1 | /* $Id: timer-r0drv-linux.c 9372 2008-06-04 01:10:06Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Timers, Ring-0 Driver, Linux.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2008 Sun Microsystems, Inc.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | *
|
---|
26 | * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
|
---|
27 | * Clara, CA 95054 USA or visit http://www.sun.com if you need
|
---|
28 | * additional information or have any questions.
|
---|
29 | */
|
---|
30 |
|
---|
31 | /*******************************************************************************
|
---|
32 | * Header Files *
|
---|
33 | *******************************************************************************/
|
---|
34 | #include "the-linux-kernel.h"
|
---|
35 |
|
---|
36 | #include <iprt/timer.h>
|
---|
37 | #include <iprt/time.h>
|
---|
38 | #include <iprt/mp.h>
|
---|
39 | #include <iprt/cpuset.h>
|
---|
40 | #include <iprt/spinlock.h>
|
---|
41 | #include <iprt/err.h>
|
---|
42 | #include <iprt/asm.h>
|
---|
43 | #include <iprt/assert.h>
|
---|
44 | #include <iprt/alloc.h>
|
---|
45 |
|
---|
46 | #include "internal/magics.h"
|
---|
47 |
|
---|
48 | #if !defined(RT_USE_LINUX_HRTIMER) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23) /* ?? */
|
---|
49 | # define RT_USE_LINUX_HRTIMER
|
---|
50 | #endif
|
---|
51 |
|
---|
52 | /* This check must match the ktime usage in rtTimeGetSystemNanoTS() / time-r0drv-linux.c. */
|
---|
53 | #if defined(RT_USE_LINUX_HRTIMER) \
|
---|
54 | && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 16)
|
---|
55 | # error "RT_USE_LINUX_HRTIMER requires 2.6.16 or later, sorry."
|
---|
56 | #endif
|
---|
57 |
|
---|
58 |
|
---|
59 | /*******************************************************************************
|
---|
60 | * Structures and Typedefs *
|
---|
61 | *******************************************************************************/
|
---|
62 | /**
|
---|
63 | * Timer state machine.
|
---|
64 | *
|
---|
65 | * This is used to try handle the issues with MP events and
|
---|
66 | * timers that runs on all CPUs. It's relatively nasty :-/
|
---|
67 | */
|
---|
68 | typedef enum RTTIMERLNXSTATE
|
---|
69 | {
|
---|
70 | /** Stopped. */
|
---|
71 | RTTIMERLNXSTATE_STOPPED = 0,
|
---|
72 | /** Transient state; next ACTIVE. */
|
---|
73 | RTTIMERLNXSTATE_STARTING,
|
---|
74 | /** Transient state; next ACTIVE. (not really necessary) */
|
---|
75 | RTTIMERLNXSTATE_MP_STARTING,
|
---|
76 | /** Active. */
|
---|
77 | RTTIMERLNXSTATE_ACTIVE,
|
---|
78 | /** Transient state; next STOPPED. */
|
---|
79 | RTTIMERLNXSTATE_STOPPING,
|
---|
80 | /** Transient state; next STOPPED. */
|
---|
81 | RTTIMERLNXSTATE_MP_STOPPING,
|
---|
82 | /** The usual 32-bit hack. */
|
---|
83 | RTTIMERLNXSTATE_32BIT_HACK = 0x7fffffff
|
---|
84 | } RTTIMERLNXSTATE;
|
---|
85 |
|
---|
86 |
|
---|
87 | /**
|
---|
88 | * A Linux sub-timer.
|
---|
89 | */
|
---|
90 | typedef struct RTTIMERLNXSUBTIMER
|
---|
91 | {
|
---|
92 | /** The linux timer structure. */
|
---|
93 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
94 | struct hrtimer LnxTimer;
|
---|
95 | #else
|
---|
96 | struct timer_list LnxTimer;
|
---|
97 | #endif
|
---|
98 | /** The start of the current run (ns).
|
---|
99 | * This is used to calculate when the timer ought to fire the next time. */
|
---|
100 | uint64_t u64StartTS;
|
---|
101 | /** The start of the current run (ns).
|
---|
102 | * This is used to calculate when the timer ought to fire the next time. */
|
---|
103 | uint64_t u64NextTS;
|
---|
104 | /** The current tick number (since u64StartTS). */
|
---|
105 | uint64_t iTick;
|
---|
106 | /** Pointer to the parent timer. */
|
---|
107 | PRTTIMER pParent;
|
---|
108 | /** The current sub-timer state. */
|
---|
109 | RTTIMERLNXSTATE volatile enmState;
|
---|
110 | } RTTIMERLNXSUBTIMER;
|
---|
111 | /** Pointer to a linux sub-timer. */
|
---|
112 | typedef RTTIMERLNXSUBTIMER *PRTTIMERLNXSUBTIMER;
|
---|
113 | AssertCompileMemberOffset(RTTIMERLNXSUBTIMER, LnxTimer, 0);
|
---|
114 |
|
---|
115 |
|
---|
116 | /**
|
---|
117 | * The internal representation of an Linux timer handle.
|
---|
118 | */
|
---|
119 | typedef struct RTTIMER
|
---|
120 | {
|
---|
121 | /** Magic.
|
---|
122 | * This is RTTIMER_MAGIC, but changes to something else before the timer
|
---|
123 | * is destroyed to indicate clearly that thread should exit. */
|
---|
124 | uint32_t volatile u32Magic;
|
---|
125 | /** Spinlock synchronizing the fSuspended and MP event handling.
|
---|
126 | * This is NIL_RTSPINLOCK if cCpus == 1. */
|
---|
127 | RTSPINLOCK hSpinlock;
|
---|
128 | /** Flag indicating the the timer is suspended. */
|
---|
129 | bool volatile fSuspended;
|
---|
130 | /** Whether the timer must run on one specific CPU or not. */
|
---|
131 | bool fSpecificCpu;
|
---|
132 | #ifdef CONFIG_SMP
|
---|
133 | /** Whether the timer must run on all CPUs or not. */
|
---|
134 | bool fAllCpus;
|
---|
135 | #endif /* else: All -> specific on non-SMP kernels */
|
---|
136 | /** The CPU it must run on if fSpecificCpu is set. */
|
---|
137 | RTCPUID idCpu;
|
---|
138 | /** The number of CPUs this timer should run on. */
|
---|
139 | RTCPUID cCpus;
|
---|
140 | /** Callback. */
|
---|
141 | PFNRTTIMER pfnTimer;
|
---|
142 | /** User argument. */
|
---|
143 | void *pvUser;
|
---|
144 | /** The timer interval. 0 if one-shot. */
|
---|
145 | uint64_t u64NanoInterval;
|
---|
146 | /** Sub-timers.
|
---|
147 | * Normally there is just one, but for RTTIMER_FLAGS_CPU_ALL this will contain
|
---|
148 | * an entry for all possible cpus. In that case the index will be the same as
|
---|
149 | * for the RTCpuSet. */
|
---|
150 | RTTIMERLNXSUBTIMER aSubTimers[1];
|
---|
151 | } RTTIMER;
|
---|
152 |
|
---|
153 |
|
---|
154 | /**
|
---|
155 | * A rtTimerLinuxStartOnCpu and rtTimerLinuxStartOnCpu argument package.
|
---|
156 | */
|
---|
157 | typedef struct RTTIMERLINUXSTARTONCPUARGS
|
---|
158 | {
|
---|
159 | /** The current time (RTTimeNanoTS). */
|
---|
160 | uint64_t u64Now;
|
---|
161 | /** When to start firing (delta). */
|
---|
162 | uint64_t u64First;
|
---|
163 | } RTTIMERLINUXSTARTONCPUARGS;
|
---|
164 | /** Pointer to a rtTimerLinuxStartOnCpu argument package. */
|
---|
165 | typedef RTTIMERLINUXSTARTONCPUARGS *PRTTIMERLINUXSTARTONCPUARGS;
|
---|
166 |
|
---|
167 |
|
---|
168 | /**
|
---|
169 | * Sets the state.
|
---|
170 | */
|
---|
171 | DECLINLINE(void) rtTimerLnxSetState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState)
|
---|
172 | {
|
---|
173 | ASMAtomicWriteU32((uint32_t volatile *)penmState, enmNewState);
|
---|
174 | }
|
---|
175 |
|
---|
176 |
|
---|
177 | /**
|
---|
178 | * Sets the state if it has a certain value.
|
---|
179 | */
|
---|
180 | DECLINLINE(bool) rtTimerLnxCmpXchgState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState, RTTIMERLNXSTATE enmCurState)
|
---|
181 | {
|
---|
182 | return ASMAtomicCmpXchgU32((uint32_t volatile *)penmState, enmNewState, enmCurState);
|
---|
183 | }
|
---|
184 |
|
---|
185 |
|
---|
186 | /**
|
---|
187 | * Gets the state.
|
---|
188 | */
|
---|
189 | DECLINLINE(RTTIMERLNXSTATE) rtTimerLnxGetState(RTTIMERLNXSTATE volatile *penmState)
|
---|
190 | {
|
---|
191 | return (RTTIMERLNXSTATE)ASMAtomicUoReadU32((uint32_t volatile *)penmState);
|
---|
192 | }
|
---|
193 |
|
---|
194 |
|
---|
195 | /**
|
---|
196 | * Starts a sub-timer (RTTimerStart).
|
---|
197 | *
|
---|
198 | * @param pSubTimer The sub-timer to start.
|
---|
199 | * @param u64Now The current timestamp (RTTimeNanoTS()).
|
---|
200 | * @param u64First The interval from u64Now to the first time the timer should fire.
|
---|
201 | */
|
---|
202 | static void rtTimerLnxStartSubTimer(PRTTIMERLNXSUBTIMER pSubTimer, uint64_t u64Now, uint64_t u64First)
|
---|
203 | {
|
---|
204 | /*
|
---|
205 | * Calc when it should start firing.
|
---|
206 | */
|
---|
207 | uint64_t u64NextTS = u64Now + u64First;
|
---|
208 | pSubTimer->u64StartTS = u64Now;
|
---|
209 | pSubTimer->u64NextTS = u64NextTS;
|
---|
210 |
|
---|
211 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
212 | {
|
---|
213 | /* ASSUMES RTTimeNanoTS() is implemented using ktime_get_ts(). */
|
---|
214 | struct timespec Ts;
|
---|
215 | ktime_t Kt;
|
---|
216 | Ts.tv_sec = u64NextTS / 1000000000;
|
---|
217 | Ts.tv_nsec = u64NextTS % 1000000000;
|
---|
218 | Kt = timespec_to_ktime(Ts);
|
---|
219 | hrtimer_start(&pSubTimer->LnxTimer, Kt, HRTIMER_MODE_ABS);
|
---|
220 | }
|
---|
221 | #else
|
---|
222 | {
|
---|
223 | uint64_t cJiffies = !u64First ? 0 : u64First / TICK_NSEC;
|
---|
224 | if (cJiffies > MAX_JIFFY_OFFSET)
|
---|
225 | cJiffies = MAX_JIFFY_OFFSET;
|
---|
226 | mod_timer(&pSubTimer->LnxTimer, jiffies + cJiffies);
|
---|
227 | }
|
---|
228 | #endif
|
---|
229 |
|
---|
230 | rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE);
|
---|
231 | }
|
---|
232 |
|
---|
233 |
|
---|
234 | /**
|
---|
235 | * Stops a sub-timer (RTTimerStart and rtTimerLinuxMpEvent()).
|
---|
236 | *
|
---|
237 | * @param pSubTimer The sub-timer.
|
---|
238 | */
|
---|
239 | static void rtTimerLnxStopSubTimer(PRTTIMERLNXSUBTIMER pSubTimer)
|
---|
240 | {
|
---|
241 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
242 | hrtimer_cancel(&pSubTimer->LnxTimer);
|
---|
243 | #else
|
---|
244 | if (timer_pending(&pSubTimer->LnxTimer))
|
---|
245 | del_timer_sync(&pSubTimer->LnxTimer);
|
---|
246 | #endif
|
---|
247 |
|
---|
248 | rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED);
|
---|
249 | }
|
---|
250 |
|
---|
251 |
|
---|
252 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
253 | /**
|
---|
254 | * Timer callback function.
|
---|
255 | * @returns HRTIMER_NORESTART or HRTIMER_RESTART depending on whether it's a one-shot or interval timer.
|
---|
256 | * @param pHrTimer Pointer to the sub-timer structure.
|
---|
257 | */
|
---|
258 | static enum hrtimer_restart rtTimerLinuxCallback(struct hrtimer *pHrTimer)
|
---|
259 | #else
|
---|
260 | /**
|
---|
261 | * Timer callback function.
|
---|
262 | * @param ulUser Address of the sub-timer structure.
|
---|
263 | */
|
---|
264 | static void rtTimerLinuxCallback(unsigned long ulUser)
|
---|
265 | #endif
|
---|
266 | {
|
---|
267 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
268 | enum hrtimer_restart rc;
|
---|
269 | PRTTIMERLNXSUBTIMER pSubTimer = (PRTTIMERLNXSUBTIMER)pHrTimer;
|
---|
270 | #else
|
---|
271 | PRTTIMERLNXSUBTIMER pSubTimer = (PRTTIMERLNXSUBTIMER)ulUser;
|
---|
272 | #endif
|
---|
273 | PRTTIMER pTimer = pSubTimer->pParent;
|
---|
274 |
|
---|
275 | /*
|
---|
276 | * Don't call the handler if the timer has been suspended.
|
---|
277 | * Also, when running on all CPUS, make sure we don't call out twice
|
---|
278 | * on a CPU because of timer migration.
|
---|
279 | *
|
---|
280 | * For the specific cpu case, we're just ignoring timer migration for now... (bad)
|
---|
281 | */
|
---|
282 | if ( pTimer->fSuspended
|
---|
283 | #ifdef CONFIG_SMP
|
---|
284 | || ( pTimer->fAllCpus
|
---|
285 | && (pSubTimer - &pTimer->aSubTimers[0]) != RTMpCpuId())
|
---|
286 | #endif
|
---|
287 | )
|
---|
288 | {
|
---|
289 | rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_ACTIVE);
|
---|
290 | # ifdef RT_USE_LINUX_HRTIMER
|
---|
291 | rc = HRTIMER_NORESTART;
|
---|
292 | # endif
|
---|
293 | }
|
---|
294 | else if (!pTimer->u64NanoInterval)
|
---|
295 | {
|
---|
296 | /*
|
---|
297 | * One shot timer, stop it before dispatching it.
|
---|
298 | */
|
---|
299 | if (pTimer->cCpus == 1)
|
---|
300 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
301 | rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_ACTIVE);
|
---|
302 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
303 | rc = HRTIMER_NORESTART;
|
---|
304 | #else
|
---|
305 | /* detached before we're called, nothing to do for this case. */
|
---|
306 | #endif
|
---|
307 |
|
---|
308 | pTimer->pfnTimer(pTimer, pTimer->pvUser);
|
---|
309 | }
|
---|
310 | else
|
---|
311 | {
|
---|
312 | /*
|
---|
313 | * Interval timer, calculate the next timeout and re-arm it.
|
---|
314 | *
|
---|
315 | * The first time around, we'll re-adjust the u64StartTS to
|
---|
316 | * try prevent some jittering if we were started at a bad time.
|
---|
317 | * This may of course backfire with highres timers...
|
---|
318 | */
|
---|
319 | const uint64_t u64NanoTS = RTTimeNanoTS();
|
---|
320 | #if 0 /* this needs to be tested before it's enabled. */
|
---|
321 | if ( pSubTimer->iTick == 0
|
---|
322 | && pTimer->u64NanoInterval < u64NanoTS)
|
---|
323 | pSubTimer->u64StartTS = pSubTimer->u64FirstTS = u64NanoTS - 1000; /* ugly */
|
---|
324 | #endif
|
---|
325 | pSubTimer->iTick++;
|
---|
326 | pSubTimer->u64NextTS = pSubTimer->u64StartTS
|
---|
327 | + pSubTimer->iTick * pTimer->u64NanoInterval;
|
---|
328 | if (pSubTimer->u64NextTS < u64NanoTS)
|
---|
329 | pSubTimer->u64NextTS = u64NanoTS + RTTimerGetSystemGranularity() / 2;
|
---|
330 |
|
---|
331 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
332 | {
|
---|
333 | /* ASSUMES RTTimeNanoTS() is implemented using ktime_get_ts(). */
|
---|
334 | struct timespec Ts;
|
---|
335 | Ts.tv_sec = pSubTimer->u64NextTS / 1000000000;
|
---|
336 | Ts.tv_nsec = pSubTimer->u64NextTS % 1000000000;
|
---|
337 | pSubTimer->LnxTimer.expires = timespec_to_ktime(Ts);
|
---|
338 | rc = HRTIMER_RESTART;
|
---|
339 | }
|
---|
340 | #else
|
---|
341 | {
|
---|
342 | uint64_t offDelta = pSubTimer->u64NextTS - u64NanoTS;
|
---|
343 | uint64_t cJiffies = offDelta / TICK_NSEC; /* (We end up doing 64-bit div here which ever way we go.) */
|
---|
344 | if (cJiffies > MAX_JIFFY_OFFSET)
|
---|
345 | cJiffies = MAX_JIFFY_OFFSET;
|
---|
346 | else if (cJiffies == 0)
|
---|
347 | cJiffies = 1;
|
---|
348 | mod_timer(&pSubTimer->LnxTimer, jiffies + cJiffies);
|
---|
349 | }
|
---|
350 | #endif
|
---|
351 |
|
---|
352 | /*
|
---|
353 | * Run the timer.
|
---|
354 | */
|
---|
355 | pTimer->pfnTimer(pTimer, pTimer->pvUser);
|
---|
356 | }
|
---|
357 |
|
---|
358 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
359 | return rc;
|
---|
360 | #endif
|
---|
361 | }
|
---|
362 |
|
---|
363 |
|
---|
364 | #ifdef CONFIG_SMP
|
---|
365 |
|
---|
366 | /**
|
---|
367 | * Per-cpu callback function (RTMpOnAll/RTMpOnSpecific).
|
---|
368 | *
|
---|
369 | * @param idCpu The current CPU.
|
---|
370 | * @param pvUser1 Pointer to the timer.
|
---|
371 | * @param pvUser2 Pointer to the argument structure.
|
---|
372 | */
|
---|
373 | static DECLCALLBACK(void) rtTimerLnxStartAllOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
374 | {
|
---|
375 | PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
|
---|
376 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
377 | Assert(idCpu < pTimer->cCpus);
|
---|
378 | rtTimerLnxStartSubTimer(&pTimer->aSubTimers[idCpu], pArgs->u64Now, pArgs->u64First);
|
---|
379 | }
|
---|
380 |
|
---|
381 |
|
---|
382 | /**
|
---|
383 | * Worker for RTTimerStart() that takes care of the ugly bit.s
|
---|
384 | *
|
---|
385 | * @returns RTTimerStart() return value.
|
---|
386 | * @param pTimer The timer.
|
---|
387 | * @param pArgs The argument structure.
|
---|
388 | */
|
---|
389 | static int rtTimerLnxStartAll(PRTTIMER pTimer, PRTTIMERLINUXSTARTONCPUARGS pArgs)
|
---|
390 | {
|
---|
391 | RTSPINLOCKTMP Tmp;
|
---|
392 | RTCPUID iCpu;
|
---|
393 | RTCPUSET OnlineSet;
|
---|
394 | RTCPUSET OnlineSet2;
|
---|
395 | int rc2;
|
---|
396 |
|
---|
397 | /*
|
---|
398 | * Prepare all the sub-timers for the startup and then flag the timer
|
---|
399 | * as a whole as non-suspended, make sure we get them all before
|
---|
400 | * clearing fSuspended as the MP handler will be waiting on this
|
---|
401 | * should something happen while we're looping.
|
---|
402 | */
|
---|
403 | RTSpinlockAcquire(pTimer->hSpinlock, &Tmp);
|
---|
404 |
|
---|
405 | do
|
---|
406 | {
|
---|
407 | RTMpGetOnlineSet(&OnlineSet);
|
---|
408 | for (iCpu = 0; iCpu <= pTimer->cCpus; iCpu++)
|
---|
409 | {
|
---|
410 | Assert(pTimer->aSubTimers[iCpu].enmState != RTTIMERLNXSTATE_MP_STOPPING);
|
---|
411 | rtTimerLnxSetState(&pTimer->aSubTimers[iCpu].enmState,
|
---|
412 | RTCpuSetIsMember(&OnlineSet, iCpu)
|
---|
413 | ? RTTIMERLNXSTATE_STARTING
|
---|
414 | : RTTIMERLNXSTATE_STOPPED);
|
---|
415 | }
|
---|
416 | } while (!RTCpuSetIsEqual(&OnlineSet, RTMpGetOnlineSet(&OnlineSet2)));
|
---|
417 |
|
---|
418 | ASMAtomicWriteBool(&pTimer->fSuspended, false);
|
---|
419 |
|
---|
420 | RTSpinlockRelease(pTimer->hSpinlock, &Tmp);
|
---|
421 |
|
---|
422 | /*
|
---|
423 | * Start them (can't find any exported function that allows me to
|
---|
424 | * do this without the cross calls).
|
---|
425 | */
|
---|
426 | pArgs->u64Now = RTTimeNanoTS();
|
---|
427 | rc2 = RTMpOnAll(rtTimerLnxStartAllOnCpu, pTimer, pArgs);
|
---|
428 | AssertRC(rc2); /* screw this if it fails. */
|
---|
429 |
|
---|
430 | /*
|
---|
431 | * Reset the sub-timers who didn't start up (ALL CPUs case).
|
---|
432 | * CPUs that comes online between the
|
---|
433 | */
|
---|
434 | RTSpinlockAcquire(pTimer->hSpinlock, &Tmp);
|
---|
435 |
|
---|
436 | for (iCpu = 0; iCpu <= pTimer->cCpus; iCpu++)
|
---|
437 | if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_STARTING))
|
---|
438 | {
|
---|
439 | /** @todo very odd case for a rainy day. Cpus that temporarily went offline while
|
---|
440 | * we were between calls needs to nudged as the MP handler will ignore events for
|
---|
441 | * them because of the STARTING state. This is an extremely unlikely case - not that
|
---|
442 | * that means anything in my experience... ;-) */
|
---|
443 | }
|
---|
444 |
|
---|
445 | RTSpinlockRelease(pTimer->hSpinlock, &Tmp);
|
---|
446 |
|
---|
447 | return VINF_SUCCESS;
|
---|
448 | }
|
---|
449 |
|
---|
450 |
|
---|
451 | /**
|
---|
452 | * Worker for RTTimerStop() that takes care of the ugly SMP bits.
|
---|
453 | *
|
---|
454 | * @returns RTTimerStop() return value.
|
---|
455 | * @param pTimer The timer (valid).
|
---|
456 | */
|
---|
457 | static int rtTimerLnxStopAll(PRTTIMER pTimer)
|
---|
458 | {
|
---|
459 | RTCPUID iCpu;
|
---|
460 | RTSPINLOCKTMP Tmp;
|
---|
461 |
|
---|
462 |
|
---|
463 | /*
|
---|
464 | * Mark the timer as suspended and flag all timers as stopping, except
|
---|
465 | * for those being stopped by an MP event.
|
---|
466 | */
|
---|
467 | RTSpinlockAcquire(pTimer->hSpinlock, &Tmp);
|
---|
468 |
|
---|
469 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
470 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
471 | {
|
---|
472 | RTTIMERLNXSTATE enmState;
|
---|
473 | do
|
---|
474 | {
|
---|
475 | enmState = rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState);
|
---|
476 | if ( enmState == RTTIMERLNXSTATE_STOPPED
|
---|
477 | || enmState == RTTIMERLNXSTATE_MP_STOPPING)
|
---|
478 | break;
|
---|
479 | Assert(enmState == RTTIMERLNXSTATE_ACTIVE);
|
---|
480 | } while (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPING, enmState));
|
---|
481 | }
|
---|
482 |
|
---|
483 | RTSpinlockRelease(pTimer->hSpinlock, &Tmp);
|
---|
484 |
|
---|
485 | /*
|
---|
486 | * Do the actual stopping. Fortunately, this doesn't require any IPIs.
|
---|
487 | * Unfortunately it cannot be done synchronously from within the spinlock,
|
---|
488 | * because we might end up in an active waiting for a handler to complete.
|
---|
489 | */
|
---|
490 | for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
|
---|
491 | if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) == RTTIMERLNXSTATE_STOPPING)
|
---|
492 | rtTimerLnxStopSubTimer(&pTimer->aSubTimers[iCpu]);
|
---|
493 |
|
---|
494 | return VINF_SUCCESS;
|
---|
495 | }
|
---|
496 |
|
---|
497 |
|
---|
498 | /**
|
---|
499 | * Per-cpu callback function (RTMpOnSpecific) used by rtTimerLinuxMpEvent()
|
---|
500 | * to start a sub-timer on a cpu that just have come online.
|
---|
501 | *
|
---|
502 | * @param idCpu The current CPU.
|
---|
503 | * @param pvUser1 Pointer to the timer.
|
---|
504 | * @param pvUser2 Pointer to the argument structure.
|
---|
505 | */
|
---|
506 | static DECLCALLBACK(void) rtTimerLinuxMpStartOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
507 | {
|
---|
508 | PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
|
---|
509 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
510 | RTSPINLOCK hSpinlock;
|
---|
511 | Assert(idCpu < pTimer->cCpus);
|
---|
512 |
|
---|
513 | /*
|
---|
514 | * We have to be kind of careful here as we might RTTimerStop (and RTTimerDestroy),
|
---|
515 | * thus the paranoia.
|
---|
516 | */
|
---|
517 | hSpinlock = pTimer->hSpinlock;
|
---|
518 | if ( hSpinlock != NIL_RTSPINLOCK
|
---|
519 | && pTimer->u32Magic == RTTIMER_MAGIC)
|
---|
520 | {
|
---|
521 | RTSPINLOCKTMP Tmp;
|
---|
522 | RTSpinlockAcquire(hSpinlock, &Tmp);
|
---|
523 |
|
---|
524 | if ( !pTimer->fSuspended
|
---|
525 | && pTimer->u32Magic == RTTIMER_MAGIC)
|
---|
526 | {
|
---|
527 | /* We're sane and the timer is not suspended yet. */
|
---|
528 | PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
|
---|
529 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
|
---|
530 | rtTimerLnxStartSubTimer(pSubTimer, pArgs->u64Now, pArgs->u64First);
|
---|
531 | }
|
---|
532 |
|
---|
533 | RTSpinlockRelease(hSpinlock, &Tmp);
|
---|
534 | }
|
---|
535 | }
|
---|
536 |
|
---|
537 |
|
---|
538 | /**
|
---|
539 | * MP event notification callback.
|
---|
540 | *
|
---|
541 | * @param enmEvent The event.
|
---|
542 | * @param idCpu The cpu it applies to.
|
---|
543 | * @param pvUser The timer.
|
---|
544 | */
|
---|
545 | static DECLCALLBACK(void) rtTimerLinuxMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
|
---|
546 | {
|
---|
547 | PRTTIMER pTimer = (PRTTIMER)pvUser;
|
---|
548 | PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
|
---|
549 | RTSPINLOCK hSpinlock;
|
---|
550 | RTSPINLOCKTMP Tmp;
|
---|
551 |
|
---|
552 | Assert(idCpu < pTimer->cCpus);
|
---|
553 |
|
---|
554 | /*
|
---|
555 | * Some initial paranoia.
|
---|
556 | */
|
---|
557 | if (pTimer->u32Magic != RTTIMER_MAGIC)
|
---|
558 | return;
|
---|
559 | hSpinlock = pTimer->hSpinlock;
|
---|
560 | if (hSpinlock == NIL_RTSPINLOCK)
|
---|
561 | return;
|
---|
562 |
|
---|
563 | RTSpinlockAcquireNoInts(hSpinlock, &Tmp);
|
---|
564 |
|
---|
565 | /* Is it active? */
|
---|
566 | if ( !pTimer->fSuspended
|
---|
567 | && !pTimer->u32Magic == RTTIMER_MAGIC)
|
---|
568 | {
|
---|
569 | switch (enmEvent)
|
---|
570 | {
|
---|
571 | /*
|
---|
572 | * Try do it without leaving the spin lock, but if we have to, retake it
|
---|
573 | * when we're on the right cpu.
|
---|
574 | */
|
---|
575 | case RTMPEVENT_ONLINE:
|
---|
576 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
|
---|
577 | {
|
---|
578 | RTTIMERLINUXSTARTONCPUARGS Args;
|
---|
579 | Args.u64Now = RTTimeNanoTS();
|
---|
580 | Args.u64First = pTimer->u64NanoInterval;
|
---|
581 |
|
---|
582 | if (RTMpCpuId() == idCpu)
|
---|
583 | rtTimerLnxStartSubTimer(pSubTimer, Args.u64Now, Args.u64First);
|
---|
584 | else
|
---|
585 | {
|
---|
586 | rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED); /* we'll recheck it. */
|
---|
587 | RTSpinlockReleaseNoInts(hSpinlock, &Tmp);
|
---|
588 |
|
---|
589 | RTMpOnSpecific(idCpu, rtTimerLinuxMpStartOnCpu, pTimer, &Args);
|
---|
590 | return; /* we've left the spinlock */
|
---|
591 | }
|
---|
592 | }
|
---|
593 | break;
|
---|
594 |
|
---|
595 | /*
|
---|
596 | * The CPU is (going) offline, make sure the sub-timer is stopped.
|
---|
597 | *
|
---|
598 | * Linux will migrate it to a different CPU, but we don't want this. The
|
---|
599 | * timer function is checking for this.
|
---|
600 | */
|
---|
601 | case RTMPEVENT_OFFLINE:
|
---|
602 | if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STOPPING, RTTIMERLNXSTATE_ACTIVE))
|
---|
603 | {
|
---|
604 | RTSpinlockAcquireNoInts(hSpinlock, &Tmp);
|
---|
605 |
|
---|
606 | rtTimerLnxStopSubTimer(pSubTimer);
|
---|
607 | return; /* we've left the spinlock */
|
---|
608 | }
|
---|
609 | break;
|
---|
610 | }
|
---|
611 | }
|
---|
612 |
|
---|
613 | RTSpinlockAcquireNoInts(hSpinlock, &Tmp);
|
---|
614 | }
|
---|
615 |
|
---|
616 | #endif /* CONFIG_SMP */
|
---|
617 |
|
---|
618 |
|
---|
619 | /**
|
---|
620 | * Callback function use by RTTimerStart via RTMpOnSpecific to start
|
---|
621 | * a timer running on a specific CPU.
|
---|
622 | *
|
---|
623 | * @param idCpu The current CPU.
|
---|
624 | * @param pvUser1 Pointer to the timer.
|
---|
625 | * @param pvUser2 Pointer to the argument structure.
|
---|
626 | */
|
---|
627 | static DECLCALLBACK(void) rtTimerLnxStartOnSpecificCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
628 | {
|
---|
629 | PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
|
---|
630 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
631 | rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], pArgs->u64Now, pArgs->u64First);
|
---|
632 | }
|
---|
633 |
|
---|
634 |
|
---|
635 | RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
|
---|
636 | {
|
---|
637 | RTTIMERLINUXSTARTONCPUARGS Args;
|
---|
638 | int rc2;
|
---|
639 |
|
---|
640 | /*
|
---|
641 | * Validate.
|
---|
642 | */
|
---|
643 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
644 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
645 |
|
---|
646 | if (!pTimer->fSuspended)
|
---|
647 | return VERR_TIMER_ACTIVE;
|
---|
648 |
|
---|
649 | Args.u64First = u64First;
|
---|
650 | #ifdef CONFIG_SMP
|
---|
651 | if (pTimer->fAllCpus)
|
---|
652 | return rtTimerLnxStartAll(pTimer, &Args);
|
---|
653 | #endif
|
---|
654 |
|
---|
655 | /*
|
---|
656 | * This is pretty straight forwards.
|
---|
657 | */
|
---|
658 | Args.u64Now = RTTimeNanoTS();
|
---|
659 | rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STARTING);
|
---|
660 | ASMAtomicWriteBool(&pTimer->fSuspended, false);
|
---|
661 | if (!pTimer->fSpecificCpu)
|
---|
662 | rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], Args.u64Now, Args.u64First);
|
---|
663 | else
|
---|
664 | {
|
---|
665 | rc2 = RTMpOnSpecific(pTimer->idCpu, rtTimerLnxStartOnSpecificCpu, pTimer, &Args);
|
---|
666 | if (RT_FAILURE(rc2))
|
---|
667 | {
|
---|
668 | /* Suspend it, the cpu id is probably invalid or offline. */
|
---|
669 | ASMAtomicWriteBool(&pTimer->fSuspended, true);
|
---|
670 | rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPED);
|
---|
671 | return rc2;
|
---|
672 | }
|
---|
673 | }
|
---|
674 |
|
---|
675 | return VINF_SUCCESS;
|
---|
676 | }
|
---|
677 |
|
---|
678 |
|
---|
679 | RTDECL(int) RTTimerStop(PRTTIMER pTimer)
|
---|
680 | {
|
---|
681 |
|
---|
682 | /*
|
---|
683 | * Validate.
|
---|
684 | */
|
---|
685 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
686 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
687 |
|
---|
688 | if (pTimer->fSuspended)
|
---|
689 | return VERR_TIMER_SUSPENDED;
|
---|
690 |
|
---|
691 | #ifdef CONFIG_SMP
|
---|
692 | if (pTimer->fAllCpus)
|
---|
693 | return rtTimerLnxStopAll(pTimer);
|
---|
694 | #endif
|
---|
695 |
|
---|
696 | /*
|
---|
697 | * Cancel the timer.
|
---|
698 | */
|
---|
699 | ASMAtomicWriteBool(&pTimer->fSuspended, true); /* just to be on the safe side. */
|
---|
700 | rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPING);
|
---|
701 | rtTimerLnxStopSubTimer(&pTimer->aSubTimers[0]);
|
---|
702 |
|
---|
703 | return VINF_SUCCESS;
|
---|
704 | }
|
---|
705 |
|
---|
706 |
|
---|
707 | RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
|
---|
708 | {
|
---|
709 | RTSPINLOCK hSpinlock;
|
---|
710 |
|
---|
711 | /* It's ok to pass NULL pointer. */
|
---|
712 | if (pTimer == /*NIL_RTTIMER*/ NULL)
|
---|
713 | return VINF_SUCCESS;
|
---|
714 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
|
---|
715 | AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
|
---|
716 |
|
---|
717 | /*
|
---|
718 | * Remove the MP notifications first because it'll reduce the risk of
|
---|
719 | * us overtaking any MP event that might theoretically be racing us here.
|
---|
720 | */
|
---|
721 | hSpinlock = pTimer->hSpinlock;
|
---|
722 | #ifdef CONFIG_SMP
|
---|
723 | if ( pTimer->cCpus > 1
|
---|
724 | && hSpinlock != NIL_RTSPINLOCK)
|
---|
725 | {
|
---|
726 | int rc = RTMpNotificationDeregister(rtTimerLinuxMpEvent, pTimer);
|
---|
727 | AssertRC(rc);
|
---|
728 | }
|
---|
729 | #endif /* CONFIG_SMP */
|
---|
730 |
|
---|
731 | /*
|
---|
732 | * Stop the timer if it's running.
|
---|
733 | */
|
---|
734 | if (!ASMAtomicUoReadBool(&pTimer->fSuspended)) /* serious paranoia */
|
---|
735 | RTTimerStop(pTimer);
|
---|
736 |
|
---|
737 | /*
|
---|
738 | * Uninitialize the structure and free the associated resources.
|
---|
739 | * The spinlock goes last.
|
---|
740 | */
|
---|
741 | ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
|
---|
742 | RTMemFree(pTimer);
|
---|
743 | if (hSpinlock != NIL_RTSPINLOCK)
|
---|
744 | RTSpinlockDestroy(hSpinlock);
|
---|
745 |
|
---|
746 | return VINF_SUCCESS;
|
---|
747 | }
|
---|
748 |
|
---|
749 |
|
---|
750 | RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, unsigned fFlags, PFNRTTIMER pfnTimer, void *pvUser)
|
---|
751 | {
|
---|
752 | PRTTIMER pTimer;
|
---|
753 | RTCPUID iCpu;
|
---|
754 | unsigned cCpus;
|
---|
755 |
|
---|
756 | *ppTimer = NULL;
|
---|
757 |
|
---|
758 | /*
|
---|
759 | * Validate flags.
|
---|
760 | */
|
---|
761 | if (!RTTIMER_FLAGS_IS_VALID(fFlags))
|
---|
762 | return VERR_INVALID_PARAMETER;
|
---|
763 | if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
|
---|
764 | && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
|
---|
765 | && !RTMpIsCpuOnline(fFlags & RTTIMER_FLAGS_CPU_MASK))
|
---|
766 | return (fFlags & RTTIMER_FLAGS_CPU_MASK) > RTMpGetMaxCpuId()
|
---|
767 | ? VERR_CPU_NOT_FOUND
|
---|
768 | : VERR_CPU_OFFLINE;
|
---|
769 |
|
---|
770 | /*
|
---|
771 | * Allocate the timer handler.
|
---|
772 | */
|
---|
773 | cCpus = 1;
|
---|
774 | #ifdef CONFIG_SMP
|
---|
775 | if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
|
---|
776 | {
|
---|
777 | cCpus = RTMpGetMaxCpuId() + 1;
|
---|
778 | Assert(cCpus <= RTCPUSET_MAX_CPUS); /* On linux we have a 1:1 relationship between cpuid and set index. */
|
---|
779 | AssertReturn(u64NanoInterval, VERR_NOT_IMPLEMENTED); /* We don't implement single shot on all cpus, sorry. */
|
---|
780 | }
|
---|
781 | #endif
|
---|
782 |
|
---|
783 | pTimer = (PRTTIMER)RTMemAllocZ(RT_OFFSETOF(RTTIMER, aSubTimers[cCpus]));
|
---|
784 | if (!pTimer)
|
---|
785 | return VERR_NO_MEMORY;
|
---|
786 |
|
---|
787 | /*
|
---|
788 | * Initialize it.
|
---|
789 | */
|
---|
790 | pTimer->u32Magic = RTTIMER_MAGIC;
|
---|
791 | pTimer->hSpinlock = NIL_RTSPINLOCK;
|
---|
792 | pTimer->fSuspended = true;
|
---|
793 | #ifdef CONFIG_SMP
|
---|
794 | pTimer->fSpecificCpu = (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL;
|
---|
795 | pTimer->fAllCpus = (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL;
|
---|
796 | pTimer->idCpu = fFlags & RTTIMER_FLAGS_CPU_MASK;
|
---|
797 | #else
|
---|
798 | pTimer->fSpecificCpu = !!(fFlags & RTTIMER_FLAGS_CPU_SPECIFIC);
|
---|
799 | pTimer->idCpu = RTMpCpuId();
|
---|
800 | #endif
|
---|
801 | pTimer->cCpus = cCpus;
|
---|
802 | pTimer->pfnTimer = pfnTimer;
|
---|
803 | pTimer->pvUser = pvUser;
|
---|
804 | pTimer->u64NanoInterval = u64NanoInterval;
|
---|
805 |
|
---|
806 | for (iCpu = 0; iCpu < cCpus; iCpu++)
|
---|
807 | {
|
---|
808 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
809 | hrtimer_init(&pTimer->aSubTimers[iCpu].LnxTimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
---|
810 | pTimer->aSubTimers[iCpu].LnxTimer.function = rtTimerLinuxCallback;
|
---|
811 | #else
|
---|
812 | init_timer(&pTimer->aSubTimers[iCpu].LnxTimer);
|
---|
813 | pTimer->aSubTimers[iCpu].LnxTimer.data = (unsigned long)pTimer;
|
---|
814 | pTimer->aSubTimers[iCpu].LnxTimer.function = rtTimerLinuxCallback;
|
---|
815 | pTimer->aSubTimers[iCpu].LnxTimer.expires = jiffies;
|
---|
816 | #endif
|
---|
817 | pTimer->aSubTimers[iCpu].u64StartTS = 0;
|
---|
818 | pTimer->aSubTimers[iCpu].u64NextTS = 0;
|
---|
819 | pTimer->aSubTimers[iCpu].iTick = 0;
|
---|
820 | pTimer->aSubTimers[iCpu].pParent = pTimer;
|
---|
821 | pTimer->aSubTimers[iCpu].enmState = RTTIMERLNXSTATE_STOPPED;
|
---|
822 | }
|
---|
823 |
|
---|
824 | #ifdef CONFIG_SMP
|
---|
825 | /*
|
---|
826 | * If this is running on ALL cpus, we'll have to register a callback
|
---|
827 | * for MP events (so timers can be started/stopped on cpus going
|
---|
828 | * online/offline). We also create the spinlock for syncrhonizing
|
---|
829 | * stop/start/mp-event.
|
---|
830 | */
|
---|
831 | if (cCpus > 1)
|
---|
832 | {
|
---|
833 | int rc = RTSpinlockCreate(&pTimer->hSpinlock);
|
---|
834 | if (RT_SUCCESS(rc))
|
---|
835 | rc = RTMpNotificationRegister(rtTimerLinuxMpEvent, pTimer);
|
---|
836 | else
|
---|
837 | pTimer->hSpinlock = NIL_RTSPINLOCK;
|
---|
838 | if (RT_FAILURE(rc))
|
---|
839 | {
|
---|
840 | RTTimerDestroy(pTimer);
|
---|
841 | return rc;
|
---|
842 | }
|
---|
843 | }
|
---|
844 | #endif /* CONFIG_SMP */
|
---|
845 |
|
---|
846 | *ppTimer = pTimer;
|
---|
847 | return VINF_SUCCESS;
|
---|
848 | }
|
---|
849 |
|
---|
850 |
|
---|
851 | RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
|
---|
852 | {
|
---|
853 | #ifdef RT_USE_LINUX_HRTIMER
|
---|
854 | /** @todo later... */
|
---|
855 | return 1000000000 / HZ; /* ns */
|
---|
856 | #else
|
---|
857 | return 1000000000 / HZ; /* ns */
|
---|
858 | #endif
|
---|
859 | }
|
---|
860 |
|
---|
861 |
|
---|
862 | RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
|
---|
863 | {
|
---|
864 | return VERR_NOT_SUPPORTED;
|
---|
865 | }
|
---|
866 |
|
---|
867 |
|
---|
868 | RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
|
---|
869 | {
|
---|
870 | return VERR_NOT_SUPPORTED;
|
---|
871 | }
|
---|
872 |
|
---|