1839 break;
1840 }
1841 }
1842 }
1843 }
1844
1845#ifdef CONFIG_NUMA_BALANCING
1846# if RTLNX_VER_MAX(3,13,0) && RTLNX_RHEL_MAX(7,0)
1847# define VBOX_NUMA_HACK_OLD
1848# endif
1849 if (RT_SUCCESS(rc))
1850 {
1851 /** @todo Ugly hack! But right now we have no other means to
1852 * disable automatic NUMA page balancing. */
1853# ifdef RT_OS_X86
1854# ifdef VBOX_NUMA_HACK_OLD
1855 pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
1856# endif
1857 pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
1858# else
1859# ifdef VBOX_NUMA_HACK_OLD
1860 pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
1861# endif
1862 pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
1863# endif
1864 }
1865#endif /* CONFIG_NUMA_BALANCING */
1866
1867 LNX_MM_UP_WRITE(pTask->mm);
1868
1869 if (RT_SUCCESS(rc))
1870 {
1871#ifdef VBOX_USE_PAE_HACK
1872 __free_page(pDummyPage);
1873#endif
1874 pMemLnx->Core.pv = pv;
1875 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1876 *ppMem = &pMemLnx->Core;
1877 IPRT_LINUX_RESTORE_EFL_AC();
1878 return VINF_SUCCESS;
1879 }
1880
1881 /*
1882 * Bail out.
1883 */
1884 rtR0MemObjLinuxDoMunmap(pv, cbSub, pTask);
1885 }
1886 rtR0MemObjDelete(&pMemLnx->Core);
1887 }
1888#ifdef VBOX_USE_PAE_HACK
1889 __free_page(pDummyPage);
1890#endif
1891
1892 IPRT_LINUX_RESTORE_EFL_AC();
1893 return rc;
1894}
1895
1896
1897DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1898{
1899# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
1900 /*
1901 * Currently only supported when we've got addresses PTEs from the kernel.
1902 */
1903 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1904 if (pMemLnx->pArea && pMemLnx->papPtesForArea)
1905 {
1906 pgprot_t const fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
1907 size_t const cPages = (offSub + cbSub) >> PAGE_SHIFT;
1908 pte_t **papPtes = pMemLnx->papPtesForArea;
1909 size_t i;
1910
1911 for (i = offSub >> PAGE_SHIFT; i < cPages; i++)
1912 {
1913 set_pte(papPtes[i], mk_pte(pMemLnx->apPages[i], fPg));
1914 }
1915 preempt_disable();
1916 __flush_tlb_all();
1917 preempt_enable();
1918 return VINF_SUCCESS;
1919 }
1920# elif defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
1921 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1922 if ( pMemLnx->fExecutable
1923 && pMemLnx->fMappedToRing0)
1924 {
1925 LNXAPPLYPGRANGE Args;
1926 Args.pMemLnx = pMemLnx;
1927 Args.fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
1928 int rcLnx = apply_to_page_range(current->active_mm, (unsigned long)pMemLnx->Core.pv + offSub, cbSub,
1929 rtR0MemObjLinuxApplyPageRange, (void *)&Args);
1930 if (rcLnx)
1931 return VERR_NOT_SUPPORTED;
1932
1933 return VINF_SUCCESS;
1934 }
1935# endif
1936
1937 NOREF(pMem);
1938 NOREF(offSub);
1939 NOREF(cbSub);
1940 NOREF(fProt);
1941 return VERR_NOT_SUPPORTED;
1942}
1943
1944
1945DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1946{
1947 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1948
1949 if (pMemLnx->cPages)
1950 return page_to_phys(pMemLnx->apPages[iPage]);
1951
1952 switch (pMemLnx->Core.enmType)
1953 {
1954 case RTR0MEMOBJTYPE_CONT:
1955 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1956
1957 case RTR0MEMOBJTYPE_PHYS:
1958 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1959
1960 /* the parent knows */
1961 case RTR0MEMOBJTYPE_MAPPING:
1962 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1963
1964 /* cPages > 0 */
1965 case RTR0MEMOBJTYPE_LOW:
1966 case RTR0MEMOBJTYPE_LOCK:
1967 case RTR0MEMOBJTYPE_PHYS_NC:
1968 case RTR0MEMOBJTYPE_PAGE:
1969 default:
1970 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1971 RT_FALL_THROUGH();
1972
1973 case RTR0MEMOBJTYPE_RES_VIRT:
1974 return NIL_RTHCPHYS;
1975 }
1976}
1977
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette