1 | /* $Id: timer-r0drv-linux.c 57276 2015-08-11 14:39:19Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Timers, Ring-0 Driver, Linux.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2015 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*******************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *******************************************************************************/
|
---|
31 | #include "the-linux-kernel.h"
|
---|
32 | #include "internal/iprt.h"
|
---|
33 |
|
---|
34 | #include <iprt/timer.h>
|
---|
35 | #include <iprt/time.h>
|
---|
36 | #include <iprt/mp.h>
|
---|
37 | #include <iprt/cpuset.h>
|
---|
38 | #include <iprt/spinlock.h>
|
---|
39 | #include <iprt/err.h>
|
---|
40 | #include <iprt/asm.h>
|
---|
41 | #include <iprt/assert.h>
|
---|
42 | #include <iprt/alloc.h>
|
---|
43 |
|
---|
44 | #include "internal/magics.h"
|
---|
45 |
|
---|
46 | /** @def RTTIMER_LINUX_WITH_HRTIMER
|
---|
47 | * Whether to use high resolution timers. */
|
---|
48 | #if !defined(RTTIMER_LINUX_WITH_HRTIMER) \
|
---|
49 | && defined(IPRT_LINUX_HAS_HRTIMER)
|
---|
50 | # define RTTIMER_LINUX_WITH_HRTIMER
|
---|
51 | #endif
|
---|
52 |
|
---|
53 | #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)
|
---|
54 | # define mod_timer_pinned mod_timer
|
---|
55 | # define HRTIMER_MODE_ABS_PINNED HRTIMER_MODE_ABS
|
---|
56 | #endif
|
---|
57 |
|
---|
58 |
|
---|
59 | /*******************************************************************************
|
---|
60 | * Structures and Typedefs *
|
---|
61 | *******************************************************************************/
|
---|
62 | /**
|
---|
63 | * Timer state machine.
|
---|
64 | *
|
---|
65 | * This is used to try handle the issues with MP events and
|
---|
66 | * timers that runs on all CPUs. It's relatively nasty :-/
|
---|
67 | */
|
---|
68 | typedef enum RTTIMERLNXSTATE
|
---|
69 | {
|
---|
70 | /** Stopped. */
|
---|
71 | RTTIMERLNXSTATE_STOPPED = 0,
|
---|
72 | /** Transient state; next ACTIVE. */
|
---|
73 | RTTIMERLNXSTATE_STARTING,
|
---|
74 | /** Transient state; next ACTIVE. (not really necessary) */
|
---|
75 | RTTIMERLNXSTATE_MP_STARTING,
|
---|
76 | /** Active. */
|
---|
77 | RTTIMERLNXSTATE_ACTIVE,
|
---|
78 | /** Active and in callback; next ACTIVE, STOPPED or CALLBACK_DESTROYING. */
|
---|
79 | RTTIMERLNXSTATE_CALLBACK,
|
---|
80 | /** Stopped while in the callback; next STOPPED. */
|
---|
81 | RTTIMERLNXSTATE_CB_STOPPING,
|
---|
82 | /** Restarted while in the callback; next ACTIVE, STOPPED, DESTROYING. */
|
---|
83 | RTTIMERLNXSTATE_CB_RESTARTING,
|
---|
84 | /** The callback shall destroy the timer; next STOPPED. */
|
---|
85 | RTTIMERLNXSTATE_CB_DESTROYING,
|
---|
86 | /** Transient state; next STOPPED. */
|
---|
87 | RTTIMERLNXSTATE_STOPPING,
|
---|
88 | /** Transient state; next STOPPED. */
|
---|
89 | RTTIMERLNXSTATE_MP_STOPPING,
|
---|
90 | /** The usual 32-bit hack. */
|
---|
91 | RTTIMERLNXSTATE_32BIT_HACK = 0x7fffffff
|
---|
92 | } RTTIMERLNXSTATE;
|
---|
93 |
|
---|
94 |
|
---|
95 | /**
|
---|
96 | * A Linux sub-timer.
|
---|
97 | */
|
---|
98 | typedef struct RTTIMERLNXSUBTIMER
|
---|
99 | {
|
---|
100 | /** Timer specific data. */
|
---|
101 | union
|
---|
102 | {
|
---|
103 | #if defined(RTTIMER_LINUX_WITH_HRTIMER)
|
---|
104 | /** High resolution timer. */
|
---|
105 | struct
|
---|
106 | {
|
---|
107 | /** The linux timer structure. */
|
---|
108 | struct hrtimer LnxTimer;
|
---|
109 | } Hr;
|
---|
110 | #endif
|
---|
111 | /** Standard timer. */
|
---|
112 | struct
|
---|
113 | {
|
---|
114 | /** The linux timer structure. */
|
---|
115 | struct timer_list LnxTimer;
|
---|
116 | /** The start of the current run (ns).
|
---|
117 | * This is used to calculate when the timer ought to fire the next time. */
|
---|
118 | uint64_t u64NextTS;
|
---|
119 | /** The u64NextTS in jiffies. */
|
---|
120 | unsigned long ulNextJiffies;
|
---|
121 | /** Set when starting or changing the timer so that u64StartTs
|
---|
122 | * and u64NextTS gets reinitialized (eliminating some jitter). */
|
---|
123 | bool volatile fFirstAfterChg;
|
---|
124 | } Std;
|
---|
125 | } u;
|
---|
126 | /** The current tick number. */
|
---|
127 | uint64_t iTick;
|
---|
128 | /** Restart the single shot timer at this specific time.
|
---|
129 | * Used when a single shot timer is restarted from the callback. */
|
---|
130 | uint64_t volatile uNsRestartAt;
|
---|
131 | /** Pointer to the parent timer. */
|
---|
132 | PRTTIMER pParent;
|
---|
133 | /** The current sub-timer state. */
|
---|
134 | RTTIMERLNXSTATE volatile enmState;
|
---|
135 | } RTTIMERLNXSUBTIMER;
|
---|
136 | /** Pointer to a linux sub-timer. */
|
---|
137 | typedef RTTIMERLNXSUBTIMER *PRTTIMERLNXSUBTIMER;
|
---|
138 |
|
---|
139 |
|
---|
140 | /**
|
---|
141 | * The internal representation of an Linux timer handle.
|
---|
142 | */
|
---|
143 | typedef struct RTTIMER
|
---|
144 | {
|
---|
145 | /** Magic.
|
---|
146 | * This is RTTIMER_MAGIC, but changes to something else before the timer
|
---|
147 | * is destroyed to indicate clearly that thread should exit. */
|
---|
148 | uint32_t volatile u32Magic;
|
---|
149 | /** Spinlock synchronizing the fSuspended and MP event handling.
|
---|
150 | * This is NIL_RTSPINLOCK if cCpus == 1. */
|
---|
151 | RTSPINLOCK hSpinlock;
|
---|
152 | /** Flag indicating that the timer is suspended. */
|
---|
153 | bool volatile fSuspended;
|
---|
154 | /** Whether the timer must run on one specific CPU or not. */
|
---|
155 | bool fSpecificCpu;
|
---|
156 | #ifdef CONFIG_SMP
|
---|
157 | /** Whether the timer must run on all CPUs or not. */
|
---|
158 | bool fAllCpus;
|
---|
159 | #endif /* else: All -> specific on non-SMP kernels */
|
---|
160 | /** Whether it is a high resolution timer or a standard one. */
|
---|
161 | bool fHighRes;
|
---|
162 | /** The id of the CPU it must run on if fSpecificCpu is set. */
|
---|
163 | RTCPUID idCpu;
|
---|
164 | /** The number of CPUs this timer should run on. */
|
---|
165 | RTCPUID cCpus;
|
---|
166 | /** Callback. */
|
---|
167 | PFNRTTIMER pfnTimer;
|
---|
168 | /** User argument. */
|
---|
169 | void *pvUser;
|
---|
170 | /** The timer interval. 0 if one-shot. */
|
---|
171 | uint64_t volatile u64NanoInterval;
|
---|
172 | /** This is set to the number of jiffies between ticks if the interval is
|
---|
173 | * an exact number of jiffies. (Standard timers only.) */
|
---|
174 | unsigned long volatile cJiffies;
|
---|
175 | /** The change interval spinlock for standard timers only. */
|
---|
176 | spinlock_t ChgIntLock;
|
---|
177 | /** Workqueue item for delayed destruction. */
|
---|
178 | RTR0LNXWORKQUEUEITEM DtorWorkqueueItem;
|
---|
179 | /** Sub-timers.
|
---|
180 | * Normally there is just one, but for RTTIMER_FLAGS_CPU_ALL this will contain
|
---|
181 | * an entry for all possible cpus. In that case the index will be the same as
|
---|
182 | * for the RTCpuSet. */
|
---|
183 | RTTIMERLNXSUBTIMER aSubTimers[1];
|
---|
184 | } RTTIMER;
|
---|
185 |
|
---|
186 |
|
---|
187 | /**
|
---|
188 | * A rtTimerLinuxStartOnCpu and rtTimerLinuxStartOnCpu argument package.
|
---|
189 | */
|
---|
190 | typedef struct RTTIMERLINUXSTARTONCPUARGS
|
---|
191 | {
|
---|
192 | /** The current time (RTTimeSystemNanoTS). */
|
---|
193 | uint64_t u64Now;
|
---|
194 | /** When to start firing (delta). */
|
---|
195 | uint64_t u64First;
|
---|
196 | } RTTIMERLINUXSTARTONCPUARGS;
|
---|
197 | /** Pointer to a rtTimerLinuxStartOnCpu argument package. */
|
---|
198 | typedef RTTIMERLINUXSTARTONCPUARGS *PRTTIMERLINUXSTARTONCPUARGS;
|
---|
199 |
|
---|
200 |
|
---|
201 | /*******************************************************************************
|
---|
202 | * Internal Functions *
|
---|
203 | *******************************************************************************/
|
---|
204 | #ifdef CONFIG_SMP
|
---|
205 | static DECLCALLBACK(void) rtTimerLinuxMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser);
|
---|
206 | #endif
|
---|
207 |
|
---|
208 | #if 0
|
---|
209 | #define DEBUG_HACKING
|
---|
210 | #include <iprt/string.h>
|
---|
211 | #include <iprt/asm-amd64-x86.h>
|
---|
212 | static void myLogBackdoorPrintf(const char *pszFormat, ...)
|
---|
213 | {
|
---|
214 | char szTmp[256];
|
---|
215 | va_list args;
|
---|
216 | size_t cb;
|
---|
217 |
|
---|
218 | cb = RTStrPrintf(szTmp, sizeof(szTmp) - 10, "%d: ", RTMpCpuId());
|
---|
219 | va_start(args, pszFormat);
|
---|
220 | cb += RTStrPrintfV(&szTmp[cb], sizeof(szTmp) - cb, pszFormat, args);
|
---|
221 | va_end(args);
|
---|
222 |
|
---|
223 | ASMOutStrU8(0x504, (uint8_t *)&szTmp[0], cb);
|
---|
224 | }
|
---|
225 | # define RTAssertMsg1Weak(pszExpr, uLine, pszFile, pszFunction) \
|
---|
226 | myLogBackdoorPrintf("\n!!Guest Assertion failed!!\n%s(%d) %s\n%s\n", uLine, pszFile, pszFunction, (pszExpr))
|
---|
227 | # define RTAssertMsg2Weak myLogBackdoorPrintf
|
---|
228 | # define RTTIMERLNX_LOG(a) myLogBackdoorPrintf a
|
---|
229 | #else
|
---|
230 | # define RTTIMERLNX_LOG(a) do { } while (0)
|
---|
231 | #endif
|
---|
232 |
|
---|
233 | /**
|
---|
234 | * Sets the state.
|
---|
235 | */
|
---|
236 | DECLINLINE(void) rtTimerLnxSetState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState)
|
---|
237 | {
|
---|
238 | #ifdef DEBUG_HACKING
|
---|
239 | RTTIMERLNX_LOG(("set %d -> %d\n", *penmState, enmNewState));
|
---|
240 | #endif
|
---|
241 | ASMAtomicWriteU32((uint32_t volatile *)penmState, enmNewState);
|
---|
242 | }
|
---|
243 |
|
---|
244 |
|
---|
245 | /**
|
---|
246 | * Sets the state if it has a certain value.
|
---|
247 | *
|
---|
248 | * @return true if xchg was done.
|
---|
249 | * @return false if xchg wasn't done.
|
---|
250 | */
|
---|
251 | #ifdef DEBUG_HACKING
|
---|
252 | #define rtTimerLnxCmpXchgState(penmState, enmNewState, enmCurState) rtTimerLnxCmpXchgStateDebug(penmState, enmNewState, enmCurState, __LINE__)
|
---|
253 | static bool rtTimerLnxCmpXchgStateDebug(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState,
|
---|
254 | RTTIMERLNXSTATE enmCurState, uint32_t uLine)
|
---|
255 | {
|
---|
256 | RTTIMERLNXSTATE enmOldState = enmCurState;
|
---|
257 | bool fRc = ASMAtomicCmpXchgExU32((uint32_t volatile *)penmState, enmNewState, enmCurState, (uint32_t *)&enmOldState);
|
---|
258 | RTTIMERLNX_LOG(("cxg %d -> %d - %d at %u\n", enmOldState, enmNewState, fRc, uLine));
|
---|
259 | return fRc;
|
---|
260 | }
|
---|
261 | #else
|
---|
262 | DECLINLINE(bool) rtTimerLnxCmpXchgState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState,
|
---|
263 | RTTIMERLNXSTATE enmCurState)
|
---|
264 | {
|
---|
265 | return ASMAtomicCmpXchgU32((uint32_t volatile *)penmState, enmNewState, enmCurState);
|
---|
266 | }
|
---|
267 | #endif
|
---|
268 |
|
---|
269 |
|
---|
270 | /**
|
---|
271 | * Gets the state.
|
---|
272 | */
|
---|
273 | DECLINLINE(RTTIMERLNXSTATE) rtTimerLnxGetState(RTTIMERLNXSTATE volatile *penmState)
|
---|
274 | {
|
---|
275 | return (RTTIMERLNXSTATE)ASMAtomicUoReadU32((uint32_t volatile *)penmState);
|
---|
276 | }
|
---|
277 |
|
---|
278 | #ifdef RTTIMER_LINUX_WITH_HRTIMER
|
---|
279 |
|
---|
280 | /**
|
---|
281 | * Converts a nano second time stamp to ktime_t.
|
---|
282 | *
|
---|
283 | * ASSUMES RTTimeSystemNanoTS() is implemented using ktime_get_ts().
|
---|
284 | *
|
---|
285 | * @returns ktime_t.
|
---|
286 | * @param cNanoSecs Nanoseconds.
|
---|
287 | */
|
---|
288 | DECLINLINE(ktime_t) rtTimerLnxNanoToKt(uint64_t cNanoSecs)
|
---|
289 | {
|
---|
290 | /* With some luck the compiler optimizes the division out of this... (Bet it doesn't.) */
|
---|
291 | return ktime_set(cNanoSecs / 1000000000, cNanoSecs % 1000000000);
|
---|
292 | }
|
---|
293 |
|
---|
294 | /**
|
---|
295 | * Converts ktime_t to a nano second time stamp.
|
---|
296 | *
|
---|
297 | * ASSUMES RTTimeSystemNanoTS() is implemented using ktime_get_ts().
|
---|
298 | *
|
---|
299 | * @returns nano second time stamp.
|
---|
300 | * @param Kt ktime_t.
|
---|
301 | */
|
---|
302 | DECLINLINE(uint64_t) rtTimerLnxKtToNano(ktime_t Kt)
|
---|
303 | {
|
---|
304 | return ktime_to_ns(Kt);
|
---|
305 | }
|
---|
306 |
|
---|
307 | #endif /* RTTIMER_LINUX_WITH_HRTIMER */
|
---|
308 |
|
---|
309 | /**
|
---|
310 | * Converts a nano second interval to jiffies.
|
---|
311 | *
|
---|
312 | * @returns Jiffies.
|
---|
313 | * @param cNanoSecs Nanoseconds.
|
---|
314 | */
|
---|
315 | DECLINLINE(unsigned long) rtTimerLnxNanoToJiffies(uint64_t cNanoSecs)
|
---|
316 | {
|
---|
317 | /* this can be made even better... */
|
---|
318 | if (cNanoSecs > (uint64_t)TICK_NSEC * MAX_JIFFY_OFFSET)
|
---|
319 | return MAX_JIFFY_OFFSET;
|
---|
320 | # if ARCH_BITS == 32
|
---|
321 | if (RT_LIKELY(cNanoSecs <= UINT32_MAX))
|
---|
322 | return ((uint32_t)cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
|
---|
323 | # endif
|
---|
324 | return (cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
|
---|
325 | }
|
---|
326 |
|
---|
327 |
|
---|
328 | /**
|
---|
329 | * Starts a sub-timer (RTTimerStart).
|
---|
330 | *
|
---|
331 | * @param pSubTimer The sub-timer to start.
|
---|
332 | * @param u64Now The current timestamp (RTTimeSystemNanoTS()).
|
---|
333 | * @param u64First The interval from u64Now to the first time the timer should fire.
|
---|
334 | * @param fPinned true = timer pinned to a specific CPU,
|
---|
335 | * false = timer can migrate between CPUs
|
---|
336 | * @param fHighRes Whether the user requested a high resolution timer or not.
|
---|
337 | * @param enmOldState The old timer state.
|
---|
338 | */
|
---|
339 | static void rtTimerLnxStartSubTimer(PRTTIMERLNXSUBTIMER pSubTimer, uint64_t u64Now, uint64_t u64First,
|
---|
340 | bool fPinned, bool fHighRes)
|
---|
341 | {
|
---|
342 | /*
|
---|
343 | * Calc when it should start firing.
|
---|
344 | */
|
---|
345 | uint64_t u64NextTS = u64Now + u64First;
|
---|
346 | if (!fHighRes)
|
---|
347 | pSubTimer->u.Std.u64NextTS = u64NextTS;
|
---|
348 | RTTIMERLNX_LOG(("startsubtimer %p\n", pSubTimer->pParent));
|
---|
349 |
|
---|
350 | pSubTimer->iTick = 0;
|
---|
351 |
|
---|
352 | #ifdef RTTIMER_LINUX_WITH_HRTIMER
|
---|
353 | if (fHighRes)
|
---|
354 | hrtimer_start(&pSubTimer->u.Hr.LnxTimer, rtTimerLnxNanoToKt(u64NextTS),
|
---|
355 | fPinned ? HRTIMER_MODE_ABS_PINNED : HRTIMER_MODE_ABS);
|
---|
356 | else
|
---|
357 | #endif
|
---|
358 | {
|
---|
359 | unsigned long cJiffies = !u64First ? 0 : rtTimerLnxNanoToJiffies(u64First);
|
---|
360 | pSubTimer->u.Std.ulNextJiffies = jiffies + cJiffies;
|
---|
361 | pSubTimer->u.Std.fFirstAfterChg = true;
|
---|
362 | #ifdef CONFIG_SMP
|
---|
363 | if (fPinned)
|
---|
364 | mod_timer_pinned(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
|
---|
365 | else
|
---|
366 | #endif
|
---|
367 | mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
|
---|
368 | }
|
---|
369 |
|
---|
370 | /* Be a bit careful here since we could be racing the callback. */
|
---|
371 | if (!rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_STARTING))
|
---|
372 | rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_MP_STARTING);
|
---|
373 | }
|
---|
374 |
|
---|
375 |
|
---|
376 | /**
|
---|
377 | * Stops a sub-timer (RTTimerStart and rtTimerLinuxMpEvent()).
|
---|
378 | *
|
---|
379 | * The caller has already changed the state, so we will not be in a callback
|
---|
380 | * situation wrt to the calling thread.
|
---|
381 | *
|
---|
382 | * @param pSubTimer The sub-timer.
|
---|
383 | * @param fHighRes Whether the user requested a high resolution timer or not.
|
---|
384 | */
|
---|
385 | static void rtTimerLnxStopSubTimer(PRTTIMERLNXSUBTIMER pSubTimer, bool fHighRes)
|
---|
386 | {
|
---|
387 | RTTIMERLNX_LOG(("stopsubtimer %p %d\n", pSubTimer->pParent, fHighRes));
|
---|
388 | #ifdef RTTIMER_LINUX_WITH_HRTIMER
|
---|
389 | if (fHighRes)
|
---|
390 | {
|
---|
391 | /* There is no equivalent to del_timer in the hrtimer API,
|
---|
392 | hrtimer_cancel() == del_timer_sync(). Just like the WARN_ON in
|
---|
393 | del_timer_sync() asserts, waiting for a timer callback to complete
|
---|
394 | is deadlock prone, so don't do it. */
|
---|
395 | int rc = hrtimer_try_to_cancel(&pSubTimer->u.Hr.LnxTimer);
|
---|
396 | if (rc < 0)
|
---|
397 | {
|
---|
398 | hrtimer_start(&pSubTimer->u.Hr.LnxTimer, ktime_set(KTIME_SEC_MAX, 0), HRTIMER_MODE_ABS);
|
---|
399 | hrtimer_try_to_cancel(&pSubTimer->u.Hr.LnxTimer);
|
---|
400 | }
|
---|
401 | }
|
---|
402 | else
|
---|
403 | #endif
|
---|
404 | del_timer(&pSubTimer->u.Std.LnxTimer);
|
---|
405 |
|
---|
406 | rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED);
|
---|
407 | }
|
---|
408 |
|
---|
409 |
|
---|
410 | /**
|
---|
411 | * Used by RTTimerDestroy and rtTimerLnxCallbackDestroy to do the actual work.
|
---|
412 | *
|
---|
413 | * @param pTimer The timer in question.
|
---|
414 | */
|
---|
415 | static void rtTimerLnxDestroyIt(PRTTIMER pTimer)
|
---|
416 | {
|
---|
417 | RTSPINLOCK hSpinlock = pTimer->hSpinlock;
|
---|
418 | RTCPUID iCpu;
|
---|
419 | Assert(pTimer->fSuspended);
|
---|
420 | RTTIMERLNX_LOG(("destroyit %p\n", pTimer));
|
---|
421 |
|
---|
422 | /*
|
---|
423 | * Remove the MP notifications first because it'll reduce the risk of
|
---|
424 | * us overtaking any MP event that might theoretically be racing us here.
|
---|
425 | */
|
---|
426 | #ifdef CONFIG_SMP
|
---|
427 | if ( pTimer->cCpus > 1
|
---|
428 | && hSpinlock != NIL_RTSPINLOCK)
|
---|
429 | {
|
---|
430 | int rc = RTMpNotificationDeregister(rtTimerLinuxMpEvent, pTimer);
|
---|
431 | AssertRC(rc);
|
---|
432 | }
|
---|
433 | #endif /* CONFIG_SMP */
|
---|
434 |
|
---|
435 | /*
|
---|
436 | * Invalidate the handle.
|
---|
437 | */
|
---|
438 | ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
|
---|
439 |
|
---|
440 | /*
|
---|
441 | * Make sure all timers have stopped executing since we're stopping them in
|
---|
442 | * an asynchronous manner up in rtTimerLnxStopSubTimer.
|
---|
443 | */
|
---|
444 | iCpu = pTimer->cCpus;
|
---|
445 | while (iCpu-- > 0)
|
---|
446 | {
|
---|
447 | #ifdef RTTIMER_LINUX_WITH_HRTIMER
|
---|
448 | if (pTimer->fHighRes)
|
---|
449 | hrtimer_cancel(&pTimer->aSubTimers[iCpu].u.Hr.LnxTimer);
|
---|
450 | else
|
---|
451 | #endif
|
---|
452 | del_timer_sync(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer);
|
---|
453 | }
|
---|
454 |
|
---|
455 | /*
|
---|
456 | * Finally, free the resources.
|
---|
457 | */
|
---|
458 | RTMemFreeEx(pTimer, RT_OFFSETOF(RTTIMER, aSubTimers[pTimer->cCpus]));
|
---|
459 | if (hSpinlock != NIL_RTSPINLOCK)
|
---|
460 | RTSpinlockDestroy(hSpinlock);
|
---|
461 | }
|
---|
462 |
|
---|
463 |
|
---|
464 | /**
|
---|
465 | * Workqueue callback (no DECLCALLBACK!) for deferred destruction.
|
---|
466 | *
|
---|
467 | * @param pWork Pointer to the DtorWorkqueueItem member of our timer
|
---|
468 | * structure.
|
---|
469 | */
|
---|
470 | static void rtTimerLnxDestroyDeferred(RTR0LNXWORKQUEUEITEM *pWork)
|
---|
471 | {
|
---|
472 | PRTTIMER pTimer = RT_FROM_MEMBER(pWork, RTTIMER, DtorWorkqueueItem);
|
---|
473 | rtTimerLnxDestroyIt(pTimer);
|
---|
474 | }
|
---|
475 |
|
---|
476 |
|
---|
477 | /**
|
---|
478 | * Called when the timer was destroyed by the callback function.
|
---|
479 | *
|
---|
480 | * @param pTimer The timer.
|
---|
481 | * @param pSubTimer The sub-timer which we're handling, the state of this
|
---|
482 | * will be RTTIMERLNXSTATE_CALLBACK_DESTROYING.
|
---|
483 | */
|
---|
484 | static void rtTimerLnxCallbackDestroy(PRTTIMER pTimer, PRTTIMERLNXSUBTIMER pSubTimer)
|
---|
485 | {
|
---|
486 | /*
|
---|
487 | * If it's an omni timer, the last dude does the destroying.
|
---|
488 | */
|
---|
489 | if (pTimer->cCpus > 1)
|
---|
490 | {
|
---|
491 | uint32_t iCpu = pTimer->cCpus;
|
---|
492 | RTSpinlockAcquire(pTimer->hSpinlock);
|
---|
493 |
|
---|
494 | Assert(pSubTimer->enmState == RTTIMERLNXSTATE_CB_DESTROYING);
|
---|
495 | rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED);
|
---|
496 |
|
---|
497 | while (iCpu-- > 0)
|
---|
498 | if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) != RTTIMERLNXSTATE_STOPPED)
|
---|
499 | {
|
---|
500 | RTSpinlockRelease(pTimer->hSpinlock);
|
---|
501 | return;
|
---|
502 | }
|
---|
503 |
|
---|
504 | RTSpinlockRelease(pTimer->hSpinlock);
|
---|
505 | }
|
---|
506 |
|
---|
507 | /*
|
---|
508 | * Destroying a timer from the callback is unsafe since the callout code
|
---|
509 | * might be touching the timer structure upon return (hrtimer does!). So,
|
---|
510 | * we have to defer the actual destruction to the IRPT workqueue.
|
---|
511 | */
|
---|
512 | rtR0LnxWorkqueuePush(&pTimer->DtorWorkqueueItem, rtTimerLnxDestroyDeferred);
|
---|
513 | }
|
---|
514 |
|
---|
515 |
|
---|
516 | #ifdef CONFIG_SMP
|
---|
517 | /**
|
---|
518 | * Deal with a sub-timer that has migrated.
|
---|
519 | *
|
---|
520 | * @param pTimer The timer.
|
---|
521 | * @param pSubTimer The sub-timer.
|
---|
522 | */
|
---|
523 | static void rtTimerLnxCallbackHandleMigration(PRTTIMER pTimer, PRTTIMERLNXSUBTIMER pSubTimer)
|
---|
524 | {
|
---|
525 | RTTIMERLNXSTATE enmState;
|
---|
526 | if (pTimer->cCpus > 1)
|
---|
527 | RTSpinlockAcquire(pTimer->hSpinlock);
|
---|
528 |
|
---|
529 | do
|
---|
530 | {
|
---|
531 | enmState = rtTimerLnxGetState(&pSubTimer->enmState);
|
---|
532 | switch (enmState)
|
---|
533 | {
|
---|
534 | case RTTIMERLNXSTATE_STOPPING:
|
---|
535 | case RTTIMERLNXSTATE_MP_STOPPING:
|
---|
536 | enmState = RTTIMERLNXSTATE_STOPPED;
|
---|
537 | case RTTIMERLNXSTATE_STOPPED:
|
---|
538 | break;
|
---|
539 |
|
---|
540 | default:
|
---|
541 | AssertMsgFailed(("%d\n", enmState));
|
---|
542 | case RTTIMERLNXSTATE_STARTING:
|
---|
543 | case RTTIMERLNXSTATE_MP_STARTING:
|
---|
544 | case RTTIMERLNXSTATE_ACTIVE:
|
---|
545 | case RTTIMERLNXSTATE_CALLBACK:
|
---|
546 | case RTTIMERLNXSTATE_CB_STOPPING:
|
---|
547 | case RTTIMERLNXSTATE_CB_RESTARTING:
|
---|
548 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, enmState))
|
---|
549 | enmState = RTTIMERLNXSTATE_STOPPED;
|
---|
550 | break;
|
---|
551 |
|
---|
552 | case RTTIMERLNXSTATE_CB_DESTROYING:
|
---|
553 | {
|
---|
554 | if (pTimer->cCpus > 1)
|
---|
555 | RTSpinlockRelease(pTimer->hSpinlock);
|
---|
556 |
|
---|
557 | rtTimerLnxCallbackDestroy(pTimer, pSubTimer);
|
---|
558 | return;
|
---|
559 | }
|
---|
560 | }
|
---|
561 | } while (enmState != RTTIMERLNXSTATE_STOPPED);
|
---|
562 |
|
---|
563 | if (pTimer->cCpus > 1)
|
---|
564 | RTSpinlockRelease(pTimer->hSpinlock);
|
---|
565 | }
|
---|
566 | #endif /* CONFIG_SMP */
|
---|
567 |
|
---|
568 |
|
---|
569 | /**
|
---|
570 | * The slow path of rtTimerLnxChangeToCallbackState.
|
---|
571 | *
|
---|
572 | * @returns true if changed successfully, false if not.
|
---|
573 | * @param pSubTimer The sub-timer.
|
---|
574 | */
|
---|
575 | static bool rtTimerLnxChangeToCallbackStateSlow(PRTTIMERLNXSUBTIMER pSubTimer)
|
---|
576 | {
|
---|
577 | for (;;)
|
---|
578 | {
|
---|
579 | RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pSubTimer->enmState);
|
---|
580 | switch (enmState)
|
---|
581 | {
|
---|
582 | case RTTIMERLNXSTATE_ACTIVE:
|
---|
583 | case RTTIMERLNXSTATE_STARTING:
|
---|
584 | case RTTIMERLNXSTATE_MP_STARTING:
|
---|
585 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_CALLBACK, enmState))
|
---|
586 | return true;
|
---|
587 | break;
|
---|
588 |
|
---|
589 | case RTTIMERLNXSTATE_CALLBACK:
|
---|
590 | case RTTIMERLNXSTATE_CB_STOPPING:
|
---|
591 | case RTTIMERLNXSTATE_CB_RESTARTING:
|
---|
592 | case RTTIMERLNXSTATE_CB_DESTROYING:
|
---|
593 | AssertMsgFailed(("%d\n", enmState));
|
---|
594 | default:
|
---|
595 | return false;
|
---|
596 | }
|
---|
597 | ASMNopPause();
|
---|
598 | }
|
---|
599 | }
|
---|
600 |
|
---|
601 |
|
---|
602 | /**
|
---|
603 | * Tries to change the sub-timer state to 'callback'.
|
---|
604 | *
|
---|
605 | * @returns true if changed successfully, false if not.
|
---|
606 | * @param pSubTimer The sub-timer.
|
---|
607 | */
|
---|
608 | DECLINLINE(bool) rtTimerLnxChangeToCallbackState(PRTTIMERLNXSUBTIMER pSubTimer)
|
---|
609 | {
|
---|
610 | if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_CALLBACK, RTTIMERLNXSTATE_ACTIVE)))
|
---|
611 | return true;
|
---|
612 | return rtTimerLnxChangeToCallbackStateSlow(pSubTimer);
|
---|
613 | }
|
---|
614 |
|
---|
615 |
|
---|
616 | #ifdef RTTIMER_LINUX_WITH_HRTIMER
|
---|
617 | /**
|
---|
618 | * Timer callback function for high resolution timers.
|
---|
619 | *
|
---|
620 | * @returns HRTIMER_NORESTART or HRTIMER_RESTART depending on whether it's a
|
---|
621 | * one-shot or interval timer.
|
---|
622 | * @param pHrTimer Pointer to the sub-timer structure.
|
---|
623 | */
|
---|
624 | static enum hrtimer_restart rtTimerLinuxHrCallback(struct hrtimer *pHrTimer)
|
---|
625 | {
|
---|
626 | PRTTIMERLNXSUBTIMER pSubTimer = RT_FROM_MEMBER(pHrTimer, RTTIMERLNXSUBTIMER, u.Hr.LnxTimer);
|
---|
627 | PRTTIMER pTimer = pSubTimer->pParent;
|
---|
628 |
|
---|
629 |
|
---|
630 | RTTIMERLNX_LOG(("hrcallback %p\n", pTimer));
|
---|
631 | if (RT_UNLIKELY(!rtTimerLnxChangeToCallbackState(pSubTimer)))
|
---|
632 | return HRTIMER_NORESTART;
|
---|
633 |
|
---|
634 | #ifdef CONFIG_SMP
|
---|
635 | /*
|
---|
636 | * Check for unwanted migration.
|
---|
637 | */
|
---|
638 | if (pTimer->fAllCpus || pTimer->fSpecificCpu)
|
---|
639 | {
|
---|
640 | RTCPUID idCpu = RTMpCpuId();
|
---|
641 | if (RT_UNLIKELY( pTimer->fAllCpus
|
---|
642 | ? (RTCPUID)(pSubTimer - &pTimer->aSubTimers[0]) != idCpu
|
---|
643 | : pTimer->idCpu != idCpu))
|
---|
644 | {
|
---|
645 | rtTimerLnxCallbackHandleMigration(pTimer, pSubTimer);
|
---|
646 | return HRTIMER_NORESTART;
|
---|
647 | }
|
---|
648 | }
|
---|
649 | #endif
|
---|
650 |
|
---|
651 | if (pTimer->u64NanoInterval)
|
---|
652 | {
|
---|
653 | /*
|
---|
654 | * Periodic timer, run it and update the native timer afterwards so
|
---|
655 | * we can handle RTTimerStop and RTTimerChangeInterval from the
|
---|
656 | * callback as well as a racing control thread.
|
---|
657 | */
|
---|
658 | pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
|
---|
659 | hrtimer_add_expires_ns(&pSubTimer->u.Hr.LnxTimer, ASMAtomicReadU64(&pTimer->u64NanoInterval));
|
---|
660 | if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CALLBACK)))
|
---|
661 | return HRTIMER_RESTART;
|
---|
662 | }
|
---|
663 | else
|
---|
664 | {
|
---|
665 | /*
|
---|
666 | * One shot timer (no omni), stop it before dispatching it.
|
---|
667 | * Allow RTTimerStart as well as RTTimerDestroy to be called from
|
---|
668 | * the callback.
|
---|
669 | */
|
---|
670 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
671 | pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
|
---|
672 | if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CALLBACK)))
|
---|
673 | return HRTIMER_NORESTART;
|
---|
674 | }
|
---|
675 |
|
---|
676 | /*
|
---|
677 | * Some state change occurred while we were in the callback routine.
|
---|
678 | */
|
---|
679 | for (;;)
|
---|
680 | {
|
---|
681 | RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pSubTimer->enmState);
|
---|
682 | switch (enmState)
|
---|
683 | {
|
---|
684 | case RTTIMERLNXSTATE_CB_DESTROYING:
|
---|
685 | rtTimerLnxCallbackDestroy(pTimer, pSubTimer);
|
---|
686 | return HRTIMER_NORESTART;
|
---|
687 |
|
---|
688 | case RTTIMERLNXSTATE_CB_STOPPING:
|
---|
689 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CB_STOPPING))
|
---|
690 | return HRTIMER_NORESTART;
|
---|
691 | break;
|
---|
692 |
|
---|
693 | case RTTIMERLNXSTATE_CB_RESTARTING:
|
---|
694 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CB_RESTARTING))
|
---|
695 | {
|
---|
696 | pSubTimer->iTick = 0;
|
---|
697 | hrtimer_set_expires(&pSubTimer->u.Hr.LnxTimer, rtTimerLnxNanoToKt(pSubTimer->uNsRestartAt));
|
---|
698 | return HRTIMER_RESTART;
|
---|
699 | }
|
---|
700 | break;
|
---|
701 |
|
---|
702 | default:
|
---|
703 | AssertMsgFailed(("%d\n", enmState));
|
---|
704 | return HRTIMER_NORESTART;
|
---|
705 | }
|
---|
706 | ASMNopPause();
|
---|
707 | }
|
---|
708 | }
|
---|
709 | #endif /* RTTIMER_LINUX_WITH_HRTIMER */
|
---|
710 |
|
---|
711 |
|
---|
712 | /**
|
---|
713 | * Timer callback function for standard timers.
|
---|
714 | *
|
---|
715 | * @param ulUser Address of the sub-timer structure.
|
---|
716 | */
|
---|
717 | static void rtTimerLinuxStdCallback(unsigned long ulUser)
|
---|
718 | {
|
---|
719 | PRTTIMERLNXSUBTIMER pSubTimer = (PRTTIMERLNXSUBTIMER)ulUser;
|
---|
720 | PRTTIMER pTimer = pSubTimer->pParent;
|
---|
721 |
|
---|
722 | RTTIMERLNX_LOG(("stdcallback %p\n", pTimer));
|
---|
723 | if (RT_UNLIKELY(!rtTimerLnxChangeToCallbackState(pSubTimer)))
|
---|
724 | return;
|
---|
725 |
|
---|
726 | #ifdef CONFIG_SMP
|
---|
727 | /*
|
---|
728 | * Check for unwanted migration.
|
---|
729 | */
|
---|
730 | if (pTimer->fAllCpus || pTimer->fSpecificCpu)
|
---|
731 | {
|
---|
732 | RTCPUID idCpu = RTMpCpuId();
|
---|
733 | if (RT_UNLIKELY( pTimer->fAllCpus
|
---|
734 | ? (RTCPUID)(pSubTimer - &pTimer->aSubTimers[0]) != idCpu
|
---|
735 | : pTimer->idCpu != idCpu))
|
---|
736 | {
|
---|
737 | rtTimerLnxCallbackHandleMigration(pTimer, pSubTimer);
|
---|
738 | return;
|
---|
739 | }
|
---|
740 | }
|
---|
741 | #endif
|
---|
742 |
|
---|
743 | if (pTimer->u64NanoInterval)
|
---|
744 | {
|
---|
745 | /*
|
---|
746 | * Interval timer, calculate the next timeout.
|
---|
747 | *
|
---|
748 | * The first time around, we'll re-adjust the u.Std.u64NextTS to
|
---|
749 | * try prevent some jittering if we were started at a bad time.
|
---|
750 | */
|
---|
751 | const uint64_t iTick = ++pSubTimer->iTick;
|
---|
752 | uint64_t u64NanoInterval;
|
---|
753 | unsigned long cJiffies;
|
---|
754 | unsigned long flFlags;
|
---|
755 |
|
---|
756 | spin_lock_irqsave(&pTimer->ChgIntLock, flFlags);
|
---|
757 | u64NanoInterval = pTimer->u64NanoInterval;
|
---|
758 | cJiffies = pTimer->cJiffies;
|
---|
759 | if (RT_UNLIKELY(pSubTimer->u.Std.fFirstAfterChg))
|
---|
760 | {
|
---|
761 | pSubTimer->u.Std.fFirstAfterChg = false;
|
---|
762 | pSubTimer->u.Std.u64NextTS = RTTimeSystemNanoTS();
|
---|
763 | pSubTimer->u.Std.ulNextJiffies = jiffies;
|
---|
764 | }
|
---|
765 | spin_unlock_irqrestore(&pTimer->ChgIntLock, flFlags);
|
---|
766 |
|
---|
767 | pSubTimer->u.Std.u64NextTS += u64NanoInterval;
|
---|
768 | if (cJiffies)
|
---|
769 | {
|
---|
770 | pSubTimer->u.Std.ulNextJiffies += cJiffies;
|
---|
771 | /* Prevent overflows when the jiffies counter wraps around.
|
---|
772 | * Special thanks to Ken Preslan for helping debugging! */
|
---|
773 | while (time_before(pSubTimer->u.Std.ulNextJiffies, jiffies))
|
---|
774 | {
|
---|
775 | pSubTimer->u.Std.ulNextJiffies += cJiffies;
|
---|
776 | pSubTimer->u.Std.u64NextTS += u64NanoInterval;
|
---|
777 | }
|
---|
778 | }
|
---|
779 | else
|
---|
780 | {
|
---|
781 | const uint64_t u64NanoTS = RTTimeSystemNanoTS();
|
---|
782 | while (pSubTimer->u.Std.u64NextTS < u64NanoTS)
|
---|
783 | pSubTimer->u.Std.u64NextTS += u64NanoInterval;
|
---|
784 | pSubTimer->u.Std.ulNextJiffies = jiffies + rtTimerLnxNanoToJiffies(pSubTimer->u.Std.u64NextTS - u64NanoTS);
|
---|
785 | }
|
---|
786 |
|
---|
787 | /*
|
---|
788 | * Run the timer and re-arm it unless the state changed .
|
---|
789 | * .
|
---|
790 | * We must re-arm it afterwards as we're not in a position to undo this .
|
---|
791 | * operation if for instance someone stopped or destroyed us while we .
|
---|
792 | * were in the callback. (Linux takes care of any races here.)
|
---|
793 | */
|
---|
794 | pTimer->pfnTimer(pTimer, pTimer->pvUser, iTick);
|
---|
795 | if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CALLBACK)))
|
---|
796 | {
|
---|
797 | #ifdef CONFIG_SMP
|
---|
798 | if (pTimer->fSpecificCpu || pTimer->fAllCpus)
|
---|
799 | mod_timer_pinned(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
|
---|
800 | else
|
---|
801 | #endif
|
---|
802 | mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
|
---|
803 | return;
|
---|
804 | }
|
---|
805 | }
|
---|
806 | else
|
---|
807 | {
|
---|
808 | /*
|
---|
809 | * One shot timer, stop it before dispatching it.
|
---|
810 | * Allow RTTimerStart as well as RTTimerDestroy to be called from
|
---|
811 | * the callback.
|
---|
812 | */
|
---|
813 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
814 | pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
|
---|
815 | if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CALLBACK)))
|
---|
816 | return;
|
---|
817 | }
|
---|
818 |
|
---|
819 | /*
|
---|
820 | * Some state change occurred while we were in the callback routine.
|
---|
821 | */
|
---|
822 | for (;;)
|
---|
823 | {
|
---|
824 | RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pSubTimer->enmState);
|
---|
825 | switch (enmState)
|
---|
826 | {
|
---|
827 | case RTTIMERLNXSTATE_CB_DESTROYING:
|
---|
828 | rtTimerLnxCallbackDestroy(pTimer, pSubTimer);
|
---|
829 | return;
|
---|
830 |
|
---|
831 | case RTTIMERLNXSTATE_CB_STOPPING:
|
---|
832 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CB_STOPPING))
|
---|
833 | return;
|
---|
834 | break;
|
---|
835 |
|
---|
836 | case RTTIMERLNXSTATE_CB_RESTARTING:
|
---|
837 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CB_RESTARTING))
|
---|
838 | {
|
---|
839 | uint64_t u64NanoTS;
|
---|
840 | uint64_t u64NextTS;
|
---|
841 | unsigned long flFlags;
|
---|
842 |
|
---|
843 | spin_lock_irqsave(&pTimer->ChgIntLock, flFlags);
|
---|
844 | u64NextTS = pSubTimer->uNsRestartAt;
|
---|
845 | u64NanoTS = RTTimeSystemNanoTS();
|
---|
846 | pSubTimer->iTick = 0;
|
---|
847 | pSubTimer->u.Std.u64NextTS = u64NextTS;
|
---|
848 | pSubTimer->u.Std.fFirstAfterChg = true;
|
---|
849 | pSubTimer->u.Std.ulNextJiffies = u64NextTS > u64NanoTS
|
---|
850 | ? jiffies + rtTimerLnxNanoToJiffies(u64NextTS - u64NanoTS)
|
---|
851 | : jiffies;
|
---|
852 | spin_unlock_irqrestore(&pTimer->ChgIntLock, flFlags);
|
---|
853 |
|
---|
854 | #ifdef CONFIG_SMP
|
---|
855 | if (pTimer->fSpecificCpu || pTimer->fAllCpus)
|
---|
856 | mod_timer_pinned(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
|
---|
857 | else
|
---|
858 | #endif
|
---|
859 | mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
|
---|
860 | return;
|
---|
861 | }
|
---|
862 | break;
|
---|
863 |
|
---|
864 | default:
|
---|
865 | AssertMsgFailed(("%d\n", enmState));
|
---|
866 | return;
|
---|
867 | }
|
---|
868 | ASMNopPause();
|
---|
869 | }
|
---|
870 | }
|
---|
871 |
|
---|
872 |
|
---|
873 | #ifdef CONFIG_SMP
|
---|
874 |
|
---|
875 | /**
|
---|
876 | * Per-cpu callback function (RTMpOnAll/RTMpOnSpecific).
|
---|
877 | *
|
---|
878 | * @param idCpu The current CPU.
|
---|
879 | * @param pvUser1 Pointer to the timer.
|
---|
880 | * @param pvUser2 Pointer to the argument structure.
|
---|
881 | */
|
---|
882 | static DECLCALLBACK(void) rtTimerLnxStartAllOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
883 | {
|
---|
884 | PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
|
---|
885 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
886 | Assert(idCpu < pTimer->cCpus);
|
---|
887 | rtTimerLnxStartSubTimer(&pTimer->aSubTimers[idCpu], pArgs->u64Now, pArgs->u64First, true /*fPinned*/, pTimer->fHighRes);
|
---|
888 | }
|
---|
889 |
|
---|
890 |
|
---|
891 | /**
|
---|
892 | * Worker for RTTimerStart() that takes care of the ugly bits.
|
---|
893 | *
|
---|
894 | * @returns RTTimerStart() return value.
|
---|
895 | * @param pTimer The timer.
|
---|
896 | * @param pArgs The argument structure.
|
---|
897 | */
|
---|
898 | static int rtTimerLnxOmniStart(PRTTIMER pTimer, PRTTIMERLINUXSTARTONCPUARGS pArgs)
|
---|
899 | {
|
---|
900 | RTCPUID iCpu;
|
---|
901 | RTCPUSET OnlineSet;
|
---|
902 | RTCPUSET OnlineSet2;
|
---|
903 | int rc2;
|
---|
904 |
|
---|
905 | /*
|
---|
906 | * Prepare all the sub-timers for the startup and then flag the timer
|
---|
907 | * as a whole as non-suspended, make sure we get them all before
|
---|
908 | * clearing fSuspended as the MP handler will be waiting on this
|
---|
909 | * should something happen while we're looping.
|
---|
910 | */
|
---|
911 | RTSpinlockAcquire(pTimer->hSpinlock);
|
---|
912 |
|
---|
913 | /* Just make it a omni timer restriction that no stop/start races are allowed. */
|
---|
914 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
915 | if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) != RTTIMERLNXSTATE_STOPPED)
|
---|
916 | {
|
---|
917 | RTSpinlockRelease(pTimer->hSpinlock);
|
---|
918 | return VERR_TIMER_BUSY;
|
---|
919 | }
|
---|
920 |
|
---|
921 | do
|
---|
922 | {
|
---|
923 | RTMpGetOnlineSet(&OnlineSet);
|
---|
924 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
925 | {
|
---|
926 | Assert(pTimer->aSubTimers[iCpu].enmState != RTTIMERLNXSTATE_MP_STOPPING);
|
---|
927 | rtTimerLnxSetState(&pTimer->aSubTimers[iCpu].enmState,
|
---|
928 | RTCpuSetIsMember(&OnlineSet, iCpu)
|
---|
929 | ? RTTIMERLNXSTATE_STARTING
|
---|
930 | : RTTIMERLNXSTATE_STOPPED);
|
---|
931 | }
|
---|
932 | } while (!RTCpuSetIsEqual(&OnlineSet, RTMpGetOnlineSet(&OnlineSet2)));
|
---|
933 |
|
---|
934 | ASMAtomicWriteBool(&pTimer->fSuspended, false);
|
---|
935 |
|
---|
936 | RTSpinlockRelease(pTimer->hSpinlock);
|
---|
937 |
|
---|
938 | /*
|
---|
939 | * Start them (can't find any exported function that allows me to
|
---|
940 | * do this without the cross calls).
|
---|
941 | */
|
---|
942 | pArgs->u64Now = RTTimeSystemNanoTS();
|
---|
943 | rc2 = RTMpOnAll(rtTimerLnxStartAllOnCpu, pTimer, pArgs);
|
---|
944 | AssertRC(rc2); /* screw this if it fails. */
|
---|
945 |
|
---|
946 | /*
|
---|
947 | * Reset the sub-timers who didn't start up (ALL CPUs case).
|
---|
948 | */
|
---|
949 | RTSpinlockAcquire(pTimer->hSpinlock);
|
---|
950 |
|
---|
951 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
952 | if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_STARTING))
|
---|
953 | {
|
---|
954 | /** @todo very odd case for a rainy day. Cpus that temporarily went offline while
|
---|
955 | * we were between calls needs to nudged as the MP handler will ignore events for
|
---|
956 | * them because of the STARTING state. This is an extremely unlikely case - not that
|
---|
957 | * that means anything in my experience... ;-) */
|
---|
958 | RTTIMERLNX_LOG(("what!? iCpu=%u -> didn't start\n", iCpu));
|
---|
959 | }
|
---|
960 |
|
---|
961 | RTSpinlockRelease(pTimer->hSpinlock);
|
---|
962 |
|
---|
963 | return VINF_SUCCESS;
|
---|
964 | }
|
---|
965 |
|
---|
966 |
|
---|
967 | /**
|
---|
968 | * Worker for RTTimerStop() that takes care of the ugly SMP bits.
|
---|
969 | *
|
---|
970 | * @returns true if there was any active callbacks, false if not.
|
---|
971 | * @param pTimer The timer (valid).
|
---|
972 | * @param fForDestroy Whether this is for RTTimerDestroy or not.
|
---|
973 | */
|
---|
974 | static bool rtTimerLnxOmniStop(PRTTIMER pTimer, bool fForDestroy)
|
---|
975 | {
|
---|
976 | bool fActiveCallbacks = false;
|
---|
977 | RTCPUID iCpu;
|
---|
978 | RTTIMERLNXSTATE enmState;
|
---|
979 |
|
---|
980 |
|
---|
981 | /*
|
---|
982 | * Mark the timer as suspended and flag all timers as stopping, except
|
---|
983 | * for those being stopped by an MP event.
|
---|
984 | */
|
---|
985 | RTSpinlockAcquire(pTimer->hSpinlock);
|
---|
986 |
|
---|
987 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
988 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
989 | {
|
---|
990 | for (;;)
|
---|
991 | {
|
---|
992 | enmState = rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState);
|
---|
993 | if ( enmState == RTTIMERLNXSTATE_STOPPED
|
---|
994 | || enmState == RTTIMERLNXSTATE_MP_STOPPING)
|
---|
995 | break;
|
---|
996 | if ( enmState == RTTIMERLNXSTATE_CALLBACK
|
---|
997 | || enmState == RTTIMERLNXSTATE_CB_STOPPING
|
---|
998 | || enmState == RTTIMERLNXSTATE_CB_RESTARTING)
|
---|
999 | {
|
---|
1000 | Assert(enmState != RTTIMERLNXSTATE_CB_STOPPING || fForDestroy);
|
---|
1001 | if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState,
|
---|
1002 | !fForDestroy ? RTTIMERLNXSTATE_CB_STOPPING : RTTIMERLNXSTATE_CB_DESTROYING,
|
---|
1003 | enmState))
|
---|
1004 | {
|
---|
1005 | fActiveCallbacks = true;
|
---|
1006 | break;
|
---|
1007 | }
|
---|
1008 | }
|
---|
1009 | else
|
---|
1010 | {
|
---|
1011 | Assert(enmState == RTTIMERLNXSTATE_ACTIVE);
|
---|
1012 | if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPING, enmState))
|
---|
1013 | break;
|
---|
1014 | }
|
---|
1015 | ASMNopPause();
|
---|
1016 | }
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 | RTSpinlockRelease(pTimer->hSpinlock);
|
---|
1020 |
|
---|
1021 | /*
|
---|
1022 | * Do the actual stopping. Fortunately, this doesn't require any IPIs.
|
---|
1023 | * Unfortunately it cannot be done synchronously.
|
---|
1024 | */
|
---|
1025 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
1026 | if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) == RTTIMERLNXSTATE_STOPPING)
|
---|
1027 | rtTimerLnxStopSubTimer(&pTimer->aSubTimers[iCpu], pTimer->fHighRes);
|
---|
1028 |
|
---|
1029 | return fActiveCallbacks;
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 |
|
---|
1033 | /**
|
---|
1034 | * Per-cpu callback function (RTMpOnSpecific) used by rtTimerLinuxMpEvent()
|
---|
1035 | * to start a sub-timer on a cpu that just have come online.
|
---|
1036 | *
|
---|
1037 | * @param idCpu The current CPU.
|
---|
1038 | * @param pvUser1 Pointer to the timer.
|
---|
1039 | * @param pvUser2 Pointer to the argument structure.
|
---|
1040 | */
|
---|
1041 | static DECLCALLBACK(void) rtTimerLinuxMpStartOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
1042 | {
|
---|
1043 | PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
|
---|
1044 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
1045 | RTSPINLOCK hSpinlock;
|
---|
1046 | Assert(idCpu < pTimer->cCpus);
|
---|
1047 |
|
---|
1048 | /*
|
---|
1049 | * We have to be kind of careful here as we might be racing RTTimerStop
|
---|
1050 | * (and/or RTTimerDestroy, thus the paranoia.
|
---|
1051 | */
|
---|
1052 | hSpinlock = pTimer->hSpinlock;
|
---|
1053 | if ( hSpinlock != NIL_RTSPINLOCK
|
---|
1054 | && pTimer->u32Magic == RTTIMER_MAGIC)
|
---|
1055 | {
|
---|
1056 | RTSpinlockAcquire(hSpinlock);
|
---|
1057 |
|
---|
1058 | if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
|
---|
1059 | && pTimer->u32Magic == RTTIMER_MAGIC)
|
---|
1060 | {
|
---|
1061 | /* We're sane and the timer is not suspended yet. */
|
---|
1062 | PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
|
---|
1063 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
|
---|
1064 | rtTimerLnxStartSubTimer(pSubTimer, pArgs->u64Now, pArgs->u64First, true /*fPinned*/, pTimer->fHighRes);
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 | RTSpinlockRelease(hSpinlock);
|
---|
1068 | }
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 |
|
---|
1072 | /**
|
---|
1073 | * MP event notification callback.
|
---|
1074 | *
|
---|
1075 | * @param enmEvent The event.
|
---|
1076 | * @param idCpu The cpu it applies to.
|
---|
1077 | * @param pvUser The timer.
|
---|
1078 | */
|
---|
1079 | static DECLCALLBACK(void) rtTimerLinuxMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
|
---|
1080 | {
|
---|
1081 | PRTTIMER pTimer = (PRTTIMER)pvUser;
|
---|
1082 | PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
|
---|
1083 | RTSPINLOCK hSpinlock;
|
---|
1084 |
|
---|
1085 | Assert(idCpu < pTimer->cCpus);
|
---|
1086 |
|
---|
1087 | /*
|
---|
1088 | * Some initial paranoia.
|
---|
1089 | */
|
---|
1090 | if (pTimer->u32Magic != RTTIMER_MAGIC)
|
---|
1091 | return;
|
---|
1092 | hSpinlock = pTimer->hSpinlock;
|
---|
1093 | if (hSpinlock == NIL_RTSPINLOCK)
|
---|
1094 | return;
|
---|
1095 |
|
---|
1096 | RTSpinlockAcquire(hSpinlock);
|
---|
1097 |
|
---|
1098 | /* Is it active? */
|
---|
1099 | if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
|
---|
1100 | && pTimer->u32Magic == RTTIMER_MAGIC)
|
---|
1101 | {
|
---|
1102 | switch (enmEvent)
|
---|
1103 | {
|
---|
1104 | /*
|
---|
1105 | * Try do it without leaving the spin lock, but if we have to, retake it
|
---|
1106 | * when we're on the right cpu.
|
---|
1107 | */
|
---|
1108 | case RTMPEVENT_ONLINE:
|
---|
1109 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
|
---|
1110 | {
|
---|
1111 | RTTIMERLINUXSTARTONCPUARGS Args;
|
---|
1112 | Args.u64Now = RTTimeSystemNanoTS();
|
---|
1113 | Args.u64First = 0;
|
---|
1114 |
|
---|
1115 | if (RTMpCpuId() == idCpu)
|
---|
1116 | rtTimerLnxStartSubTimer(pSubTimer, Args.u64Now, Args.u64First, true /*fPinned*/, pTimer->fHighRes);
|
---|
1117 | else
|
---|
1118 | {
|
---|
1119 | rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED); /* we'll recheck it. */
|
---|
1120 | RTSpinlockRelease(hSpinlock);
|
---|
1121 |
|
---|
1122 | RTMpOnSpecific(idCpu, rtTimerLinuxMpStartOnCpu, pTimer, &Args);
|
---|
1123 | return; /* we've left the spinlock */
|
---|
1124 | }
|
---|
1125 | }
|
---|
1126 | break;
|
---|
1127 |
|
---|
1128 | /*
|
---|
1129 | * The CPU is (going) offline, make sure the sub-timer is stopped.
|
---|
1130 | *
|
---|
1131 | * Linux will migrate it to a different CPU, but we don't want this. The
|
---|
1132 | * timer function is checking for this.
|
---|
1133 | */
|
---|
1134 | case RTMPEVENT_OFFLINE:
|
---|
1135 | {
|
---|
1136 | RTTIMERLNXSTATE enmState;
|
---|
1137 | while ( (enmState = rtTimerLnxGetState(&pSubTimer->enmState)) == RTTIMERLNXSTATE_ACTIVE
|
---|
1138 | || enmState == RTTIMERLNXSTATE_CALLBACK
|
---|
1139 | || enmState == RTTIMERLNXSTATE_CB_RESTARTING)
|
---|
1140 | {
|
---|
1141 | if (enmState == RTTIMERLNXSTATE_ACTIVE)
|
---|
1142 | {
|
---|
1143 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STOPPING, RTTIMERLNXSTATE_ACTIVE))
|
---|
1144 | {
|
---|
1145 | RTSpinlockRelease(hSpinlock);
|
---|
1146 |
|
---|
1147 | rtTimerLnxStopSubTimer(pSubTimer, pTimer->fHighRes);
|
---|
1148 | return; /* we've left the spinlock */
|
---|
1149 | }
|
---|
1150 | }
|
---|
1151 | else if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_CB_STOPPING, enmState))
|
---|
1152 | break;
|
---|
1153 |
|
---|
1154 | /* State not stable, try again. */
|
---|
1155 | ASMNopPause();
|
---|
1156 | }
|
---|
1157 | break;
|
---|
1158 | }
|
---|
1159 | }
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | RTSpinlockRelease(hSpinlock);
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 | #endif /* CONFIG_SMP */
|
---|
1166 |
|
---|
1167 |
|
---|
1168 | /**
|
---|
1169 | * Callback function use by RTTimerStart via RTMpOnSpecific to start a timer
|
---|
1170 | * running on a specific CPU.
|
---|
1171 | *
|
---|
1172 | * @param idCpu The current CPU.
|
---|
1173 | * @param pvUser1 Pointer to the timer.
|
---|
1174 | * @param pvUser2 Pointer to the argument structure.
|
---|
1175 | */
|
---|
1176 | static DECLCALLBACK(void) rtTimerLnxStartOnSpecificCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
1177 | {
|
---|
1178 | PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
|
---|
1179 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
1180 | rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], pArgs->u64Now, pArgs->u64First, true /*fPinned*/, pTimer->fHighRes);
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 |
|
---|
1184 | RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
|
---|
1185 | {
|
---|
1186 | RTTIMERLINUXSTARTONCPUARGS Args;
|
---|
1187 | int rc2;
|
---|
1188 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1189 |
|
---|
1190 | /*
|
---|
1191 | * Validate.
|
---|
1192 | */
|
---|
1193 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
1194 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
1195 |
|
---|
1196 | if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
|
---|
1197 | return VERR_TIMER_ACTIVE;
|
---|
1198 | RTTIMERLNX_LOG(("start %p cCpus=%d\n", pTimer, pTimer->cCpus));
|
---|
1199 |
|
---|
1200 | Args.u64First = u64First;
|
---|
1201 | #ifdef CONFIG_SMP
|
---|
1202 | /*
|
---|
1203 | * Omni timer?
|
---|
1204 | */
|
---|
1205 | if (pTimer->fAllCpus)
|
---|
1206 | {
|
---|
1207 | rc2 = rtTimerLnxOmniStart(pTimer, &Args);
|
---|
1208 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1209 | return rc2;
|
---|
1210 | }
|
---|
1211 | #endif
|
---|
1212 |
|
---|
1213 | /*
|
---|
1214 | * Simple timer - Pretty straight forward if it wasn't for restarting.
|
---|
1215 | */
|
---|
1216 | Args.u64Now = RTTimeSystemNanoTS();
|
---|
1217 | ASMAtomicWriteU64(&pTimer->aSubTimers[0].uNsRestartAt, Args.u64Now + u64First);
|
---|
1218 | for (;;)
|
---|
1219 | {
|
---|
1220 | RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pTimer->aSubTimers[0].enmState);
|
---|
1221 | switch (enmState)
|
---|
1222 | {
|
---|
1223 | case RTTIMERLNXSTATE_STOPPED:
|
---|
1224 | if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STARTING, RTTIMERLNXSTATE_STOPPED))
|
---|
1225 | {
|
---|
1226 | ASMAtomicWriteBool(&pTimer->fSuspended, false);
|
---|
1227 | if (!pTimer->fSpecificCpu)
|
---|
1228 | rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], Args.u64Now, Args.u64First,
|
---|
1229 | false /*fPinned*/, pTimer->fHighRes);
|
---|
1230 | else
|
---|
1231 | {
|
---|
1232 | rc2 = RTMpOnSpecific(pTimer->idCpu, rtTimerLnxStartOnSpecificCpu, pTimer, &Args);
|
---|
1233 | if (RT_FAILURE(rc2))
|
---|
1234 | {
|
---|
1235 | /* Suspend it, the cpu id is probably invalid or offline. */
|
---|
1236 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
1237 | rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPED);
|
---|
1238 | return rc2;
|
---|
1239 | }
|
---|
1240 | }
|
---|
1241 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1242 | return VINF_SUCCESS;
|
---|
1243 | }
|
---|
1244 | break;
|
---|
1245 |
|
---|
1246 | case RTTIMERLNXSTATE_CALLBACK:
|
---|
1247 | case RTTIMERLNXSTATE_CB_STOPPING:
|
---|
1248 | if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_CB_RESTARTING, enmState))
|
---|
1249 | {
|
---|
1250 | ASMAtomicWriteBool(&pTimer->fSuspended, false);
|
---|
1251 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1252 | return VINF_SUCCESS;
|
---|
1253 | }
|
---|
1254 | break;
|
---|
1255 |
|
---|
1256 | default:
|
---|
1257 | AssertMsgFailed(("%d\n", enmState));
|
---|
1258 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1259 | return VERR_INTERNAL_ERROR_4;
|
---|
1260 | }
|
---|
1261 | ASMNopPause();
|
---|
1262 | }
|
---|
1263 | }
|
---|
1264 | RT_EXPORT_SYMBOL(RTTimerStart);
|
---|
1265 |
|
---|
1266 |
|
---|
1267 | /**
|
---|
1268 | * Common worker for RTTimerStop and RTTimerDestroy.
|
---|
1269 | *
|
---|
1270 | * @returns true if there was any active callbacks, false if not.
|
---|
1271 | * @param pTimer The timer to stop.
|
---|
1272 | * @param fForDestroy Whether it's RTTimerDestroy calling or not.
|
---|
1273 | */
|
---|
1274 | static bool rtTimerLnxStop(PRTTIMER pTimer, bool fForDestroy)
|
---|
1275 | {
|
---|
1276 | RTTIMERLNX_LOG(("lnxstop %p %d\n", pTimer, fForDestroy));
|
---|
1277 | #ifdef CONFIG_SMP
|
---|
1278 | /*
|
---|
1279 | * Omni timer?
|
---|
1280 | */
|
---|
1281 | if (pTimer->fAllCpus)
|
---|
1282 | return rtTimerLnxOmniStop(pTimer, fForDestroy);
|
---|
1283 | #endif
|
---|
1284 |
|
---|
1285 | /*
|
---|
1286 | * Simple timer.
|
---|
1287 | */
|
---|
1288 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
1289 | for (;;)
|
---|
1290 | {
|
---|
1291 | RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pTimer->aSubTimers[0].enmState);
|
---|
1292 | switch (enmState)
|
---|
1293 | {
|
---|
1294 | case RTTIMERLNXSTATE_ACTIVE:
|
---|
1295 | if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPING, RTTIMERLNXSTATE_ACTIVE))
|
---|
1296 | {
|
---|
1297 | rtTimerLnxStopSubTimer(&pTimer->aSubTimers[0], pTimer->fHighRes);
|
---|
1298 | return false;
|
---|
1299 | }
|
---|
1300 | break;
|
---|
1301 |
|
---|
1302 | case RTTIMERLNXSTATE_CALLBACK:
|
---|
1303 | case RTTIMERLNXSTATE_CB_RESTARTING:
|
---|
1304 | case RTTIMERLNXSTATE_CB_STOPPING:
|
---|
1305 | Assert(enmState != RTTIMERLNXSTATE_CB_STOPPING || fForDestroy);
|
---|
1306 | if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState,
|
---|
1307 | !fForDestroy ? RTTIMERLNXSTATE_CB_STOPPING : RTTIMERLNXSTATE_CB_DESTROYING,
|
---|
1308 | enmState))
|
---|
1309 | return true;
|
---|
1310 | break;
|
---|
1311 |
|
---|
1312 | case RTTIMERLNXSTATE_STOPPED:
|
---|
1313 | return VINF_SUCCESS;
|
---|
1314 |
|
---|
1315 | case RTTIMERLNXSTATE_CB_DESTROYING:
|
---|
1316 | AssertMsgFailed(("enmState=%d pTimer=%p\n", enmState, pTimer));
|
---|
1317 | return true;
|
---|
1318 |
|
---|
1319 | default:
|
---|
1320 | case RTTIMERLNXSTATE_STARTING:
|
---|
1321 | case RTTIMERLNXSTATE_MP_STARTING:
|
---|
1322 | case RTTIMERLNXSTATE_STOPPING:
|
---|
1323 | case RTTIMERLNXSTATE_MP_STOPPING:
|
---|
1324 | AssertMsgFailed(("enmState=%d pTimer=%p\n", enmState, pTimer));
|
---|
1325 | return false;
|
---|
1326 | }
|
---|
1327 |
|
---|
1328 | /* State not stable, try again. */
|
---|
1329 | ASMNopPause();
|
---|
1330 | }
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 |
|
---|
1334 | RTDECL(int) RTTimerStop(PRTTIMER pTimer)
|
---|
1335 | {
|
---|
1336 | /*
|
---|
1337 | * Validate.
|
---|
1338 | */
|
---|
1339 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1340 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
1341 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
1342 | RTTIMERLNX_LOG(("stop %p\n", pTimer));
|
---|
1343 |
|
---|
1344 | if (ASMAtomicUoReadBool(&pTimer->fSuspended))
|
---|
1345 | return VERR_TIMER_SUSPENDED;
|
---|
1346 |
|
---|
1347 | rtTimerLnxStop(pTimer, false /*fForDestroy*/);
|
---|
1348 |
|
---|
1349 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1350 | return VINF_SUCCESS;
|
---|
1351 | }
|
---|
1352 | RT_EXPORT_SYMBOL(RTTimerStop);
|
---|
1353 |
|
---|
1354 |
|
---|
1355 | RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
|
---|
1356 | {
|
---|
1357 | unsigned long cJiffies;
|
---|
1358 | unsigned long flFlags;
|
---|
1359 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1360 |
|
---|
1361 | /*
|
---|
1362 | * Validate.
|
---|
1363 | */
|
---|
1364 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
1365 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
1366 | AssertReturn(u64NanoInterval, VERR_INVALID_PARAMETER);
|
---|
1367 | AssertReturn(u64NanoInterval < UINT64_MAX / 8, VERR_INVALID_PARAMETER);
|
---|
1368 | AssertReturn(pTimer->u64NanoInterval, VERR_INVALID_STATE);
|
---|
1369 | RTTIMERLNX_LOG(("change %p %llu\n", pTimer, u64NanoInterval));
|
---|
1370 |
|
---|
1371 | #ifdef RTTIMER_LINUX_WITH_HRTIMER
|
---|
1372 | /*
|
---|
1373 | * For the high resolution timers it is easy since we don't care so much
|
---|
1374 | * about when it is applied to the sub-timers.
|
---|
1375 | */
|
---|
1376 | if (pTimer->fHighRes)
|
---|
1377 | {
|
---|
1378 | ASMAtomicWriteU64(&pTimer->u64NanoInterval, u64NanoInterval);
|
---|
1379 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1380 | return VINF_SUCCESS;
|
---|
1381 | }
|
---|
1382 | #endif
|
---|
1383 |
|
---|
1384 | /*
|
---|
1385 | * Standard timers have a bit more complicated way of calculating
|
---|
1386 | * their interval and such. So, forget omni timers for now.
|
---|
1387 | */
|
---|
1388 | if (pTimer->cCpus > 1)
|
---|
1389 | return VERR_NOT_SUPPORTED;
|
---|
1390 |
|
---|
1391 | cJiffies = u64NanoInterval / RTTimerGetSystemGranularity();
|
---|
1392 | if (cJiffies * RTTimerGetSystemGranularity() != u64NanoInterval)
|
---|
1393 | cJiffies = 0;
|
---|
1394 |
|
---|
1395 | spin_lock_irqsave(&pTimer->ChgIntLock, flFlags);
|
---|
1396 | pTimer->aSubTimers[0].u.Std.fFirstAfterChg = true;
|
---|
1397 | pTimer->cJiffies = cJiffies;
|
---|
1398 | ASMAtomicWriteU64(&pTimer->u64NanoInterval, u64NanoInterval);
|
---|
1399 | spin_unlock_irqrestore(&pTimer->ChgIntLock, flFlags);
|
---|
1400 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1401 | return VINF_SUCCESS;
|
---|
1402 | }
|
---|
1403 | RT_EXPORT_SYMBOL(RTTimerChangeInterval);
|
---|
1404 |
|
---|
1405 |
|
---|
1406 | RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
|
---|
1407 | {
|
---|
1408 | bool fCanDestroy;
|
---|
1409 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1410 |
|
---|
1411 | /*
|
---|
1412 | * Validate. It's ok to pass NULL pointer.
|
---|
1413 | */
|
---|
1414 | if (pTimer == /*NIL_RTTIMER*/ NULL)
|
---|
1415 | return VINF_SUCCESS;
|
---|
1416 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
1417 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
1418 | RTTIMERLNX_LOG(("destroy %p\n", pTimer));
|
---|
1419 | /** @todo We should invalidate the magic here! */
|
---|
1420 |
|
---|
1421 | /*
|
---|
1422 | * Stop the timer if it's still active, then destroy it if we can.
|
---|
1423 | */
|
---|
1424 | if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
|
---|
1425 | fCanDestroy = rtTimerLnxStop(pTimer, true /*fForDestroy*/);
|
---|
1426 | else
|
---|
1427 | {
|
---|
1428 | uint32_t iCpu = pTimer->cCpus;
|
---|
1429 | if (pTimer->cCpus > 1)
|
---|
1430 | RTSpinlockAcquire(pTimer->hSpinlock);
|
---|
1431 |
|
---|
1432 | fCanDestroy = true;
|
---|
1433 | while (iCpu-- > 0)
|
---|
1434 | {
|
---|
1435 | for (;;)
|
---|
1436 | {
|
---|
1437 | RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState);
|
---|
1438 | switch (enmState)
|
---|
1439 | {
|
---|
1440 | case RTTIMERLNXSTATE_CALLBACK:
|
---|
1441 | case RTTIMERLNXSTATE_CB_RESTARTING:
|
---|
1442 | case RTTIMERLNXSTATE_CB_STOPPING:
|
---|
1443 | if (!rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_CB_DESTROYING, enmState))
|
---|
1444 | continue;
|
---|
1445 | fCanDestroy = false;
|
---|
1446 | break;
|
---|
1447 |
|
---|
1448 | case RTTIMERLNXSTATE_CB_DESTROYING:
|
---|
1449 | AssertMsgFailed(("%d\n", enmState));
|
---|
1450 | fCanDestroy = false;
|
---|
1451 | break;
|
---|
1452 | default:
|
---|
1453 | break;
|
---|
1454 | }
|
---|
1455 | break;
|
---|
1456 | }
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 | if (pTimer->cCpus > 1)
|
---|
1460 | RTSpinlockRelease(pTimer->hSpinlock);
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 | if (fCanDestroy)
|
---|
1464 | {
|
---|
1465 | /* For paranoid reasons, defer actually destroying the semaphore when
|
---|
1466 | in atomic or interrupt context. */
|
---|
1467 | #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 32)
|
---|
1468 | if (in_atomic() || in_interrupt())
|
---|
1469 | #else
|
---|
1470 | if (in_interrupt())
|
---|
1471 | #endif
|
---|
1472 | rtR0LnxWorkqueuePush(&pTimer->DtorWorkqueueItem, rtTimerLnxDestroyDeferred);
|
---|
1473 | else
|
---|
1474 | rtTimerLnxDestroyIt(pTimer);
|
---|
1475 | }
|
---|
1476 |
|
---|
1477 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1478 | return VINF_SUCCESS;
|
---|
1479 | }
|
---|
1480 | RT_EXPORT_SYMBOL(RTTimerDestroy);
|
---|
1481 |
|
---|
1482 |
|
---|
1483 | RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
|
---|
1484 | {
|
---|
1485 | PRTTIMER pTimer;
|
---|
1486 | RTCPUID iCpu;
|
---|
1487 | unsigned cCpus;
|
---|
1488 | int rc;
|
---|
1489 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1490 |
|
---|
1491 | rtR0LnxWorkqueueFlush(); /* for 2.4 */
|
---|
1492 | *ppTimer = NULL;
|
---|
1493 |
|
---|
1494 | /*
|
---|
1495 | * Validate flags.
|
---|
1496 | */
|
---|
1497 | if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
|
---|
1498 | {
|
---|
1499 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1500 | return VERR_INVALID_PARAMETER;
|
---|
1501 | }
|
---|
1502 | if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
|
---|
1503 | && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
|
---|
1504 | && !RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)))
|
---|
1505 | {
|
---|
1506 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1507 | return VERR_CPU_NOT_FOUND;
|
---|
1508 | }
|
---|
1509 |
|
---|
1510 | /*
|
---|
1511 | * Allocate the timer handler.
|
---|
1512 | */
|
---|
1513 | cCpus = 1;
|
---|
1514 | #ifdef CONFIG_SMP
|
---|
1515 | if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
|
---|
1516 | {
|
---|
1517 | cCpus = RTMpGetMaxCpuId() + 1;
|
---|
1518 | Assert(cCpus <= RTCPUSET_MAX_CPUS); /* On linux we have a 1:1 relationship between cpuid and set index. */
|
---|
1519 | AssertReturnStmt(u64NanoInterval, IPRT_LINUX_RESTORE_EFL_AC(), VERR_NOT_IMPLEMENTED); /* We don't implement single shot on all cpus, sorry. */
|
---|
1520 | }
|
---|
1521 | #endif
|
---|
1522 |
|
---|
1523 | rc = RTMemAllocEx(RT_OFFSETOF(RTTIMER, aSubTimers[cCpus]), 0,
|
---|
1524 | RTMEMALLOCEX_FLAGS_ZEROED | RTMEMALLOCEX_FLAGS_ANY_CTX_FREE, (void **)&pTimer);
|
---|
1525 | if (RT_FAILURE(rc))
|
---|
1526 | {
|
---|
1527 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1528 | return rc;
|
---|
1529 | }
|
---|
1530 |
|
---|
1531 | /*
|
---|
1532 | * Initialize it.
|
---|
1533 | */
|
---|
1534 | pTimer->u32Magic = RTTIMER_MAGIC;
|
---|
1535 | pTimer->hSpinlock = NIL_RTSPINLOCK;
|
---|
1536 | pTimer->fSuspended = true;
|
---|
1537 | pTimer->fHighRes = !!(fFlags & RTTIMER_FLAGS_HIGH_RES);
|
---|
1538 | #ifdef CONFIG_SMP
|
---|
1539 | pTimer->fSpecificCpu = (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL;
|
---|
1540 | pTimer->fAllCpus = (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL;
|
---|
1541 | pTimer->idCpu = pTimer->fSpecificCpu
|
---|
1542 | ? RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)
|
---|
1543 | : NIL_RTCPUID;
|
---|
1544 | #else
|
---|
1545 | pTimer->fSpecificCpu = !!(fFlags & RTTIMER_FLAGS_CPU_SPECIFIC);
|
---|
1546 | pTimer->idCpu = RTMpCpuId();
|
---|
1547 | #endif
|
---|
1548 | pTimer->cCpus = cCpus;
|
---|
1549 | pTimer->pfnTimer = pfnTimer;
|
---|
1550 | pTimer->pvUser = pvUser;
|
---|
1551 | pTimer->u64NanoInterval = u64NanoInterval;
|
---|
1552 | pTimer->cJiffies = u64NanoInterval / RTTimerGetSystemGranularity();
|
---|
1553 | if (pTimer->cJiffies * RTTimerGetSystemGranularity() != u64NanoInterval)
|
---|
1554 | pTimer->cJiffies = 0;
|
---|
1555 | spin_lock_init(&pTimer->ChgIntLock);
|
---|
1556 |
|
---|
1557 | for (iCpu = 0; iCpu < cCpus; iCpu++)
|
---|
1558 | {
|
---|
1559 | #ifdef RTTIMER_LINUX_WITH_HRTIMER
|
---|
1560 | if (pTimer->fHighRes)
|
---|
1561 | {
|
---|
1562 | hrtimer_init(&pTimer->aSubTimers[iCpu].u.Hr.LnxTimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
---|
1563 | pTimer->aSubTimers[iCpu].u.Hr.LnxTimer.function = rtTimerLinuxHrCallback;
|
---|
1564 | }
|
---|
1565 | else
|
---|
1566 | #endif
|
---|
1567 | {
|
---|
1568 | init_timer(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer);
|
---|
1569 | pTimer->aSubTimers[iCpu].u.Std.LnxTimer.data = (unsigned long)&pTimer->aSubTimers[iCpu];
|
---|
1570 | pTimer->aSubTimers[iCpu].u.Std.LnxTimer.function = rtTimerLinuxStdCallback;
|
---|
1571 | pTimer->aSubTimers[iCpu].u.Std.LnxTimer.expires = jiffies;
|
---|
1572 | pTimer->aSubTimers[iCpu].u.Std.u64NextTS = 0;
|
---|
1573 | }
|
---|
1574 | pTimer->aSubTimers[iCpu].iTick = 0;
|
---|
1575 | pTimer->aSubTimers[iCpu].pParent = pTimer;
|
---|
1576 | pTimer->aSubTimers[iCpu].enmState = RTTIMERLNXSTATE_STOPPED;
|
---|
1577 | }
|
---|
1578 |
|
---|
1579 | #ifdef CONFIG_SMP
|
---|
1580 | /*
|
---|
1581 | * If this is running on ALL cpus, we'll have to register a callback
|
---|
1582 | * for MP events (so timers can be started/stopped on cpus going
|
---|
1583 | * online/offline). We also create the spinlock for synchronizing
|
---|
1584 | * stop/start/mp-event.
|
---|
1585 | */
|
---|
1586 | if (cCpus > 1)
|
---|
1587 | {
|
---|
1588 | int rc = RTSpinlockCreate(&pTimer->hSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "RTTimerLnx");
|
---|
1589 | if (RT_SUCCESS(rc))
|
---|
1590 | rc = RTMpNotificationRegister(rtTimerLinuxMpEvent, pTimer);
|
---|
1591 | else
|
---|
1592 | pTimer->hSpinlock = NIL_RTSPINLOCK;
|
---|
1593 | if (RT_FAILURE(rc))
|
---|
1594 | {
|
---|
1595 | RTTimerDestroy(pTimer);
|
---|
1596 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1597 | return rc;
|
---|
1598 | }
|
---|
1599 | }
|
---|
1600 | #endif /* CONFIG_SMP */
|
---|
1601 |
|
---|
1602 | RTTIMERLNX_LOG(("create %p hires=%d fFlags=%#x cCpus=%u\n", pTimer, pTimer->fHighRes, fFlags, cCpus));
|
---|
1603 | *ppTimer = pTimer;
|
---|
1604 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1605 | return VINF_SUCCESS;
|
---|
1606 | }
|
---|
1607 | RT_EXPORT_SYMBOL(RTTimerCreateEx);
|
---|
1608 |
|
---|
1609 |
|
---|
1610 | RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
|
---|
1611 | {
|
---|
1612 | #if 0 /** @todo Not sure if this is what we want or not... Add new API for
|
---|
1613 | * querying the resolution of the high res timers? */
|
---|
1614 | struct timespec Ts;
|
---|
1615 | int rc;
|
---|
1616 | IPRT_LINUX_SAVE_EFL_AC();
|
---|
1617 | rc = hrtimer_get_res(CLOCK_MONOTONIC, &Ts);
|
---|
1618 | IPRT_LINUX_RESTORE_EFL_AC();
|
---|
1619 | if (!rc)
|
---|
1620 | {
|
---|
1621 | Assert(!Ts.tv_sec);
|
---|
1622 | return Ts.tv_nsec;
|
---|
1623 | }
|
---|
1624 | #endif
|
---|
1625 | return RT_NS_1SEC / HZ; /* ns */
|
---|
1626 | }
|
---|
1627 | RT_EXPORT_SYMBOL(RTTimerGetSystemGranularity);
|
---|
1628 |
|
---|
1629 |
|
---|
1630 | RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
|
---|
1631 | {
|
---|
1632 | return VERR_NOT_SUPPORTED;
|
---|
1633 | }
|
---|
1634 | RT_EXPORT_SYMBOL(RTTimerRequestSystemGranularity);
|
---|
1635 |
|
---|
1636 |
|
---|
1637 | RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
|
---|
1638 | {
|
---|
1639 | return VERR_NOT_SUPPORTED;
|
---|
1640 | }
|
---|
1641 | RT_EXPORT_SYMBOL(RTTimerReleaseSystemGranularity);
|
---|
1642 |
|
---|
1643 |
|
---|
1644 | RTDECL(bool) RTTimerCanDoHighResolution(void)
|
---|
1645 | {
|
---|
1646 | #ifdef RTTIMER_LINUX_WITH_HRTIMER
|
---|
1647 | return true;
|
---|
1648 | #else
|
---|
1649 | return false;
|
---|
1650 | #endif
|
---|
1651 | }
|
---|
1652 | RT_EXPORT_SYMBOL(RTTimerCanDoHighResolution);
|
---|
1653 |
|
---|