VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c@ 92374

Last change on this file since 92374 was 92246, checked in by vboxsync, 3 years ago

IPRT/RTR0MemObj: Added RTR0MemObjWasZeroInitialized and a couple of flags with which the backend can feed it the necessary info. It would be good to try avoid zeroing memory twice when we can. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev Revision
File size: 67.3 KB
Line 
1/* $Id: memobj-r0drv-linux.c 92246 2021-11-06 03:10:49Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-linux-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/assert.h>
35#include <iprt/err.h>
36#include <iprt/log.h>
37#include <iprt/mem.h>
38#include <iprt/process.h>
39#include <iprt/string.h>
40#include "internal/memobj.h"
41#include "internal/iprt.h"
42
43
44/*********************************************************************************************************************************
45* Defined Constants And Macros *
46*********************************************************************************************************************************/
47/* early 2.6 kernels */
48#ifndef PAGE_SHARED_EXEC
49# define PAGE_SHARED_EXEC PAGE_SHARED
50#endif
51#ifndef PAGE_READONLY_EXEC
52# define PAGE_READONLY_EXEC PAGE_READONLY
53#endif
54
55/** @def IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
56 * Whether we use alloc_vm_area (3.2+) for executable memory.
57 * This is a must for 5.8+, but we enable it all the way back to 3.2.x for
58 * better W^R compliance (fExecutable flag). */
59#if RTLNX_VER_RANGE(3,2,0, 5,10,0) || defined(DOXYGEN_RUNNING)
60# define IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
61#endif
62/** @def IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
63 * alloc_vm_area was removed with 5.10 so we have to resort to a different way
64 * to allocate executable memory.
65 * It would be possible to remove IPRT_USE_ALLOC_VM_AREA_FOR_EXEC and use
66 * this path execlusively for 3.2+ but no time to test it really works on every
67 * supported kernel, so better play safe for now.
68 */
69#if RTLNX_VER_MIN(5,10,0) || defined(DOXYGEN_RUNNING)
70# define IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
71#endif
72
73/*
74 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
75 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
76 * It should be safe to use vm_insert_page() older kernels as well.
77 */
78#if RTLNX_VER_MIN(2,6,23)
79# define VBOX_USE_INSERT_PAGE
80#endif
81#if defined(CONFIG_X86_PAE) \
82 && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
83 || RTLNX_VER_RANGE(2,6,0, 2,6,11) )
84# define VBOX_USE_PAE_HACK
85#endif
86
87/* gfp_t was introduced in 2.6.14, define it for earlier. */
88#if RTLNX_VER_MAX(2,6,14)
89# define gfp_t unsigned
90#endif
91
92/*
93 * Wrappers around mmap_lock/mmap_sem difference.
94 */
95#if RTLNX_VER_MIN(5,8,0)
96# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_lock)
97# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_lock)
98# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_lock)
99# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_lock)
100#else
101# define LNX_MM_DOWN_READ(a_pMm) down_read(&(a_pMm)->mmap_sem)
102# define LNX_MM_UP_READ(a_pMm) up_read(&(a_pMm)->mmap_sem)
103# define LNX_MM_DOWN_WRITE(a_pMm) down_write(&(a_pMm)->mmap_sem)
104# define LNX_MM_UP_WRITE(a_pMm) up_write(&(a_pMm)->mmap_sem)
105#endif
106
107
108/*********************************************************************************************************************************
109* Structures and Typedefs *
110*********************************************************************************************************************************/
111/**
112 * The Linux version of the memory object structure.
113 */
114typedef struct RTR0MEMOBJLNX
115{
116 /** The core structure. */
117 RTR0MEMOBJINTERNAL Core;
118 /** Set if the allocation is contiguous.
119 * This means it has to be given back as one chunk. */
120 bool fContiguous;
121 /** Set if executable allocation. */
122 bool fExecutable;
123 /** Set if we've vmap'ed the memory into ring-0. */
124 bool fMappedToRing0;
125#ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
126 /** Return from alloc_vm_area() that we now need to use for executable
127 * memory. */
128 struct vm_struct *pArea;
129 /** PTE array that goes along with pArea (must be freed). */
130 pte_t **papPtesForArea;
131#endif
132 /** The pages in the apPages array. */
133 size_t cPages;
134 /** Array of struct page pointers. (variable size) */
135 struct page *apPages[1];
136} RTR0MEMOBJLNX;
137/** Pointer to the linux memory object. */
138typedef RTR0MEMOBJLNX *PRTR0MEMOBJLNX;
139
140
141static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
142
143
144/**
145 * Helper that converts from a RTR0PROCESS handle to a linux task.
146 *
147 * @returns The corresponding Linux task.
148 * @param R0Process IPRT ring-0 process handle.
149 */
150static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
151{
152 /** @todo fix rtR0ProcessToLinuxTask!! */
153 /** @todo many (all?) callers currently assume that we return 'current'! */
154 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
155}
156
157
158/**
159 * Compute order. Some functions allocate 2^order pages.
160 *
161 * @returns order.
162 * @param cPages Number of pages.
163 */
164static int rtR0MemObjLinuxOrder(size_t cPages)
165{
166 int iOrder;
167 size_t cTmp;
168
169 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
170 ;
171 if (cPages & ~((size_t)1 << iOrder))
172 ++iOrder;
173
174 return iOrder;
175}
176
177
178/**
179 * Converts from RTMEM_PROT_* to Linux PAGE_*.
180 *
181 * @returns Linux page protection constant.
182 * @param fProt The IPRT protection mask.
183 * @param fKernel Whether it applies to kernel or user space.
184 */
185static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
186{
187 switch (fProt)
188 {
189 default:
190 AssertMsgFailed(("%#x %d\n", fProt, fKernel)); RT_FALL_THRU();
191 case RTMEM_PROT_NONE:
192 return PAGE_NONE;
193
194 case RTMEM_PROT_READ:
195 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
196
197 case RTMEM_PROT_WRITE:
198 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
199 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
200
201 case RTMEM_PROT_EXEC:
202 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
203#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
204 if (fKernel)
205 {
206 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
207 pgprot_val(fPg) &= ~_PAGE_RW;
208 return fPg;
209 }
210 return PAGE_READONLY_EXEC;
211#else
212 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
213#endif
214
215 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
216 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
217 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
218 }
219}
220
221
222/**
223 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
224 * an empty user space mapping.
225 *
226 * We acquire the mmap_sem/mmap_lock of the task!
227 *
228 * @returns Pointer to the mapping.
229 * (void *)-1 on failure.
230 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
231 * @param cb The size of the mapping.
232 * @param uAlignment The alignment of the mapping.
233 * @param pTask The Linux task to create this mapping in.
234 * @param fProt The RTMEM_PROT_* mask.
235 */
236static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
237{
238 unsigned fLnxProt;
239 unsigned long ulAddr;
240
241 Assert(pTask == current); /* do_mmap */
242 RT_NOREF_PV(pTask);
243
244 /*
245 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
246 */
247 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
248 if (fProt == RTMEM_PROT_NONE)
249 fLnxProt = PROT_NONE;
250 else
251 {
252 fLnxProt = 0;
253 if (fProt & RTMEM_PROT_READ)
254 fLnxProt |= PROT_READ;
255 if (fProt & RTMEM_PROT_WRITE)
256 fLnxProt |= PROT_WRITE;
257 if (fProt & RTMEM_PROT_EXEC)
258 fLnxProt |= PROT_EXEC;
259 }
260
261 if (R3PtrFixed != (RTR3PTR)-1)
262 {
263#if RTLNX_VER_MIN(3,5,0)
264 ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
265#else
266 LNX_MM_DOWN_WRITE(pTask->mm);
267 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
268 LNX_MM_UP_WRITE(pTask->mm);
269#endif
270 }
271 else
272 {
273#if RTLNX_VER_MIN(3,5,0)
274 ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
275#else
276 LNX_MM_DOWN_WRITE(pTask->mm);
277 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
278 LNX_MM_UP_WRITE(pTask->mm);
279#endif
280 if ( !(ulAddr & ~PAGE_MASK)
281 && (ulAddr & (uAlignment - 1)))
282 {
283 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
284 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
285 * ourselves) and further by there begin two mmap strategies (top / bottom). */
286 /* For now, just ignore uAlignment requirements... */
287 }
288 }
289
290
291 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
292 return (void *)-1;
293 return (void *)ulAddr;
294}
295
296
297/**
298 * Worker that destroys a user space mapping.
299 * Undoes what rtR0MemObjLinuxDoMmap did.
300 *
301 * We acquire the mmap_sem/mmap_lock of the task!
302 *
303 * @param pv The ring-3 mapping.
304 * @param cb The size of the mapping.
305 * @param pTask The Linux task to destroy this mapping in.
306 */
307static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
308{
309#if RTLNX_VER_MIN(3,5,0)
310 Assert(pTask == current); RT_NOREF_PV(pTask);
311 vm_munmap((unsigned long)pv, cb);
312#elif defined(USE_RHEL4_MUNMAP)
313 LNX_MM_DOWN_WRITE(pTask->mm);
314 do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
315 LNX_MM_UP_WRITE(pTask->mm);
316#else
317 LNX_MM_DOWN_WRITE(pTask->mm);
318 do_munmap(pTask->mm, (unsigned long)pv, cb);
319 LNX_MM_UP_WRITE(pTask->mm);
320#endif
321}
322
323
324/**
325 * Internal worker that allocates physical pages and creates the memory object for them.
326 *
327 * @returns IPRT status code.
328 * @param ppMemLnx Where to store the memory object pointer.
329 * @param enmType The object type.
330 * @param cb The number of bytes to allocate.
331 * @param uAlignment The alignment of the physical memory.
332 * Only valid if fContiguous == true, ignored otherwise.
333 * @param fFlagsLnx The page allocation flags (GPFs).
334 * @param fContiguous Whether the allocation must be contiguous.
335 * @param fExecutable Whether the memory must be executable.
336 * @param rcNoMem What to return when we're out of pages.
337 * @param pszTag Allocation tag used for statistics and such.
338 */
339static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
340 size_t uAlignment, gfp_t fFlagsLnx, bool fContiguous, bool fExecutable, int rcNoMem,
341 const char *pszTag)
342{
343 size_t iPage;
344 size_t const cPages = cb >> PAGE_SHIFT;
345 struct page *paPages;
346
347 /*
348 * Allocate a memory object structure that's large enough to contain
349 * the page pointer array.
350 */
351 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), enmType,
352 NULL, cb, pszTag);
353 if (!pMemLnx)
354 return VERR_NO_MEMORY;
355 pMemLnx->Core.fFlags |= RTR0MEMOBJ_FLAGS_UNINITIALIZED_AT_ALLOC;
356 pMemLnx->cPages = cPages;
357
358 if (cPages > 255)
359 {
360# ifdef __GFP_REPEAT
361 /* Try hard to allocate the memory, but the allocation attempt might fail. */
362 fFlagsLnx |= __GFP_REPEAT;
363# endif
364# ifdef __GFP_NOMEMALLOC
365 /* Introduced with Linux 2.6.12: Don't use emergency reserves */
366 fFlagsLnx |= __GFP_NOMEMALLOC;
367# endif
368 }
369
370 /*
371 * Allocate the pages.
372 * For small allocations we'll try contiguous first and then fall back on page by page.
373 */
374#if RTLNX_VER_MIN(2,4,22)
375 if ( fContiguous
376 || cb <= PAGE_SIZE * 2)
377 {
378# ifdef VBOX_USE_INSERT_PAGE
379 paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
380# else
381 paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
382# endif
383 if (paPages)
384 {
385 fContiguous = true;
386 for (iPage = 0; iPage < cPages; iPage++)
387 pMemLnx->apPages[iPage] = &paPages[iPage];
388 }
389 else if (fContiguous)
390 {
391 rtR0MemObjDelete(&pMemLnx->Core);
392 return rcNoMem;
393 }
394 }
395
396 if (!fContiguous)
397 {
398 /** @todo Try use alloc_pages_bulk_array when available, it should be faster
399 * than a alloc_page loop. Put it in #ifdefs similar to
400 * IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC. */
401 for (iPage = 0; iPage < cPages; iPage++)
402 {
403 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
404 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
405 {
406 while (iPage-- > 0)
407 __free_page(pMemLnx->apPages[iPage]);
408 rtR0MemObjDelete(&pMemLnx->Core);
409 return rcNoMem;
410 }
411 }
412 }
413
414#else /* < 2.4.22 */
415 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
416 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
417 if (!paPages)
418 {
419 rtR0MemObjDelete(&pMemLnx->Core);
420 return rcNoMem;
421 }
422 for (iPage = 0; iPage < cPages; iPage++)
423 {
424 pMemLnx->apPages[iPage] = &paPages[iPage];
425 if (fExecutable)
426 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
427 if (PageHighMem(pMemLnx->apPages[iPage]))
428 BUG();
429 }
430
431 fContiguous = true;
432#endif /* < 2.4.22 */
433 pMemLnx->fContiguous = fContiguous;
434 pMemLnx->fExecutable = fExecutable;
435
436#if RTLNX_VER_MAX(4,5,0)
437 /*
438 * Reserve the pages.
439 *
440 * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
441 * pages. According to Michal Hocko this shouldn't be necessary anyway because
442 * as pages which are not on the LRU list are never evictable.
443 */
444 for (iPage = 0; iPage < cPages; iPage++)
445 SetPageReserved(pMemLnx->apPages[iPage]);
446#endif
447
448 /*
449 * Note that the physical address of memory allocated with alloc_pages(flags, order)
450 * is always 2^(PAGE_SHIFT+order)-aligned.
451 */
452 if ( fContiguous
453 && uAlignment > PAGE_SIZE)
454 {
455 /*
456 * Check for alignment constraints. The physical address of memory allocated with
457 * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
458 */
459 if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
460 {
461 /*
462 * This should never happen!
463 */
464 printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
465 (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
466 rtR0MemObjLinuxFreePages(pMemLnx);
467 return rcNoMem;
468 }
469 }
470
471 *ppMemLnx = pMemLnx;
472 return VINF_SUCCESS;
473}
474
475
476/**
477 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
478 *
479 * This method does NOT free the object.
480 *
481 * @param pMemLnx The object which physical pages should be freed.
482 */
483static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
484{
485 size_t iPage = pMemLnx->cPages;
486 if (iPage > 0)
487 {
488 /*
489 * Restore the page flags.
490 */
491 while (iPage-- > 0)
492 {
493#if RTLNX_VER_MAX(4,5,0)
494 /* See SetPageReserved() in rtR0MemObjLinuxAllocPages() */
495 ClearPageReserved(pMemLnx->apPages[iPage]);
496#endif
497#if RTLNX_VER_MAX(2,4,22)
498 if (pMemLnx->fExecutable)
499 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
500#endif
501 }
502
503 /*
504 * Free the pages.
505 */
506#if RTLNX_VER_MIN(2,4,22)
507 if (!pMemLnx->fContiguous)
508 {
509 iPage = pMemLnx->cPages;
510 while (iPage-- > 0)
511 __free_page(pMemLnx->apPages[iPage]);
512 }
513 else
514#endif
515 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
516
517 pMemLnx->cPages = 0;
518 }
519}
520
521
522#ifdef IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC
523/**
524 * User data passed to the apply_to_page_range() callback.
525 */
526typedef struct LNXAPPLYPGRANGE
527{
528 /** Pointer to the memory object. */
529 PRTR0MEMOBJLNX pMemLnx;
530 /** The page protection flags to apply. */
531 pgprot_t fPg;
532} LNXAPPLYPGRANGE;
533/** Pointer to the user data. */
534typedef LNXAPPLYPGRANGE *PLNXAPPLYPGRANGE;
535/** Pointer to the const user data. */
536typedef const LNXAPPLYPGRANGE *PCLNXAPPLYPGRANGE;
537
538/**
539 * Callback called in apply_to_page_range().
540 *
541 * @returns Linux status code.
542 * @param pPte Pointer to the page table entry for the given address.
543 * @param uAddr The address to apply the new protection to.
544 * @param pvUser The opaque user data.
545 */
546static int rtR0MemObjLinuxApplyPageRange(pte_t *pPte, unsigned long uAddr, void *pvUser)
547{
548 PCLNXAPPLYPGRANGE pArgs = (PCLNXAPPLYPGRANGE)pvUser;
549 PRTR0MEMOBJLNX pMemLnx = pArgs->pMemLnx;
550 size_t idxPg = (uAddr - (unsigned long)pMemLnx->Core.pv) >> PAGE_SHIFT;
551
552 set_pte(pPte, mk_pte(pMemLnx->apPages[idxPg], pArgs->fPg));
553 return 0;
554}
555#endif
556
557
558/**
559 * Maps the allocation into ring-0.
560 *
561 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
562 *
563 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
564 * space, so we'll use that mapping if possible. If execute access is required, we'll
565 * play safe and do our own mapping.
566 *
567 * @returns IPRT status code.
568 * @param pMemLnx The linux memory object to map.
569 * @param fExecutable Whether execute access is required.
570 */
571static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
572{
573 int rc = VINF_SUCCESS;
574
575 /*
576 * Choose mapping strategy.
577 */
578 bool fMustMap = fExecutable
579 || !pMemLnx->fContiguous;
580 if (!fMustMap)
581 {
582 size_t iPage = pMemLnx->cPages;
583 while (iPage-- > 0)
584 if (PageHighMem(pMemLnx->apPages[iPage]))
585 {
586 fMustMap = true;
587 break;
588 }
589 }
590
591 Assert(!pMemLnx->Core.pv);
592 Assert(!pMemLnx->fMappedToRing0);
593
594 if (fMustMap)
595 {
596 /*
597 * Use vmap - 2.4.22 and later.
598 */
599#if RTLNX_VER_MIN(2,4,22)
600 pgprot_t fPg;
601 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
602# ifdef _PAGE_NX
603 if (!fExecutable)
604 pgprot_val(fPg) |= _PAGE_NX;
605# endif
606
607# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
608 if (fExecutable)
609 {
610# if RTLNX_VER_MIN(3,2,51)
611 pte_t **papPtes = (pte_t **)kmalloc_array(pMemLnx->cPages, sizeof(papPtes[0]), GFP_KERNEL);
612# else
613 pte_t **papPtes = (pte_t **)kmalloc(pMemLnx->cPages * sizeof(papPtes[0]), GFP_KERNEL);
614# endif
615 if (papPtes)
616 {
617 pMemLnx->pArea = alloc_vm_area(pMemLnx->Core.cb, papPtes); /* Note! pArea->nr_pages is not set. */
618 if (pMemLnx->pArea)
619 {
620 size_t i;
621 Assert(pMemLnx->pArea->size >= pMemLnx->Core.cb); /* Note! includes guard page. */
622 Assert(pMemLnx->pArea->addr);
623# ifdef _PAGE_NX
624 pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
625# endif
626 pMemLnx->papPtesForArea = papPtes;
627 for (i = 0; i < pMemLnx->cPages; i++)
628 *papPtes[i] = mk_pte(pMemLnx->apPages[i], fPg);
629 pMemLnx->Core.pv = pMemLnx->pArea->addr;
630 pMemLnx->fMappedToRing0 = true;
631 }
632 else
633 {
634 kfree(papPtes);
635 rc = VERR_MAP_FAILED;
636 }
637 }
638 else
639 rc = VERR_MAP_FAILED;
640 }
641 else
642# endif
643 {
644# if defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
645 if (fExecutable)
646 pgprot_val(fPg) |= _PAGE_NX; /* Uses RTR0MemObjProtect to clear NX when memory ready, W^X fashion. */
647# endif
648
649# ifdef VM_MAP
650 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
651# else
652 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
653# endif
654 if (pMemLnx->Core.pv)
655 pMemLnx->fMappedToRing0 = true;
656 else
657 rc = VERR_MAP_FAILED;
658 }
659#else /* < 2.4.22 */
660 rc = VERR_NOT_SUPPORTED;
661#endif
662 }
663 else
664 {
665 /*
666 * Use the kernel RAM mapping.
667 */
668 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
669 Assert(pMemLnx->Core.pv);
670 }
671
672 return rc;
673}
674
675
676/**
677 * Undoes what rtR0MemObjLinuxVMap() did.
678 *
679 * @param pMemLnx The linux memory object.
680 */
681static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
682{
683#if RTLNX_VER_MIN(2,4,22)
684# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
685 if (pMemLnx->pArea)
686 {
687# if 0
688 pte_t **papPtes = pMemLnx->papPtesForArea;
689 size_t i;
690 for (i = 0; i < pMemLnx->cPages; i++)
691 *papPtes[i] = 0;
692# endif
693 free_vm_area(pMemLnx->pArea);
694 kfree(pMemLnx->papPtesForArea);
695 pMemLnx->pArea = NULL;
696 pMemLnx->papPtesForArea = NULL;
697 }
698 else
699# endif
700 if (pMemLnx->fMappedToRing0)
701 {
702 Assert(pMemLnx->Core.pv);
703 vunmap(pMemLnx->Core.pv);
704 pMemLnx->fMappedToRing0 = false;
705 }
706#else /* < 2.4.22 */
707 Assert(!pMemLnx->fMappedToRing0);
708#endif
709 pMemLnx->Core.pv = NULL;
710}
711
712
713DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
714{
715 IPRT_LINUX_SAVE_EFL_AC();
716 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
717
718 /*
719 * Release any memory that we've allocated or locked.
720 */
721 switch (pMemLnx->Core.enmType)
722 {
723 case RTR0MEMOBJTYPE_LOW:
724 case RTR0MEMOBJTYPE_PAGE:
725 case RTR0MEMOBJTYPE_CONT:
726 case RTR0MEMOBJTYPE_PHYS:
727 case RTR0MEMOBJTYPE_PHYS_NC:
728 rtR0MemObjLinuxVUnmap(pMemLnx);
729 rtR0MemObjLinuxFreePages(pMemLnx);
730 break;
731
732 case RTR0MEMOBJTYPE_LOCK:
733 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
734 {
735 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
736 size_t iPage;
737 Assert(pTask);
738 if (pTask && pTask->mm)
739 LNX_MM_DOWN_READ(pTask->mm);
740
741 iPage = pMemLnx->cPages;
742 while (iPage-- > 0)
743 {
744 if (!PageReserved(pMemLnx->apPages[iPage]))
745 SetPageDirty(pMemLnx->apPages[iPage]);
746#if RTLNX_VER_MIN(4,6,0)
747 put_page(pMemLnx->apPages[iPage]);
748#else
749 page_cache_release(pMemLnx->apPages[iPage]);
750#endif
751 }
752
753 if (pTask && pTask->mm)
754 LNX_MM_UP_READ(pTask->mm);
755 }
756 /* else: kernel memory - nothing to do here. */
757 break;
758
759 case RTR0MEMOBJTYPE_RES_VIRT:
760 Assert(pMemLnx->Core.pv);
761 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
762 {
763 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
764 Assert(pTask);
765 if (pTask && pTask->mm)
766 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
767 }
768 else
769 {
770 vunmap(pMemLnx->Core.pv);
771
772 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
773 __free_page(pMemLnx->apPages[0]);
774 pMemLnx->apPages[0] = NULL;
775 pMemLnx->cPages = 0;
776 }
777 pMemLnx->Core.pv = NULL;
778 break;
779
780 case RTR0MEMOBJTYPE_MAPPING:
781 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
782 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
783 {
784 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
785 Assert(pTask);
786 if (pTask && pTask->mm)
787 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
788 }
789 else
790 vunmap(pMemLnx->Core.pv);
791 pMemLnx->Core.pv = NULL;
792 break;
793
794 default:
795 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
796 return VERR_INTERNAL_ERROR;
797 }
798 IPRT_LINUX_RESTORE_EFL_ONLY_AC();
799 return VINF_SUCCESS;
800}
801
802
803DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, const char *pszTag)
804{
805 IPRT_LINUX_SAVE_EFL_AC();
806 PRTR0MEMOBJLNX pMemLnx;
807 int rc;
808
809#if RTLNX_VER_MIN(2,4,22)
810 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
811 false /* non-contiguous */, fExecutable, VERR_NO_MEMORY, pszTag);
812#else
813 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
814 false /* non-contiguous */, fExecutable, VERR_NO_MEMORY, pszTag);
815#endif
816 if (RT_SUCCESS(rc))
817 {
818 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
819 if (RT_SUCCESS(rc))
820 {
821 *ppMem = &pMemLnx->Core;
822 IPRT_LINUX_RESTORE_EFL_AC();
823 return rc;
824 }
825
826 rtR0MemObjLinuxFreePages(pMemLnx);
827 rtR0MemObjDelete(&pMemLnx->Core);
828 }
829
830 IPRT_LINUX_RESTORE_EFL_AC();
831 return rc;
832}
833
834
835DECLHIDDEN(int) rtR0MemObjNativeAllocLarge(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, size_t cbLargePage, uint32_t fFlags,
836 const char *pszTag)
837{
838 return rtR0MemObjFallbackAllocLarge(ppMem, cb, cbLargePage, fFlags, pszTag);
839}
840
841
842DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, const char *pszTag)
843{
844 IPRT_LINUX_SAVE_EFL_AC();
845 PRTR0MEMOBJLNX pMemLnx;
846 int rc;
847
848 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
849#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
850 /* ZONE_DMA32: 0-4GB */
851 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
852 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY, pszTag);
853 if (RT_FAILURE(rc))
854#endif
855#ifdef RT_ARCH_AMD64
856 /* ZONE_DMA: 0-16MB */
857 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
858 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY, pszTag);
859#else
860# ifdef CONFIG_X86_PAE
861# endif
862 /* ZONE_NORMAL: 0-896MB */
863 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
864 false /* non-contiguous */, fExecutable, VERR_NO_LOW_MEMORY, pszTag);
865#endif
866 if (RT_SUCCESS(rc))
867 {
868 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
869 if (RT_SUCCESS(rc))
870 {
871 *ppMem = &pMemLnx->Core;
872 IPRT_LINUX_RESTORE_EFL_AC();
873 return rc;
874 }
875
876 rtR0MemObjLinuxFreePages(pMemLnx);
877 rtR0MemObjDelete(&pMemLnx->Core);
878 }
879
880 IPRT_LINUX_RESTORE_EFL_AC();
881 return rc;
882}
883
884
885DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, const char *pszTag)
886{
887 IPRT_LINUX_SAVE_EFL_AC();
888 PRTR0MEMOBJLNX pMemLnx;
889 int rc;
890
891#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
892 /* ZONE_DMA32: 0-4GB */
893 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
894 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY, pszTag);
895 if (RT_FAILURE(rc))
896#endif
897#ifdef RT_ARCH_AMD64
898 /* ZONE_DMA: 0-16MB */
899 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
900 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY, pszTag);
901#else
902 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
903 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
904 true /* contiguous */, fExecutable, VERR_NO_CONT_MEMORY, pszTag);
905#endif
906 if (RT_SUCCESS(rc))
907 {
908 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
909 if (RT_SUCCESS(rc))
910 {
911#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
912 size_t iPage = pMemLnx->cPages;
913 while (iPage-- > 0)
914 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
915#endif
916 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
917 *ppMem = &pMemLnx->Core;
918 IPRT_LINUX_RESTORE_EFL_AC();
919 return rc;
920 }
921
922 rtR0MemObjLinuxFreePages(pMemLnx);
923 rtR0MemObjDelete(&pMemLnx->Core);
924 }
925
926 IPRT_LINUX_RESTORE_EFL_AC();
927 return rc;
928}
929
930
931/**
932 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
933 *
934 * @returns IPRT status code.
935 * @param ppMemLnx Where to
936 * @param enmType The object type.
937 * @param cb The size of the allocation.
938 * @param uAlignment The alignment of the physical memory.
939 * Only valid for fContiguous == true, ignored otherwise.
940 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
941 * @param pszTag Allocation tag used for statistics and such.
942 * @param fGfp The Linux GFP flags to use for the allocation.
943 */
944static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
945 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, const char *pszTag, gfp_t fGfp)
946{
947 PRTR0MEMOBJLNX pMemLnx;
948 int rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
949 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
950 false /*fExecutable*/, VERR_NO_PHYS_MEMORY, pszTag);
951 if (RT_FAILURE(rc))
952 return rc;
953
954 /*
955 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
956 */
957 if (PhysHighest != NIL_RTHCPHYS)
958 {
959 size_t iPage = pMemLnx->cPages;
960 while (iPage-- > 0)
961 if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
962 {
963 rtR0MemObjLinuxFreePages(pMemLnx);
964 rtR0MemObjDelete(&pMemLnx->Core);
965 return VERR_NO_MEMORY;
966 }
967 }
968
969 /*
970 * Complete the object.
971 */
972 if (enmType == RTR0MEMOBJTYPE_PHYS)
973 {
974 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
975 pMemLnx->Core.u.Phys.fAllocated = true;
976 }
977 *ppMem = &pMemLnx->Core;
978 return rc;
979}
980
981
982/**
983 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
984 *
985 * @returns IPRT status code.
986 * @param ppMem Where to store the memory object pointer on success.
987 * @param enmType The object type.
988 * @param cb The size of the allocation.
989 * @param uAlignment The alignment of the physical memory.
990 * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
991 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
992 * @param pszTag Allocation tag used for statistics and such.
993 */
994static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
995 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, const char *pszTag)
996{
997 int rc;
998 IPRT_LINUX_SAVE_EFL_AC();
999
1000 /*
1001 * There are two clear cases and that's the <=16MB and anything-goes ones.
1002 * When the physical address limit is somewhere in-between those two we'll
1003 * just have to try, starting with HIGHUSER and working our way thru the
1004 * different types, hoping we'll get lucky.
1005 *
1006 * We should probably move this physical address restriction logic up to
1007 * the page alloc function as it would be more efficient there. But since
1008 * we don't expect this to be a performance issue just yet it can wait.
1009 */
1010 if (PhysHighest == NIL_RTHCPHYS)
1011 /* ZONE_HIGHMEM: the whole physical memory */
1012 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, pszTag, GFP_HIGHUSER);
1013 else if (PhysHighest <= _1M * 16)
1014 /* ZONE_DMA: 0-16MB */
1015 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, pszTag, GFP_DMA);
1016 else
1017 {
1018 rc = VERR_NO_MEMORY;
1019 if (RT_FAILURE(rc))
1020 /* ZONE_HIGHMEM: the whole physical memory */
1021 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, pszTag, GFP_HIGHUSER);
1022 if (RT_FAILURE(rc))
1023 /* ZONE_NORMAL: 0-896MB */
1024 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, pszTag, GFP_USER);
1025#ifdef GFP_DMA32
1026 if (RT_FAILURE(rc))
1027 /* ZONE_DMA32: 0-4GB */
1028 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, pszTag, GFP_DMA32);
1029#endif
1030 if (RT_FAILURE(rc))
1031 /* ZONE_DMA: 0-16MB */
1032 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, pszTag, GFP_DMA);
1033 }
1034 IPRT_LINUX_RESTORE_EFL_AC();
1035 return rc;
1036}
1037
1038
1039/**
1040 * Translates a kernel virtual address to a linux page structure by walking the
1041 * page tables.
1042 *
1043 * @note We do assume that the page tables will not change as we are walking
1044 * them. This assumption is rather forced by the fact that I could not
1045 * immediately see any way of preventing this from happening. So, we
1046 * take some extra care when accessing them.
1047 *
1048 * Because of this, we don't want to use this function on memory where
1049 * attribute changes to nearby pages is likely to cause large pages to
1050 * be used or split up. So, don't use this for the linear mapping of
1051 * physical memory.
1052 *
1053 * @returns Pointer to the page structur or NULL if it could not be found.
1054 * @param pv The kernel virtual address.
1055 */
1056RTDECL(struct page *) rtR0MemObjLinuxVirtToPage(void *pv)
1057{
1058 unsigned long ulAddr = (unsigned long)pv;
1059 unsigned long pfn;
1060 struct page *pPage;
1061 pte_t *pEntry;
1062 union
1063 {
1064 pgd_t Global;
1065#if RTLNX_VER_MIN(4,12,0)
1066 p4d_t Four;
1067#endif
1068#if RTLNX_VER_MIN(2,6,11)
1069 pud_t Upper;
1070#endif
1071 pmd_t Middle;
1072 pte_t Entry;
1073 } u;
1074
1075 /* Should this happen in a situation this code will be called in? And if
1076 * so, can it change under our feet? See also
1077 * "Documentation/vm/active_mm.txt" in the kernel sources. */
1078 if (RT_UNLIKELY(!current->active_mm))
1079 return NULL;
1080 u.Global = *pgd_offset(current->active_mm, ulAddr);
1081 if (RT_UNLIKELY(pgd_none(u.Global)))
1082 return NULL;
1083#if RTLNX_VER_MIN(2,6,11)
1084# if RTLNX_VER_MIN(4,12,0)
1085 u.Four = *p4d_offset(&u.Global, ulAddr);
1086 if (RT_UNLIKELY(p4d_none(u.Four)))
1087 return NULL;
1088 if (p4d_large(u.Four))
1089 {
1090 pPage = p4d_page(u.Four);
1091 AssertReturn(pPage, NULL);
1092 pfn = page_to_pfn(pPage); /* doing the safe way... */
1093 AssertCompile(P4D_SHIFT - PAGE_SHIFT < 31);
1094 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (P4D_SHIFT - PAGE_SHIFT)) - 1);
1095 return pfn_to_page(pfn);
1096 }
1097 u.Upper = *pud_offset(&u.Four, ulAddr);
1098# else /* < 4.12 */
1099 u.Upper = *pud_offset(&u.Global, ulAddr);
1100# endif /* < 4.12 */
1101 if (RT_UNLIKELY(pud_none(u.Upper)))
1102 return NULL;
1103# if RTLNX_VER_MIN(2,6,25)
1104 if (pud_large(u.Upper))
1105 {
1106 pPage = pud_page(u.Upper);
1107 AssertReturn(pPage, NULL);
1108 pfn = page_to_pfn(pPage); /* doing the safe way... */
1109 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
1110 return pfn_to_page(pfn);
1111 }
1112# endif
1113 u.Middle = *pmd_offset(&u.Upper, ulAddr);
1114#else /* < 2.6.11 */
1115 u.Middle = *pmd_offset(&u.Global, ulAddr);
1116#endif /* < 2.6.11 */
1117 if (RT_UNLIKELY(pmd_none(u.Middle)))
1118 return NULL;
1119#if RTLNX_VER_MIN(2,6,0)
1120 if (pmd_large(u.Middle))
1121 {
1122 pPage = pmd_page(u.Middle);
1123 AssertReturn(pPage, NULL);
1124 pfn = page_to_pfn(pPage); /* doing the safe way... */
1125 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
1126 return pfn_to_page(pfn);
1127 }
1128#endif
1129
1130#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
1131 pEntry = pte_offset_map(&u.Middle, ulAddr);
1132#else
1133 pEntry = pte_offset(&u.Middle, ulAddr);
1134#endif
1135 if (RT_UNLIKELY(!pEntry))
1136 return NULL;
1137 u.Entry = *pEntry;
1138#if RTLNX_VER_MIN(2,5,5) || defined(pte_offset_map)
1139 pte_unmap(pEntry);
1140#endif
1141
1142 if (RT_UNLIKELY(!pte_present(u.Entry)))
1143 return NULL;
1144 return pte_page(u.Entry);
1145}
1146RT_EXPORT_SYMBOL(rtR0MemObjLinuxVirtToPage);
1147
1148
1149DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment,
1150 const char *pszTag)
1151{
1152 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest, pszTag);
1153}
1154
1155
1156DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, const char *pszTag)
1157{
1158 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest, pszTag);
1159}
1160
1161
1162DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy,
1163 const char *pszTag)
1164{
1165 IPRT_LINUX_SAVE_EFL_AC();
1166
1167 /*
1168 * All we need to do here is to validate that we can use
1169 * ioremap on the specified address (32/64-bit dma_addr_t).
1170 */
1171 PRTR0MEMOBJLNX pMemLnx;
1172 dma_addr_t PhysAddr = Phys;
1173 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
1174
1175 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb, pszTag);
1176 if (!pMemLnx)
1177 {
1178 IPRT_LINUX_RESTORE_EFL_AC();
1179 return VERR_NO_MEMORY;
1180 }
1181
1182 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
1183 pMemLnx->Core.u.Phys.fAllocated = false;
1184 pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
1185 Assert(!pMemLnx->cPages);
1186 *ppMem = &pMemLnx->Core;
1187 IPRT_LINUX_RESTORE_EFL_AC();
1188 return VINF_SUCCESS;
1189}
1190
1191/* openSUSE Leap 42.3 detection :-/ */
1192#if RTLNX_VER_RANGE(4,4,0, 4,6,0) && defined(FAULT_FLAG_REMOTE)
1193# define GET_USER_PAGES_API KERNEL_VERSION(4, 10, 0) /* no typo! */
1194#else
1195# define GET_USER_PAGES_API LINUX_VERSION_CODE
1196#endif
1197
1198DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess,
1199 RTR0PROCESS R0Process, const char *pszTag)
1200{
1201 IPRT_LINUX_SAVE_EFL_AC();
1202 const int cPages = cb >> PAGE_SHIFT;
1203 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1204 struct vm_area_struct **papVMAs;
1205 PRTR0MEMOBJLNX pMemLnx;
1206 int rc = VERR_NO_MEMORY;
1207 int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
1208
1209 /*
1210 * Check for valid task and size overflows.
1211 */
1212 if (!pTask)
1213 return VERR_NOT_SUPPORTED;
1214 if (((size_t)cPages << PAGE_SHIFT) != cb)
1215 return VERR_OUT_OF_RANGE;
1216
1217 /*
1218 * Allocate the memory object and a temporary buffer for the VMAs.
1219 */
1220 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK,
1221 (void *)R3Ptr, cb, pszTag);
1222 if (!pMemLnx)
1223 {
1224 IPRT_LINUX_RESTORE_EFL_AC();
1225 return VERR_NO_MEMORY;
1226 }
1227
1228 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
1229 if (papVMAs)
1230 {
1231 LNX_MM_DOWN_READ(pTask->mm);
1232
1233 /*
1234 * Get user pages.
1235 */
1236/** @todo r=bird: Should we not force read access too? */
1237#if GET_USER_PAGES_API >= KERNEL_VERSION(4, 6, 0)
1238 if (R0Process == RTR0ProcHandleSelf())
1239 rc = get_user_pages(R3Ptr, /* Where from. */
1240 cPages, /* How many pages. */
1241# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1242 fWrite ? FOLL_WRITE | /* Write to memory. */
1243 FOLL_FORCE /* force write access. */
1244 : 0, /* Write to memory. */
1245# else
1246 fWrite, /* Write to memory. */
1247 fWrite, /* force write access. */
1248# endif
1249 &pMemLnx->apPages[0], /* Page array. */
1250 papVMAs); /* vmas */
1251 /*
1252 * Actually this should not happen at the moment as call this function
1253 * only for our own process.
1254 */
1255 else
1256 rc = get_user_pages_remote(
1257# if GET_USER_PAGES_API < KERNEL_VERSION(5, 9, 0)
1258 pTask, /* Task for fault accounting. */
1259# endif
1260 pTask->mm, /* Whose pages. */
1261 R3Ptr, /* Where from. */
1262 cPages, /* How many pages. */
1263# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1264 fWrite ? FOLL_WRITE | /* Write to memory. */
1265 FOLL_FORCE /* force write access. */
1266 : 0, /* Write to memory. */
1267# else
1268 fWrite, /* Write to memory. */
1269 fWrite, /* force write access. */
1270# endif
1271 &pMemLnx->apPages[0], /* Page array. */
1272 papVMAs /* vmas */
1273# if GET_USER_PAGES_API >= KERNEL_VERSION(4, 10, 0)
1274 , NULL /* locked */
1275# endif
1276 );
1277#else /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1278 rc = get_user_pages(pTask, /* Task for fault accounting. */
1279 pTask->mm, /* Whose pages. */
1280 R3Ptr, /* Where from. */
1281 cPages, /* How many pages. */
1282/* The get_user_pages API change was back-ported to 4.4.168. */
1283# if RTLNX_VER_RANGE(4,4,168, 4,5,0)
1284 fWrite ? FOLL_WRITE | /* Write to memory. */
1285 FOLL_FORCE /* force write access. */
1286 : 0, /* Write to memory. */
1287# else
1288 fWrite, /* Write to memory. */
1289 fWrite, /* force write access. */
1290# endif
1291 &pMemLnx->apPages[0], /* Page array. */
1292 papVMAs); /* vmas */
1293#endif /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1294 if (rc == cPages)
1295 {
1296 /*
1297 * Flush dcache (required?), protect against fork and _really_ pin the page
1298 * table entries. get_user_pages() will protect against swapping out the
1299 * pages but it will NOT protect against removing page table entries. This
1300 * can be achieved with
1301 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
1302 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
1303 * Usual Linux distributions support only a limited size of locked pages
1304 * (e.g. 32KB).
1305 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
1306 * or by
1307 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
1308 * a range check.
1309 */
1310 /** @todo The Linux fork() protection will require more work if this API
1311 * is to be used for anything but locking VM pages. */
1312 while (rc-- > 0)
1313 {
1314 flush_dcache_page(pMemLnx->apPages[rc]);
1315 papVMAs[rc]->vm_flags |= VM_DONTCOPY | VM_LOCKED;
1316 }
1317
1318 LNX_MM_UP_READ(pTask->mm);
1319
1320 RTMemFree(papVMAs);
1321
1322 pMemLnx->Core.u.Lock.R0Process = R0Process;
1323 pMemLnx->cPages = cPages;
1324 Assert(!pMemLnx->fMappedToRing0);
1325 *ppMem = &pMemLnx->Core;
1326
1327 IPRT_LINUX_RESTORE_EFL_AC();
1328 return VINF_SUCCESS;
1329 }
1330
1331 /*
1332 * Failed - we need to unlock any pages that we succeeded to lock.
1333 */
1334 while (rc-- > 0)
1335 {
1336 if (!PageReserved(pMemLnx->apPages[rc]))
1337 SetPageDirty(pMemLnx->apPages[rc]);
1338#if RTLNX_VER_MIN(4,6,0)
1339 put_page(pMemLnx->apPages[rc]);
1340#else
1341 page_cache_release(pMemLnx->apPages[rc]);
1342#endif
1343 }
1344
1345 LNX_MM_UP_READ(pTask->mm);
1346
1347 RTMemFree(papVMAs);
1348 rc = VERR_LOCK_FAILED;
1349 }
1350
1351 rtR0MemObjDelete(&pMemLnx->Core);
1352 IPRT_LINUX_RESTORE_EFL_AC();
1353 return rc;
1354}
1355
1356
1357DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, const char *pszTag)
1358{
1359 IPRT_LINUX_SAVE_EFL_AC();
1360 void *pvLast = (uint8_t *)pv + cb - 1;
1361 size_t const cPages = cb >> PAGE_SHIFT;
1362 PRTR0MEMOBJLNX pMemLnx;
1363 bool fLinearMapping;
1364 int rc;
1365 uint8_t *pbPage;
1366 size_t iPage;
1367 NOREF(fAccess);
1368
1369 if ( !RTR0MemKernelIsValidAddr(pv)
1370 || !RTR0MemKernelIsValidAddr(pv + cb))
1371 return VERR_INVALID_PARAMETER;
1372
1373 /*
1374 * The lower part of the kernel memory has a linear mapping between
1375 * physical and virtual addresses. So we take a short cut here. This is
1376 * assumed to be the cleanest way to handle those addresses (and the code
1377 * is well tested, though the test for determining it is not very nice).
1378 * If we ever decide it isn't we can still remove it.
1379 */
1380#if 0
1381 fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
1382#else
1383 fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
1384 && (unsigned long)pvLast < (unsigned long)high_memory;
1385#endif
1386
1387 /*
1388 * Allocate the memory object.
1389 */
1390 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK,
1391 pv, cb, pszTag);
1392 if (!pMemLnx)
1393 {
1394 IPRT_LINUX_RESTORE_EFL_AC();
1395 return VERR_NO_MEMORY;
1396 }
1397
1398 /*
1399 * Gather the pages.
1400 * We ASSUME all kernel pages are non-swappable and non-movable.
1401 */
1402 rc = VINF_SUCCESS;
1403 pbPage = (uint8_t *)pvLast;
1404 iPage = cPages;
1405 if (!fLinearMapping)
1406 {
1407 while (iPage-- > 0)
1408 {
1409 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1410 if (RT_UNLIKELY(!pPage))
1411 {
1412 rc = VERR_LOCK_FAILED;
1413 break;
1414 }
1415 pMemLnx->apPages[iPage] = pPage;
1416 pbPage -= PAGE_SIZE;
1417 }
1418 }
1419 else
1420 {
1421 while (iPage-- > 0)
1422 {
1423 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
1424 pbPage -= PAGE_SIZE;
1425 }
1426 }
1427 if (RT_SUCCESS(rc))
1428 {
1429 /*
1430 * Complete the memory object and return.
1431 */
1432 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
1433 pMemLnx->cPages = cPages;
1434 Assert(!pMemLnx->fMappedToRing0);
1435 *ppMem = &pMemLnx->Core;
1436
1437 IPRT_LINUX_RESTORE_EFL_AC();
1438 return VINF_SUCCESS;
1439 }
1440
1441 rtR0MemObjDelete(&pMemLnx->Core);
1442 IPRT_LINUX_RESTORE_EFL_AC();
1443 return rc;
1444}
1445
1446
1447DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment,
1448 const char *pszTag)
1449{
1450#if RTLNX_VER_MIN(2,4,22)
1451 IPRT_LINUX_SAVE_EFL_AC();
1452 const size_t cPages = cb >> PAGE_SHIFT;
1453 struct page *pDummyPage;
1454 struct page **papPages;
1455
1456 /* check for unsupported stuff. */
1457 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1458 if (uAlignment > PAGE_SIZE)
1459 return VERR_NOT_SUPPORTED;
1460
1461 /*
1462 * Allocate a dummy page and create a page pointer array for vmap such that
1463 * the dummy page is mapped all over the reserved area.
1464 */
1465 pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
1466 if (pDummyPage)
1467 {
1468 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
1469 if (papPages)
1470 {
1471 void *pv;
1472 size_t iPage = cPages;
1473 while (iPage-- > 0)
1474 papPages[iPage] = pDummyPage;
1475# ifdef VM_MAP
1476 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
1477# else
1478 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
1479# endif
1480 RTMemFree(papPages);
1481 if (pv)
1482 {
1483 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb, pszTag);
1484 if (pMemLnx)
1485 {
1486 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
1487 pMemLnx->cPages = 1;
1488 pMemLnx->apPages[0] = pDummyPage;
1489 *ppMem = &pMemLnx->Core;
1490 IPRT_LINUX_RESTORE_EFL_AC();
1491 return VINF_SUCCESS;
1492 }
1493 vunmap(pv);
1494 }
1495 }
1496 __free_page(pDummyPage);
1497 }
1498 IPRT_LINUX_RESTORE_EFL_AC();
1499 return VERR_NO_MEMORY;
1500
1501#else /* < 2.4.22 */
1502 /*
1503 * Could probably use ioremap here, but the caller is in a better position than us
1504 * to select some safe physical memory.
1505 */
1506 return VERR_NOT_SUPPORTED;
1507#endif
1508}
1509
1510
1511DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
1512 RTR0PROCESS R0Process, const char *pszTag)
1513{
1514 IPRT_LINUX_SAVE_EFL_AC();
1515 PRTR0MEMOBJLNX pMemLnx;
1516 void *pv;
1517 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1518 if (!pTask)
1519 return VERR_NOT_SUPPORTED;
1520
1521 /*
1522 * Check that the specified alignment is supported.
1523 */
1524 if (uAlignment > PAGE_SIZE)
1525 return VERR_NOT_SUPPORTED;
1526
1527 /*
1528 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1529 */
1530 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1531 if (pv == (void *)-1)
1532 {
1533 IPRT_LINUX_RESTORE_EFL_AC();
1534 return VERR_NO_MEMORY;
1535 }
1536
1537 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb, pszTag);
1538 if (!pMemLnx)
1539 {
1540 rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
1541 IPRT_LINUX_RESTORE_EFL_AC();
1542 return VERR_NO_MEMORY;
1543 }
1544
1545 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1546 *ppMem = &pMemLnx->Core;
1547 IPRT_LINUX_RESTORE_EFL_AC();
1548 return VINF_SUCCESS;
1549}
1550
1551
1552DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
1553 unsigned fProt, size_t offSub, size_t cbSub, const char *pszTag)
1554{
1555 int rc = VERR_NO_MEMORY;
1556 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1557 PRTR0MEMOBJLNX pMemLnx;
1558 IPRT_LINUX_SAVE_EFL_AC();
1559
1560 /* Fail if requested to do something we can't. */
1561 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1562 if (uAlignment > PAGE_SIZE)
1563 return VERR_NOT_SUPPORTED;
1564
1565 /*
1566 * Create the IPRT memory object.
1567 */
1568 if (!cbSub)
1569 cbSub = pMemLnxToMap->Core.cb - offSub;
1570 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub, pszTag);
1571 if (pMemLnx)
1572 {
1573 if (pMemLnxToMap->cPages)
1574 {
1575#if RTLNX_VER_MIN(2,4,22)
1576 /*
1577 * Use vmap - 2.4.22 and later.
1578 */
1579 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1580 /** @todo We don't really care too much for EXEC here... 5.8 always adds NX. */
1581 Assert(((offSub + cbSub) >> PAGE_SHIFT) <= pMemLnxToMap->cPages);
1582# ifdef VM_MAP
1583 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_MAP, fPg);
1584# else
1585 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[offSub >> PAGE_SHIFT], cbSub >> PAGE_SHIFT, VM_ALLOC, fPg);
1586# endif
1587 if (pMemLnx->Core.pv)
1588 {
1589 pMemLnx->fMappedToRing0 = true;
1590 rc = VINF_SUCCESS;
1591 }
1592 else
1593 rc = VERR_MAP_FAILED;
1594
1595#else /* < 2.4.22 */
1596 /*
1597 * Only option here is to share mappings if possible and forget about fProt.
1598 */
1599 if (rtR0MemObjIsRing3(pMemToMap))
1600 rc = VERR_NOT_SUPPORTED;
1601 else
1602 {
1603 rc = VINF_SUCCESS;
1604 if (!pMemLnxToMap->Core.pv)
1605 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1606 if (RT_SUCCESS(rc))
1607 {
1608 Assert(pMemLnxToMap->Core.pv);
1609 pMemLnx->Core.pv = (uint8_t *)pMemLnxToMap->Core.pv + offSub;
1610 }
1611 }
1612#endif
1613 }
1614 else
1615 {
1616 /*
1617 * MMIO / physical memory.
1618 */
1619 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1620#if RTLNX_VER_MIN(2,6,25)
1621 /*
1622 * ioremap() defaults to no caching since the 2.6 kernels.
1623 * ioremap_nocache() has been removed finally in 5.6-rc1.
1624 */
1625 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1626 ? ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
1627 : ioremap_cache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
1628#else /* KERNEL_VERSION < 2.6.25 */
1629 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1630 ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub)
1631 : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase + offSub, cbSub);
1632#endif /* KERNEL_VERSION < 2.6.25 */
1633 if (pMemLnx->Core.pv)
1634 {
1635 /** @todo fix protection. */
1636 rc = VINF_SUCCESS;
1637 }
1638 }
1639 if (RT_SUCCESS(rc))
1640 {
1641 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1642 *ppMem = &pMemLnx->Core;
1643 IPRT_LINUX_RESTORE_EFL_AC();
1644 return VINF_SUCCESS;
1645 }
1646 rtR0MemObjDelete(&pMemLnx->Core);
1647 }
1648
1649 IPRT_LINUX_RESTORE_EFL_AC();
1650 return rc;
1651}
1652
1653
1654#ifdef VBOX_USE_PAE_HACK
1655/**
1656 * Replace the PFN of a PTE with the address of the actual page.
1657 *
1658 * The caller maps a reserved dummy page at the address with the desired access
1659 * and flags.
1660 *
1661 * This hack is required for older Linux kernels which don't provide
1662 * remap_pfn_range().
1663 *
1664 * @returns 0 on success, -ENOMEM on failure.
1665 * @param mm The memory context.
1666 * @param ulAddr The mapping address.
1667 * @param Phys The physical address of the page to map.
1668 */
1669static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1670{
1671 int rc = -ENOMEM;
1672 pgd_t *pgd;
1673
1674 spin_lock(&mm->page_table_lock);
1675
1676 pgd = pgd_offset(mm, ulAddr);
1677 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1678 {
1679 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1680 if (!pmd_none(*pmd))
1681 {
1682 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1683 if (ptep)
1684 {
1685 pte_t pte = *ptep;
1686 pte.pte_high &= 0xfff00000;
1687 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1688 pte.pte_low &= 0x00000fff;
1689 pte.pte_low |= (Phys & 0xfffff000);
1690 set_pte(ptep, pte);
1691 pte_unmap(ptep);
1692 rc = 0;
1693 }
1694 }
1695 }
1696
1697 spin_unlock(&mm->page_table_lock);
1698 return rc;
1699}
1700#endif /* VBOX_USE_PAE_HACK */
1701
1702
1703DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
1704 unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub, const char *pszTag)
1705{
1706 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1707 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1708 int rc = VERR_NO_MEMORY;
1709 PRTR0MEMOBJLNX pMemLnx;
1710#ifdef VBOX_USE_PAE_HACK
1711 struct page *pDummyPage;
1712 RTHCPHYS DummyPhys;
1713#endif
1714 IPRT_LINUX_SAVE_EFL_AC();
1715
1716 /*
1717 * Check for restrictions.
1718 */
1719 if (!pTask)
1720 return VERR_NOT_SUPPORTED;
1721 if (uAlignment > PAGE_SIZE)
1722 return VERR_NOT_SUPPORTED;
1723
1724#ifdef VBOX_USE_PAE_HACK
1725 /*
1726 * Allocate a dummy page for use when mapping the memory.
1727 */
1728 pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
1729 if (!pDummyPage)
1730 {
1731 IPRT_LINUX_RESTORE_EFL_AC();
1732 return VERR_NO_MEMORY;
1733 }
1734 SetPageReserved(pDummyPage);
1735 DummyPhys = page_to_phys(pDummyPage);
1736#endif
1737
1738 /*
1739 * Create the IPRT memory object.
1740 */
1741 Assert(!offSub || cbSub);
1742 if (cbSub == 0)
1743 cbSub = pMemLnxToMap->Core.cb;
1744 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, cbSub, pszTag);
1745 if (pMemLnx)
1746 {
1747 /*
1748 * Allocate user space mapping.
1749 */
1750 void *pv;
1751 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cbSub, uAlignment, pTask, fProt);
1752 if (pv != (void *)-1)
1753 {
1754 /*
1755 * Map page by page into the mmap area.
1756 * This is generic, paranoid and not very efficient.
1757 */
1758 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1759 unsigned long ulAddrCur = (unsigned long)pv;
1760 const size_t cPages = (offSub + cbSub) >> PAGE_SHIFT;
1761 size_t iPage;
1762
1763 LNX_MM_DOWN_WRITE(pTask->mm);
1764
1765 rc = VINF_SUCCESS;
1766 if (pMemLnxToMap->cPages)
1767 {
1768 for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1769 {
1770#if RTLNX_VER_MAX(2,6,11)
1771 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1772#endif
1773#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1774 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1775 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1776#endif
1777#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
1778 /* remap_page_range() limitation on x86 */
1779 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1780#endif
1781
1782#if defined(VBOX_USE_INSERT_PAGE) && RTLNX_VER_MIN(2,6,22)
1783 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1784 /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
1785 * See remap_pfn_range() in mm/memory.c */
1786#if RTLNX_VER_MIN(3,7,0)
1787 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1788#else
1789 vma->vm_flags |= VM_RESERVED;
1790#endif
1791#elif RTLNX_VER_MIN(2,6,11)
1792 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1793#elif defined(VBOX_USE_PAE_HACK)
1794 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1795 if (!rc)
1796 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1797#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1798 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1799#else /* 2.4 */
1800 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1801#endif
1802 if (rc)
1803 {
1804 rc = VERR_NO_MEMORY;
1805 break;
1806 }
1807 }
1808 }
1809 else
1810 {
1811 RTHCPHYS Phys;
1812 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1813 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1814 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1815 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1816 else
1817 {
1818 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1819 Phys = NIL_RTHCPHYS;
1820 }
1821 if (Phys != NIL_RTHCPHYS)
1822 {
1823 for (iPage = offSub >> PAGE_SHIFT; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1824 {
1825#if RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1826 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1827 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1828#endif
1829#if RTLNX_VER_MAX(2,6,0) && defined(RT_ARCH_X86)
1830 /* remap_page_range() limitation on x86 */
1831 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1832#endif
1833
1834#if RTLNX_VER_MIN(2,6,11)
1835 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1836#elif defined(VBOX_USE_PAE_HACK)
1837 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1838 if (!rc)
1839 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1840#elif RTLNX_VER_MIN(2,6,0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1841 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1842#else /* 2.4 */
1843 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1844#endif
1845 if (rc)
1846 {
1847 rc = VERR_NO_MEMORY;
1848 break;
1849 }
1850 }
1851 }
1852 }
1853
1854#ifdef CONFIG_NUMA_BALANCING
1855# if RTLNX_VER_MAX(3,13,0) && RTLNX_RHEL_MAX(7,0)
1856# define VBOX_NUMA_HACK_OLD
1857# endif
1858 if (RT_SUCCESS(rc))
1859 {
1860 /** @todo Ugly hack! But right now we have no other means to
1861 * disable automatic NUMA page balancing. */
1862# ifdef RT_OS_X86
1863# ifdef VBOX_NUMA_HACK_OLD
1864 pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
1865# endif
1866 pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
1867# else
1868# ifdef VBOX_NUMA_HACK_OLD
1869 pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
1870# endif
1871 pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
1872# endif
1873 }
1874#endif /* CONFIG_NUMA_BALANCING */
1875
1876 LNX_MM_UP_WRITE(pTask->mm);
1877
1878 if (RT_SUCCESS(rc))
1879 {
1880#ifdef VBOX_USE_PAE_HACK
1881 __free_page(pDummyPage);
1882#endif
1883 pMemLnx->Core.pv = pv;
1884 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1885 *ppMem = &pMemLnx->Core;
1886 IPRT_LINUX_RESTORE_EFL_AC();
1887 return VINF_SUCCESS;
1888 }
1889
1890 /*
1891 * Bail out.
1892 */
1893 rtR0MemObjLinuxDoMunmap(pv, cbSub, pTask);
1894 }
1895 rtR0MemObjDelete(&pMemLnx->Core);
1896 }
1897#ifdef VBOX_USE_PAE_HACK
1898 __free_page(pDummyPage);
1899#endif
1900
1901 IPRT_LINUX_RESTORE_EFL_AC();
1902 return rc;
1903}
1904
1905
1906DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1907{
1908# ifdef IPRT_USE_ALLOC_VM_AREA_FOR_EXEC
1909 /*
1910 * Currently only supported when we've got addresses PTEs from the kernel.
1911 */
1912 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1913 if (pMemLnx->pArea && pMemLnx->papPtesForArea)
1914 {
1915 pgprot_t const fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
1916 size_t const cPages = (offSub + cbSub) >> PAGE_SHIFT;
1917 pte_t **papPtes = pMemLnx->papPtesForArea;
1918 size_t i;
1919
1920 for (i = offSub >> PAGE_SHIFT; i < cPages; i++)
1921 {
1922 set_pte(papPtes[i], mk_pte(pMemLnx->apPages[i], fPg));
1923 }
1924 preempt_disable();
1925 __flush_tlb_all();
1926 preempt_enable();
1927 return VINF_SUCCESS;
1928 }
1929# elif defined(IPRT_USE_APPLY_TO_PAGE_RANGE_FOR_EXEC)
1930 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1931 if ( pMemLnx->fExecutable
1932 && pMemLnx->fMappedToRing0)
1933 {
1934 LNXAPPLYPGRANGE Args;
1935 Args.pMemLnx = pMemLnx;
1936 Args.fPg = rtR0MemObjLinuxConvertProt(fProt, true /*fKernel*/);
1937 int rcLnx = apply_to_page_range(current->active_mm, (unsigned long)pMemLnx->Core.pv + offSub, cbSub,
1938 rtR0MemObjLinuxApplyPageRange, (void *)&Args);
1939 if (rcLnx)
1940 return VERR_NOT_SUPPORTED;
1941
1942 return VINF_SUCCESS;
1943 }
1944# endif
1945
1946 NOREF(pMem);
1947 NOREF(offSub);
1948 NOREF(cbSub);
1949 NOREF(fProt);
1950 return VERR_NOT_SUPPORTED;
1951}
1952
1953
1954DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1955{
1956 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1957
1958 if (pMemLnx->cPages)
1959 return page_to_phys(pMemLnx->apPages[iPage]);
1960
1961 switch (pMemLnx->Core.enmType)
1962 {
1963 case RTR0MEMOBJTYPE_CONT:
1964 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1965
1966 case RTR0MEMOBJTYPE_PHYS:
1967 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1968
1969 /* the parent knows */
1970 case RTR0MEMOBJTYPE_MAPPING:
1971 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1972
1973 /* cPages > 0 */
1974 case RTR0MEMOBJTYPE_LOW:
1975 case RTR0MEMOBJTYPE_LOCK:
1976 case RTR0MEMOBJTYPE_PHYS_NC:
1977 case RTR0MEMOBJTYPE_PAGE:
1978 default:
1979 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1980 RT_FALL_THROUGH();
1981
1982 case RTR0MEMOBJTYPE_RES_VIRT:
1983 return NIL_RTHCPHYS;
1984 }
1985}
1986
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette