VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/nt/memobj-r0drv-nt.cpp@ 85561

Last change on this file since 85561 was 82968, checked in by vboxsync, 5 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 39.9 KB
Line 
1/* $Id: memobj-r0drv-nt.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, NT.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-nt-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/alloc.h>
35#include <iprt/assert.h>
36#include <iprt/err.h>
37#include <iprt/log.h>
38#include <iprt/param.h>
39#include <iprt/string.h>
40#include <iprt/process.h>
41#include "internal/memobj.h"
42#include "internal-r0drv-nt.h"
43
44
45/*********************************************************************************************************************************
46* Defined Constants And Macros *
47*********************************************************************************************************************************/
48/** Maximum number of bytes we try to lock down in one go.
49 * This is supposed to have a limit right below 256MB, but this appears
50 * to actually be much lower. The values here have been determined experimentally.
51 */
52#ifdef RT_ARCH_X86
53# define MAX_LOCK_MEM_SIZE (32*1024*1024) /* 32MB */
54#endif
55#ifdef RT_ARCH_AMD64
56# define MAX_LOCK_MEM_SIZE (24*1024*1024) /* 24MB */
57#endif
58
59
60/*********************************************************************************************************************************
61* Structures and Typedefs *
62*********************************************************************************************************************************/
63/**
64 * The NT version of the memory object structure.
65 */
66typedef struct RTR0MEMOBJNT
67{
68 /** The core structure. */
69 RTR0MEMOBJINTERNAL Core;
70 /** Used MmAllocatePagesForMdl(). */
71 bool fAllocatedPagesForMdl;
72 /** Set if this is sub-section of the parent. */
73 bool fSubMapping;
74 /** Pointer returned by MmSecureVirtualMemory */
75 PVOID pvSecureMem;
76 /** The number of PMDLs (memory descriptor lists) in the array. */
77 uint32_t cMdls;
78 /** Array of MDL pointers. (variable size) */
79 PMDL apMdls[1];
80} RTR0MEMOBJNT;
81/** Pointer to the NT version of the memory object structure. */
82typedef RTR0MEMOBJNT *PRTR0MEMOBJNT;
83
84
85
86DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
87{
88 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
89
90 /*
91 * Deal with it on a per type basis (just as a variation).
92 */
93 switch (pMemNt->Core.enmType)
94 {
95 case RTR0MEMOBJTYPE_LOW:
96 if (pMemNt->fAllocatedPagesForMdl)
97 {
98 Assert(pMemNt->Core.pv && pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
99 MmUnmapLockedPages(pMemNt->Core.pv, pMemNt->apMdls[0]);
100 pMemNt->Core.pv = NULL;
101 if (pMemNt->pvSecureMem)
102 {
103 g_pfnrtMmUnsecureVirtualMemory(pMemNt->pvSecureMem);
104 pMemNt->pvSecureMem = NULL;
105 }
106
107 g_pfnrtMmFreePagesFromMdl(pMemNt->apMdls[0]);
108 ExFreePool(pMemNt->apMdls[0]);
109 pMemNt->apMdls[0] = NULL;
110 pMemNt->cMdls = 0;
111 break;
112 }
113 AssertFailed();
114 break;
115
116 case RTR0MEMOBJTYPE_PAGE:
117 Assert(pMemNt->Core.pv);
118 if (pMemNt->fAllocatedPagesForMdl)
119 {
120 Assert(pMemNt->Core.pv && pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
121 Assert(pMemNt->pvSecureMem == NULL);
122 MmUnmapLockedPages(pMemNt->Core.pv, pMemNt->apMdls[0]);
123 g_pfnrtMmFreePagesFromMdl(pMemNt->apMdls[0]);
124 ExFreePool(pMemNt->apMdls[0]);
125 }
126 else
127 {
128 if (g_pfnrtExFreePoolWithTag)
129 g_pfnrtExFreePoolWithTag(pMemNt->Core.pv, IPRT_NT_POOL_TAG);
130 else
131 ExFreePool(pMemNt->Core.pv);
132
133 Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
134 IoFreeMdl(pMemNt->apMdls[0]);
135 }
136 pMemNt->Core.pv = NULL;
137 pMemNt->apMdls[0] = NULL;
138 pMemNt->cMdls = 0;
139 break;
140
141 case RTR0MEMOBJTYPE_CONT:
142 Assert(pMemNt->Core.pv);
143 MmFreeContiguousMemory(pMemNt->Core.pv);
144 pMemNt->Core.pv = NULL;
145
146 Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
147 IoFreeMdl(pMemNt->apMdls[0]);
148 pMemNt->apMdls[0] = NULL;
149 pMemNt->cMdls = 0;
150 break;
151
152 case RTR0MEMOBJTYPE_PHYS:
153 /* rtR0MemObjNativeEnterPhys? */
154 if (!pMemNt->Core.u.Phys.fAllocated)
155 {
156 Assert(!pMemNt->fAllocatedPagesForMdl);
157 /* Nothing to do here. */
158 break;
159 }
160 RT_FALL_THRU();
161
162 case RTR0MEMOBJTYPE_PHYS_NC:
163 if (pMemNt->fAllocatedPagesForMdl)
164 {
165 g_pfnrtMmFreePagesFromMdl(pMemNt->apMdls[0]);
166 ExFreePool(pMemNt->apMdls[0]);
167 pMemNt->apMdls[0] = NULL;
168 pMemNt->cMdls = 0;
169 break;
170 }
171 AssertFailed();
172 break;
173
174 case RTR0MEMOBJTYPE_LOCK:
175 if (pMemNt->pvSecureMem)
176 {
177 g_pfnrtMmUnsecureVirtualMemory(pMemNt->pvSecureMem);
178 pMemNt->pvSecureMem = NULL;
179 }
180 for (uint32_t i = 0; i < pMemNt->cMdls; i++)
181 {
182 MmUnlockPages(pMemNt->apMdls[i]);
183 IoFreeMdl(pMemNt->apMdls[i]);
184 pMemNt->apMdls[i] = NULL;
185 }
186 break;
187
188 case RTR0MEMOBJTYPE_RES_VIRT:
189/* if (pMemNt->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
190 {
191 }
192 else
193 {
194 }*/
195 AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
196 return VERR_INTERNAL_ERROR;
197 break;
198
199 case RTR0MEMOBJTYPE_MAPPING:
200 {
201 PRTR0MEMOBJNT pMemNtParent = (PRTR0MEMOBJNT)pMemNt->Core.uRel.Child.pParent;
202 Assert(pMemNtParent);
203 Assert(pMemNt->Core.pv);
204 Assert((pMemNt->cMdls == 0 && !pMemNt->fSubMapping) || (pMemNt->cMdls == 1 && pMemNt->fSubMapping));
205 if (pMemNtParent->cMdls)
206 {
207 Assert(pMemNtParent->cMdls == 1 && pMemNtParent->apMdls[0]);
208 Assert( pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS
209 || pMemNt->Core.u.Mapping.R0Process == RTR0ProcHandleSelf());
210 if (!pMemNt->cMdls)
211 MmUnmapLockedPages(pMemNt->Core.pv, pMemNtParent->apMdls[0]);
212 else
213 {
214 MmUnmapLockedPages(pMemNt->Core.pv, pMemNt->apMdls[0]);
215 IoFreeMdl(pMemNt->apMdls[0]);
216 pMemNt->apMdls[0] = NULL;
217 }
218 }
219 else
220 {
221 Assert( pMemNtParent->Core.enmType == RTR0MEMOBJTYPE_PHYS
222 && !pMemNtParent->Core.u.Phys.fAllocated);
223 Assert(pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS);
224 Assert(!pMemNt->fSubMapping);
225 MmUnmapIoSpace(pMemNt->Core.pv, pMemNt->Core.cb);
226 }
227 pMemNt->Core.pv = NULL;
228 break;
229 }
230
231 default:
232 AssertMsgFailed(("enmType=%d\n", pMemNt->Core.enmType));
233 return VERR_INTERNAL_ERROR;
234 }
235
236 return VINF_SUCCESS;
237}
238
239
240DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
241{
242 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
243 RT_NOREF1(fExecutable);
244
245 /*
246 * Use MmAllocatePagesForMdl if the allocation is a little bit big.
247 */
248 int rc = VERR_NO_PAGE_MEMORY;
249 if ( cb > _1M
250 && g_pfnrtMmAllocatePagesForMdl
251 && g_pfnrtMmFreePagesFromMdl
252 && g_pfnrtMmMapLockedPagesSpecifyCache)
253 {
254 PHYSICAL_ADDRESS Zero;
255 Zero.QuadPart = 0;
256 PHYSICAL_ADDRESS HighAddr;
257 HighAddr.QuadPart = MAXLONGLONG;
258 PMDL pMdl = g_pfnrtMmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
259 if (pMdl)
260 {
261 if (MmGetMdlByteCount(pMdl) >= cb)
262 {
263 __try
264 {
265 void *pv = g_pfnrtMmMapLockedPagesSpecifyCache(pMdl, KernelMode, MmCached, NULL /* no base address */,
266 FALSE /* no bug check on failure */, NormalPagePriority);
267 if (pv)
268 {
269#ifdef RT_ARCH_AMD64
270 if (fExecutable)
271 MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
272#endif
273
274 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PAGE, pv, cb);
275 if (pMemNt)
276 {
277 pMemNt->fAllocatedPagesForMdl = true;
278 pMemNt->cMdls = 1;
279 pMemNt->apMdls[0] = pMdl;
280 *ppMem = &pMemNt->Core;
281 return VINF_SUCCESS;
282 }
283 MmUnmapLockedPages(pv, pMdl);
284 }
285 }
286 __except(EXCEPTION_EXECUTE_HANDLER)
287 {
288# ifdef LOG_ENABLED
289 NTSTATUS rcNt = GetExceptionCode();
290 Log(("rtR0MemObjNativeAllocLow: Exception Code %#x\n", rcNt));
291# endif
292 /* nothing */
293 }
294 }
295 g_pfnrtMmFreePagesFromMdl(pMdl);
296 ExFreePool(pMdl);
297 }
298 }
299
300 /*
301 * Try allocate the memory and create an MDL for them so
302 * we can query the physical addresses and do mappings later
303 * without running into out-of-memory conditions and similar problems.
304 */
305 void *pv;
306 if (g_pfnrtExAllocatePoolWithTag)
307 pv = g_pfnrtExAllocatePoolWithTag(NonPagedPool, cb, IPRT_NT_POOL_TAG);
308 else
309 pv = ExAllocatePool(NonPagedPool, cb);
310 if (pv)
311 {
312 PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
313 if (pMdl)
314 {
315 MmBuildMdlForNonPagedPool(pMdl);
316#ifdef RT_ARCH_AMD64
317 if (fExecutable)
318 MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
319#endif
320
321 /*
322 * Create the IPRT memory object.
323 */
324 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PAGE, pv, cb);
325 if (pMemNt)
326 {
327 pMemNt->cMdls = 1;
328 pMemNt->apMdls[0] = pMdl;
329 *ppMem = &pMemNt->Core;
330 return VINF_SUCCESS;
331 }
332
333 rc = VERR_NO_MEMORY;
334 IoFreeMdl(pMdl);
335 }
336 ExFreePool(pv);
337 }
338 return rc;
339}
340
341
342DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
343{
344 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
345
346 /*
347 * Try see if we get lucky first...
348 * (We could probably just assume we're lucky on NT4.)
349 */
350 int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
351 if (RT_SUCCESS(rc))
352 {
353 size_t iPage = cb >> PAGE_SHIFT;
354 while (iPage-- > 0)
355 if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) >= _4G)
356 {
357 rc = VERR_NO_LOW_MEMORY;
358 break;
359 }
360 if (RT_SUCCESS(rc))
361 return rc;
362
363 /* The following ASSUMES that rtR0MemObjNativeAllocPage returns a completed object. */
364 RTR0MemObjFree(*ppMem, false);
365 *ppMem = NULL;
366 }
367
368 /*
369 * Use MmAllocatePagesForMdl to specify the range of physical addresses we wish to use.
370 */
371 if ( g_pfnrtMmAllocatePagesForMdl
372 && g_pfnrtMmFreePagesFromMdl
373 && g_pfnrtMmMapLockedPagesSpecifyCache)
374 {
375 PHYSICAL_ADDRESS Zero;
376 Zero.QuadPart = 0;
377 PHYSICAL_ADDRESS HighAddr;
378 HighAddr.QuadPart = _4G - 1;
379 PMDL pMdl = g_pfnrtMmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
380 if (pMdl)
381 {
382 if (MmGetMdlByteCount(pMdl) >= cb)
383 {
384 __try
385 {
386 void *pv = g_pfnrtMmMapLockedPagesSpecifyCache(pMdl, KernelMode, MmCached, NULL /* no base address */,
387 FALSE /* no bug check on failure */, NormalPagePriority);
388 if (pv)
389 {
390 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_LOW, pv, cb);
391 if (pMemNt)
392 {
393 pMemNt->fAllocatedPagesForMdl = true;
394 pMemNt->cMdls = 1;
395 pMemNt->apMdls[0] = pMdl;
396 *ppMem = &pMemNt->Core;
397 return VINF_SUCCESS;
398 }
399 MmUnmapLockedPages(pv, pMdl);
400 }
401 }
402 __except(EXCEPTION_EXECUTE_HANDLER)
403 {
404# ifdef LOG_ENABLED
405 NTSTATUS rcNt = GetExceptionCode();
406 Log(("rtR0MemObjNativeAllocLow: Exception Code %#x\n", rcNt));
407# endif
408 /* nothing */
409 }
410 }
411 g_pfnrtMmFreePagesFromMdl(pMdl);
412 ExFreePool(pMdl);
413 }
414 }
415
416 /*
417 * Fall back on contiguous memory...
418 */
419 return rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
420}
421
422
423/**
424 * Internal worker for rtR0MemObjNativeAllocCont(), rtR0MemObjNativeAllocPhys()
425 * and rtR0MemObjNativeAllocPhysNC() that takes a max physical address in addition
426 * to what rtR0MemObjNativeAllocCont() does.
427 *
428 * @returns IPRT status code.
429 * @param ppMem Where to store the pointer to the ring-0 memory object.
430 * @param cb The size.
431 * @param fExecutable Whether the mapping should be executable or not.
432 * @param PhysHighest The highest physical address for the pages in allocation.
433 * @param uAlignment The alignment of the physical memory to allocate.
434 * Supported values are PAGE_SIZE, _2M, _4M and _1G.
435 */
436static int rtR0MemObjNativeAllocContEx(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, RTHCPHYS PhysHighest,
437 size_t uAlignment)
438{
439 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
440 RT_NOREF1(fExecutable);
441
442 /*
443 * Allocate the memory and create an MDL for it.
444 */
445 PHYSICAL_ADDRESS PhysAddrHighest;
446 PhysAddrHighest.QuadPart = PhysHighest;
447 void *pv;
448 if (g_pfnrtMmAllocateContiguousMemorySpecifyCache)
449 {
450 PHYSICAL_ADDRESS PhysAddrLowest, PhysAddrBoundary;
451 PhysAddrLowest.QuadPart = 0;
452 PhysAddrBoundary.QuadPart = (uAlignment == PAGE_SIZE) ? 0 : uAlignment;
453 pv = g_pfnrtMmAllocateContiguousMemorySpecifyCache(cb, PhysAddrLowest, PhysAddrHighest, PhysAddrBoundary, MmCached);
454 }
455 else if (uAlignment == PAGE_SIZE)
456 pv = MmAllocateContiguousMemory(cb, PhysAddrHighest);
457 else
458 return VERR_NOT_SUPPORTED;
459 if (!pv)
460 return VERR_NO_MEMORY;
461
462 PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
463 if (pMdl)
464 {
465 MmBuildMdlForNonPagedPool(pMdl);
466#ifdef RT_ARCH_AMD64
467 if (fExecutable)
468 MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
469#endif
470
471 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_CONT, pv, cb);
472 if (pMemNt)
473 {
474 pMemNt->Core.u.Cont.Phys = (RTHCPHYS)*MmGetMdlPfnArray(pMdl) << PAGE_SHIFT;
475 pMemNt->cMdls = 1;
476 pMemNt->apMdls[0] = pMdl;
477 *ppMem = &pMemNt->Core;
478 return VINF_SUCCESS;
479 }
480
481 IoFreeMdl(pMdl);
482 }
483 MmFreeContiguousMemory(pv);
484 return VERR_NO_MEMORY;
485}
486
487
488DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
489{
490 return rtR0MemObjNativeAllocContEx(ppMem, cb, fExecutable, _4G-1, PAGE_SIZE /* alignment */);
491}
492
493
494DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
495{
496 /*
497 * Try and see if we're lucky and get a contiguous chunk from MmAllocatePagesForMdl.
498 *
499 * This is preferable to using MmAllocateContiguousMemory because there are
500 * a few situations where the memory shouldn't be mapped, like for instance
501 * VT-x control memory. Since these are rather small allocations (one or
502 * two pages) MmAllocatePagesForMdl will probably be able to satisfy the
503 * request.
504 *
505 * If the allocation is big, the chances are *probably* not very good. The
506 * current limit is kind of random...
507 */
508 if ( cb < _128K
509 && uAlignment == PAGE_SIZE
510 && g_pfnrtMmAllocatePagesForMdl
511 && g_pfnrtMmFreePagesFromMdl)
512 {
513 PHYSICAL_ADDRESS Zero;
514 Zero.QuadPart = 0;
515 PHYSICAL_ADDRESS HighAddr;
516 HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
517 PMDL pMdl = g_pfnrtMmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
518 if (pMdl)
519 {
520 if (MmGetMdlByteCount(pMdl) >= cb)
521 {
522 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMdl);
523 PFN_NUMBER Pfn = paPfns[0] + 1;
524 const size_t cPages = cb >> PAGE_SHIFT;
525 size_t iPage;
526 for (iPage = 1; iPage < cPages; iPage++, Pfn++)
527 if (paPfns[iPage] != Pfn)
528 break;
529 if (iPage >= cPages)
530 {
531 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
532 if (pMemNt)
533 {
534 pMemNt->Core.u.Phys.fAllocated = true;
535 pMemNt->Core.u.Phys.PhysBase = (RTHCPHYS)paPfns[0] << PAGE_SHIFT;
536 pMemNt->fAllocatedPagesForMdl = true;
537 pMemNt->cMdls = 1;
538 pMemNt->apMdls[0] = pMdl;
539 *ppMem = &pMemNt->Core;
540 return VINF_SUCCESS;
541 }
542 }
543 }
544 g_pfnrtMmFreePagesFromMdl(pMdl);
545 ExFreePool(pMdl);
546 }
547 }
548
549 return rtR0MemObjNativeAllocContEx(ppMem, cb, false, PhysHighest, uAlignment);
550}
551
552
553DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
554{
555 if (g_pfnrtMmAllocatePagesForMdl && g_pfnrtMmFreePagesFromMdl)
556 {
557 PHYSICAL_ADDRESS Zero;
558 Zero.QuadPart = 0;
559 PHYSICAL_ADDRESS HighAddr;
560 HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
561 PMDL pMdl = g_pfnrtMmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
562 if (pMdl)
563 {
564 if (MmGetMdlByteCount(pMdl) >= cb)
565 {
566 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
567 if (pMemNt)
568 {
569 pMemNt->fAllocatedPagesForMdl = true;
570 pMemNt->cMdls = 1;
571 pMemNt->apMdls[0] = pMdl;
572 *ppMem = &pMemNt->Core;
573 return VINF_SUCCESS;
574 }
575 }
576 g_pfnrtMmFreePagesFromMdl(pMdl);
577 ExFreePool(pMdl);
578 }
579 return VERR_NO_MEMORY;
580 }
581 return VERR_NOT_SUPPORTED;
582}
583
584
585DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
586{
587 AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE || uCachePolicy == RTMEM_CACHE_POLICY_MMIO, VERR_NOT_SUPPORTED);
588
589 /*
590 * Validate the address range and create a descriptor for it.
591 */
592 PFN_NUMBER Pfn = (PFN_NUMBER)(Phys >> PAGE_SHIFT);
593 if (((RTHCPHYS)Pfn << PAGE_SHIFT) != Phys)
594 return VERR_ADDRESS_TOO_BIG;
595
596 /*
597 * Create the IPRT memory object.
598 */
599 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
600 if (pMemNt)
601 {
602 pMemNt->Core.u.Phys.PhysBase = Phys;
603 pMemNt->Core.u.Phys.fAllocated = false;
604 pMemNt->Core.u.Phys.uCachePolicy = uCachePolicy;
605 *ppMem = &pMemNt->Core;
606 return VINF_SUCCESS;
607 }
608 return VERR_NO_MEMORY;
609}
610
611
612/**
613 * Internal worker for locking down pages.
614 *
615 * @return IPRT status code.
616 *
617 * @param ppMem Where to store the memory object pointer.
618 * @param pv First page.
619 * @param cb Number of bytes.
620 * @param fAccess The desired access, a combination of RTMEM_PROT_READ
621 * and RTMEM_PROT_WRITE.
622 * @param R0Process The process \a pv and \a cb refers to.
623 */
624static int rtR0MemObjNtLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
625{
626 /*
627 * Calc the number of MDLs we need and allocate the memory object structure.
628 */
629 size_t cMdls = cb / MAX_LOCK_MEM_SIZE;
630 if (cb % MAX_LOCK_MEM_SIZE)
631 cMdls++;
632 if (cMdls >= UINT32_MAX)
633 return VERR_OUT_OF_RANGE;
634 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(RT_UOFFSETOF_DYN(RTR0MEMOBJNT, apMdls[cMdls]),
635 RTR0MEMOBJTYPE_LOCK, pv, cb);
636 if (!pMemNt)
637 return VERR_NO_MEMORY;
638
639 /*
640 * Loop locking down the sub parts of the memory.
641 */
642 int rc = VINF_SUCCESS;
643 size_t cbTotal = 0;
644 uint8_t *pb = (uint8_t *)pv;
645 uint32_t iMdl;
646 for (iMdl = 0; iMdl < cMdls; iMdl++)
647 {
648 /*
649 * Calc the Mdl size and allocate it.
650 */
651 size_t cbCur = cb - cbTotal;
652 if (cbCur > MAX_LOCK_MEM_SIZE)
653 cbCur = MAX_LOCK_MEM_SIZE;
654 AssertMsg(cbCur, ("cbCur: 0!\n"));
655 PMDL pMdl = IoAllocateMdl(pb, (ULONG)cbCur, FALSE, FALSE, NULL);
656 if (!pMdl)
657 {
658 rc = VERR_NO_MEMORY;
659 break;
660 }
661
662 /*
663 * Lock the pages.
664 */
665 __try
666 {
667 MmProbeAndLockPages(pMdl,
668 R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
669 fAccess == RTMEM_PROT_READ
670 ? IoReadAccess
671 : fAccess == RTMEM_PROT_WRITE
672 ? IoWriteAccess
673 : IoModifyAccess);
674
675 pMemNt->apMdls[iMdl] = pMdl;
676 pMemNt->cMdls++;
677 }
678 __except(EXCEPTION_EXECUTE_HANDLER)
679 {
680 IoFreeMdl(pMdl);
681 rc = VERR_LOCK_FAILED;
682 break;
683 }
684
685 if ( R0Process != NIL_RTR0PROCESS
686 && g_pfnrtMmSecureVirtualMemory
687 && g_pfnrtMmUnsecureVirtualMemory)
688 {
689 /* Make sure the user process can't change the allocation. */
690 pMemNt->pvSecureMem = g_pfnrtMmSecureVirtualMemory(pv, cb,
691 fAccess & RTMEM_PROT_WRITE
692 ? PAGE_READWRITE
693 : PAGE_READONLY);
694 if (!pMemNt->pvSecureMem)
695 {
696 rc = VERR_NO_MEMORY;
697 break;
698 }
699 }
700
701 /* next */
702 cbTotal += cbCur;
703 pb += cbCur;
704 }
705 if (RT_SUCCESS(rc))
706 {
707 Assert(pMemNt->cMdls == cMdls);
708 pMemNt->Core.u.Lock.R0Process = R0Process;
709 *ppMem = &pMemNt->Core;
710 return rc;
711 }
712
713 /*
714 * We failed, perform cleanups.
715 */
716 while (iMdl-- > 0)
717 {
718 MmUnlockPages(pMemNt->apMdls[iMdl]);
719 IoFreeMdl(pMemNt->apMdls[iMdl]);
720 pMemNt->apMdls[iMdl] = NULL;
721 }
722 if (pMemNt->pvSecureMem)
723 {
724 if (g_pfnrtMmUnsecureVirtualMemory)
725 g_pfnrtMmUnsecureVirtualMemory(pMemNt->pvSecureMem);
726 pMemNt->pvSecureMem = NULL;
727 }
728
729 rtR0MemObjDelete(&pMemNt->Core);
730 return rc;
731}
732
733
734DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess,
735 RTR0PROCESS R0Process)
736{
737 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
738 /* (Can use MmProbeAndLockProcessPages if we need to mess with other processes later.) */
739 return rtR0MemObjNtLock(ppMem, (void *)R3Ptr, cb, fAccess, R0Process);
740}
741
742
743DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
744{
745 return rtR0MemObjNtLock(ppMem, pv, cb, fAccess, NIL_RTR0PROCESS);
746}
747
748
749DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
750{
751 /*
752 * MmCreateSection(SEC_RESERVE) + MmMapViewInSystemSpace perhaps?
753 */
754 RT_NOREF4(ppMem, pvFixed, cb, uAlignment);
755 return VERR_NOT_SUPPORTED;
756}
757
758
759DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
760 RTR0PROCESS R0Process)
761{
762 /*
763 * ZeCreateSection(SEC_RESERVE) + ZwMapViewOfSection perhaps?
764 */
765 RT_NOREF5(ppMem, R3PtrFixed, cb, uAlignment, R0Process);
766 return VERR_NOT_SUPPORTED;
767}
768
769
770/**
771 * Internal worker for rtR0MemObjNativeMapKernel and rtR0MemObjNativeMapUser.
772 *
773 * @returns IPRT status code.
774 * @param ppMem Where to store the memory object for the mapping.
775 * @param pMemToMap The memory object to map.
776 * @param pvFixed Where to map it. (void *)-1 if anywhere is fine.
777 * @param uAlignment The alignment requirement for the mapping.
778 * @param fProt The desired page protection for the mapping.
779 * @param R0Process If NIL_RTR0PROCESS map into system (kernel) memory.
780 * If not nil, it's the current process.
781 * @param offSub Offset into @a pMemToMap to start mapping.
782 * @param cbSub The number of bytes to map from @a pMapToMem. 0 if
783 * we're to map everything. Non-zero if @a offSub is
784 * non-zero.
785 */
786static int rtR0MemObjNtMap(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
787 unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub)
788{
789 int rc = VERR_MAP_FAILED;
790
791 /*
792 * Check that the specified alignment is supported.
793 */
794 if (uAlignment > PAGE_SIZE)
795 return VERR_NOT_SUPPORTED;
796
797 /*
798 * There are two basic cases here, either we've got an MDL and can
799 * map it using MmMapLockedPages, or we've got a contiguous physical
800 * range (MMIO most likely) and can use MmMapIoSpace.
801 */
802 PRTR0MEMOBJNT pMemNtToMap = (PRTR0MEMOBJNT)pMemToMap;
803 if (pMemNtToMap->cMdls)
804 {
805 /* don't attempt map locked regions with more than one mdl. */
806 if (pMemNtToMap->cMdls != 1)
807 return VERR_NOT_SUPPORTED;
808
809 /* Need g_pfnrtMmMapLockedPagesSpecifyCache to map to a specific address. */
810 if (pvFixed != (void *)-1 && g_pfnrtMmMapLockedPagesSpecifyCache == NULL)
811 return VERR_NOT_SUPPORTED;
812
813 /* we can't map anything to the first page, sorry. */
814 if (pvFixed == 0)
815 return VERR_NOT_SUPPORTED;
816
817 /* only one system mapping for now - no time to figure out MDL restrictions right now. */
818 if ( pMemNtToMap->Core.uRel.Parent.cMappings
819 && R0Process == NIL_RTR0PROCESS)
820 {
821 if (pMemNtToMap->Core.enmType != RTR0MEMOBJTYPE_PHYS_NC)
822 return VERR_NOT_SUPPORTED;
823 uint32_t iMapping = pMemNtToMap->Core.uRel.Parent.cMappings;
824 while (iMapping-- > 0)
825 {
826 PRTR0MEMOBJNT pMapping = (PRTR0MEMOBJNT)pMemNtToMap->Core.uRel.Parent.papMappings[iMapping];
827 if ( pMapping->Core.enmType != RTR0MEMOBJTYPE_MAPPING
828 || pMapping->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
829 return VERR_NOT_SUPPORTED;
830 }
831 }
832
833 /* Create a partial MDL if this is a sub-range request. */
834 PMDL pMdl;
835 if (!offSub && !cbSub)
836 pMdl = pMemNtToMap->apMdls[0];
837 else
838 {
839 pMdl = IoAllocateMdl(NULL, (ULONG)cbSub, FALSE, FALSE, NULL);
840 if (pMdl)
841 IoBuildPartialMdl(pMemNtToMap->apMdls[0], pMdl,
842 (uint8_t *)MmGetMdlVirtualAddress(pMemNtToMap->apMdls[0]) + offSub, (ULONG)cbSub);
843 else
844 {
845 IoFreeMdl(pMdl);
846 return VERR_NO_MEMORY;
847 }
848 }
849
850 __try
851 {
852 /** @todo uAlignment */
853 /** @todo How to set the protection on the pages? */
854 void *pv;
855 if (g_pfnrtMmMapLockedPagesSpecifyCache)
856 pv = g_pfnrtMmMapLockedPagesSpecifyCache(pMdl,
857 R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
858 MmCached,
859 pvFixed != (void *)-1 ? pvFixed : NULL,
860 FALSE /* no bug check on failure */,
861 NormalPagePriority);
862 else
863 pv = MmMapLockedPages(pMdl, R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode);
864 if (pv)
865 {
866 NOREF(fProt);
867
868 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew( !offSub && !cbSub
869 ? sizeof(*pMemNt) : RT_UOFFSETOF_DYN(RTR0MEMOBJNT, apMdls[1]),
870 RTR0MEMOBJTYPE_MAPPING, pv, pMemNtToMap->Core.cb);
871 if (pMemNt)
872 {
873 pMemNt->Core.u.Mapping.R0Process = R0Process;
874 if (!offSub && !cbSub)
875 pMemNt->fSubMapping = false;
876 else
877 {
878 pMemNt->apMdls[0] = pMdl;
879 pMemNt->cMdls = 1;
880 pMemNt->fSubMapping = true;
881 }
882
883 *ppMem = &pMemNt->Core;
884 return VINF_SUCCESS;
885 }
886
887 rc = VERR_NO_MEMORY;
888 MmUnmapLockedPages(pv, pMdl);
889 }
890 }
891 __except(EXCEPTION_EXECUTE_HANDLER)
892 {
893#ifdef LOG_ENABLED
894 NTSTATUS rcNt = GetExceptionCode();
895 Log(("rtR0MemObjNtMap: Exception Code %#x\n", rcNt));
896#endif
897
898 /* nothing */
899 rc = VERR_MAP_FAILED;
900 }
901
902 }
903 else
904 {
905 AssertReturn( pMemNtToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS
906 && !pMemNtToMap->Core.u.Phys.fAllocated, VERR_INTERNAL_ERROR);
907
908 /* cannot map phys mem to user space (yet). */
909 if (R0Process != NIL_RTR0PROCESS)
910 return VERR_NOT_SUPPORTED;
911
912 /* Cannot sub-mak these (yet). */
913 AssertMsgReturn(!offSub && !cbSub, ("%#zx %#zx\n", offSub, cbSub), VERR_NOT_SUPPORTED);
914
915
916 /** @todo uAlignment */
917 /** @todo How to set the protection on the pages? */
918 PHYSICAL_ADDRESS Phys;
919 Phys.QuadPart = pMemNtToMap->Core.u.Phys.PhysBase;
920 void *pv = MmMapIoSpace(Phys, pMemNtToMap->Core.cb,
921 pMemNtToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO ? MmNonCached : MmCached);
922 if (pv)
923 {
924 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
925 pMemNtToMap->Core.cb);
926 if (pMemNt)
927 {
928 pMemNt->Core.u.Mapping.R0Process = R0Process;
929 *ppMem = &pMemNt->Core;
930 return VINF_SUCCESS;
931 }
932
933 rc = VERR_NO_MEMORY;
934 MmUnmapIoSpace(pv, pMemNtToMap->Core.cb);
935 }
936 }
937
938 NOREF(uAlignment); NOREF(fProt);
939 return rc;
940}
941
942
943DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
944 unsigned fProt, size_t offSub, size_t cbSub)
945{
946 return rtR0MemObjNtMap(ppMem, pMemToMap, pvFixed, uAlignment, fProt, NIL_RTR0PROCESS, offSub, cbSub);
947}
948
949
950DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment,
951 unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub)
952{
953 AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_NOT_SUPPORTED);
954 return rtR0MemObjNtMap(ppMem, pMemToMap, (void *)R3PtrFixed, uAlignment, fProt, R0Process, offSub, cbSub);
955}
956
957
958DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
959{
960#if 0
961 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
962#endif
963
964 /*
965 * Seems there are some issues with this MmProtectMdlSystemAddress API, so
966 * this code isn't currently enabled until we've tested it with the verifier.
967 */
968#if 0
969 /*
970 * The API we've got requires a kernel mapping.
971 */
972 if ( pMemNt->cMdls
973 && g_pfnrtMmProtectMdlSystemAddress
974 && (g_uRtNtMajorVer > 6 || (g_uRtNtMajorVer == 6 && g_uRtNtMinorVer >= 1)) /* Windows 7 and later. */
975 && pMemNt->Core.pv != NULL
976 && ( pMemNt->Core.enmType == RTR0MEMOBJTYPE_PAGE
977 || pMemNt->Core.enmType == RTR0MEMOBJTYPE_LOW
978 || pMemNt->Core.enmType == RTR0MEMOBJTYPE_CONT
979 || ( pMemNt->Core.enmType == RTR0MEMOBJTYPE_LOCK
980 && pMemNt->Core.u.Lock.R0Process == NIL_RTPROCESS)
981 || ( pMemNt->Core.enmType == RTR0MEMOBJTYPE_MAPPING
982 && pMemNt->Core.u.Mapping.R0Process == NIL_RTPROCESS) ) )
983 {
984 /* Convert the protection. */
985 LOCK_OPERATION enmLockOp;
986 ULONG fAccess;
987 switch (fProt)
988 {
989 case RTMEM_PROT_NONE:
990 fAccess = PAGE_NOACCESS;
991 enmLockOp = IoReadAccess;
992 break;
993 case RTMEM_PROT_READ:
994 fAccess = PAGE_READONLY;
995 enmLockOp = IoReadAccess;
996 break;
997 case RTMEM_PROT_WRITE:
998 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
999 fAccess = PAGE_READWRITE;
1000 enmLockOp = IoModifyAccess;
1001 break;
1002 case RTMEM_PROT_EXEC:
1003 fAccess = PAGE_EXECUTE;
1004 enmLockOp = IoReadAccess;
1005 break;
1006 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
1007 fAccess = PAGE_EXECUTE_READ;
1008 enmLockOp = IoReadAccess;
1009 break;
1010 case RTMEM_PROT_EXEC | RTMEM_PROT_WRITE:
1011 case RTMEM_PROT_EXEC | RTMEM_PROT_WRITE | RTMEM_PROT_READ:
1012 fAccess = PAGE_EXECUTE_READWRITE;
1013 enmLockOp = IoModifyAccess;
1014 break;
1015 default:
1016 AssertFailedReturn(VERR_INVALID_FLAGS);
1017 }
1018
1019 NTSTATUS rcNt = STATUS_SUCCESS;
1020# if 0 /** @todo test this against the verifier. */
1021 if (offSub == 0 && pMemNt->Core.cb == cbSub)
1022 {
1023 uint32_t iMdl = pMemNt->cMdls;
1024 while (iMdl-- > 0)
1025 {
1026 rcNt = g_pfnrtMmProtectMdlSystemAddress(pMemNt->apMdls[i], fAccess);
1027 if (!NT_SUCCESS(rcNt))
1028 break;
1029 }
1030 }
1031 else
1032# endif
1033 {
1034 /*
1035 * We ASSUME the following here:
1036 * - MmProtectMdlSystemAddress can deal with nonpaged pool memory
1037 * - MmProtectMdlSystemAddress doesn't actually store anything in the MDL we pass it.
1038 * - We are not required to call MmProtectMdlSystemAddress with PAGE_READWRITE for the
1039 * exact same ranges prior to freeing them.
1040 *
1041 * So, we lock the pages temporarily, call the API and unlock them.
1042 */
1043 uint8_t *pbCur = (uint8_t *)pMemNt->Core.pv + offSub;
1044 while (cbSub > 0 && NT_SUCCESS(rcNt))
1045 {
1046 size_t cbCur = cbSub;
1047 if (cbCur > MAX_LOCK_MEM_SIZE)
1048 cbCur = MAX_LOCK_MEM_SIZE;
1049 PMDL pMdl = IoAllocateMdl(pbCur, (ULONG)cbCur, FALSE, FALSE, NULL);
1050 if (pMdl)
1051 {
1052 __try
1053 {
1054 MmProbeAndLockPages(pMdl, KernelMode, enmLockOp);
1055 }
1056 __except(EXCEPTION_EXECUTE_HANDLER)
1057 {
1058 rcNt = GetExceptionCode();
1059 }
1060 if (NT_SUCCESS(rcNt))
1061 {
1062 rcNt = g_pfnrtMmProtectMdlSystemAddress(pMdl, fAccess);
1063 MmUnlockPages(pMdl);
1064 }
1065 IoFreeMdl(pMdl);
1066 }
1067 else
1068 rcNt = STATUS_NO_MEMORY;
1069 pbCur += cbCur;
1070 cbSub -= cbCur;
1071 }
1072 }
1073
1074 if (NT_SUCCESS(rcNt))
1075 return VINF_SUCCESS;
1076 return RTErrConvertFromNtStatus(rcNt);
1077 }
1078#else
1079 RT_NOREF4(pMem, offSub, cbSub, fProt);
1080#endif
1081
1082 return VERR_NOT_SUPPORTED;
1083}
1084
1085
1086DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1087{
1088 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
1089
1090 if (pMemNt->cMdls)
1091 {
1092 if (pMemNt->cMdls == 1)
1093 {
1094 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[0]);
1095 return (RTHCPHYS)paPfns[iPage] << PAGE_SHIFT;
1096 }
1097
1098 size_t iMdl = iPage / (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
1099 size_t iMdlPfn = iPage % (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
1100 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[iMdl]);
1101 return (RTHCPHYS)paPfns[iMdlPfn] << PAGE_SHIFT;
1102 }
1103
1104 switch (pMemNt->Core.enmType)
1105 {
1106 case RTR0MEMOBJTYPE_MAPPING:
1107 return rtR0MemObjNativeGetPagePhysAddr(pMemNt->Core.uRel.Child.pParent, iPage);
1108
1109 case RTR0MEMOBJTYPE_PHYS:
1110 return pMemNt->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1111
1112 case RTR0MEMOBJTYPE_PAGE:
1113 case RTR0MEMOBJTYPE_PHYS_NC:
1114 case RTR0MEMOBJTYPE_LOW:
1115 case RTR0MEMOBJTYPE_CONT:
1116 case RTR0MEMOBJTYPE_LOCK:
1117 default:
1118 AssertMsgFailed(("%d\n", pMemNt->Core.enmType));
1119 case RTR0MEMOBJTYPE_RES_VIRT:
1120 return NIL_RTHCPHYS;
1121 }
1122}
1123
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette