VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/nt/memobj-r0drv-nt.cpp@ 19971

Last change on this file since 19971 was 14824, checked in by vboxsync, 16 years ago

IPRT: RTR0MemObjMapKernelEx for mapping a portion of a memory object into ring-0. Only implemented on darwin (where I had to switch back to use I/O kit to wire memory instead of vm_map_wire).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 26.3 KB
Line 
1/* $Id: memobj-r0drv-nt.cpp 14824 2008-11-30 07:52:59Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, NT.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 *
26 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
27 * Clara, CA 95054 USA or visit http://www.sun.com if you need
28 * additional information or have any questions.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-nt-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/alloc.h>
39#include <iprt/assert.h>
40#include <iprt/log.h>
41#include <iprt/param.h>
42#include <iprt/string.h>
43#include <iprt/process.h>
44#include "internal/memobj.h"
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** Maximum number of bytes we try to lock down in one go.
51 * This is supposed to have a limit right below 256MB, but this appears
52 * to actually be much lower. The values here have been determined experimentally.
53 */
54#ifdef RT_ARCH_X86
55# define MAX_LOCK_MEM_SIZE (32*1024*1024) /* 32MB */
56#endif
57#ifdef RT_ARCH_AMD64
58# define MAX_LOCK_MEM_SIZE (24*1024*1024) /* 24MB */
59#endif
60
61
62/*******************************************************************************
63* Structures and Typedefs *
64*******************************************************************************/
65/**
66 * The NT version of the memory object structure.
67 */
68typedef struct RTR0MEMOBJNT
69{
70 /** The core structure. */
71 RTR0MEMOBJINTERNAL Core;
72#ifndef IPRT_TARGET_NT4
73 /** Used MmAllocatePagesForMdl(). */
74 bool fAllocatedPagesForMdl;
75#endif
76 /** Pointer returned by MmSecureVirtualMemory */
77 PVOID pvSecureMem;
78 /** The number of PMDLs (memory descriptor lists) in the array. */
79 uint32_t cMdls;
80 /** Array of MDL pointers. (variable size) */
81 PMDL apMdls[1];
82} RTR0MEMOBJNT, *PRTR0MEMOBJNT;
83
84
85int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
86{
87 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
88
89 /*
90 * Deal with it on a per type basis (just as a variation).
91 */
92 switch (pMemNt->Core.enmType)
93 {
94 case RTR0MEMOBJTYPE_LOW:
95#ifndef IPRT_TARGET_NT4
96 if (pMemNt->fAllocatedPagesForMdl)
97 {
98 Assert(pMemNt->Core.pv && pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
99 MmUnmapLockedPages(pMemNt->Core.pv, pMemNt->apMdls[0]);
100 pMemNt->Core.pv = NULL;
101 if (pMemNt->pvSecureMem)
102 {
103 MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
104 pMemNt->pvSecureMem = NULL;
105 }
106
107 MmFreePagesFromMdl(pMemNt->apMdls[0]);
108 ExFreePool(pMemNt->apMdls[0]);
109 pMemNt->apMdls[0] = NULL;
110 pMemNt->cMdls = 0;
111 break;
112 }
113#endif
114 AssertFailed();
115 break;
116
117 case RTR0MEMOBJTYPE_PAGE:
118 Assert(pMemNt->Core.pv);
119 ExFreePool(pMemNt->Core.pv);
120 pMemNt->Core.pv = NULL;
121
122 Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
123 IoFreeMdl(pMemNt->apMdls[0]);
124 pMemNt->apMdls[0] = NULL;
125 pMemNt->cMdls = 0;
126 break;
127
128 case RTR0MEMOBJTYPE_CONT:
129 Assert(pMemNt->Core.pv);
130 MmFreeContiguousMemory(pMemNt->Core.pv);
131 pMemNt->Core.pv = NULL;
132
133 Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
134 IoFreeMdl(pMemNt->apMdls[0]);
135 pMemNt->apMdls[0] = NULL;
136 pMemNt->cMdls = 0;
137 break;
138
139 case RTR0MEMOBJTYPE_PHYS:
140 case RTR0MEMOBJTYPE_PHYS_NC:
141#ifndef IPRT_TARGET_NT4
142 if (pMemNt->fAllocatedPagesForMdl)
143 {
144 MmFreePagesFromMdl(pMemNt->apMdls[0]);
145 ExFreePool(pMemNt->apMdls[0]);
146 pMemNt->apMdls[0] = NULL;
147 pMemNt->cMdls = 0;
148 break;
149 }
150#endif
151 AssertFailed();
152 break;
153
154 case RTR0MEMOBJTYPE_LOCK:
155 if (pMemNt->pvSecureMem)
156 {
157 MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
158 pMemNt->pvSecureMem = NULL;
159 }
160 for (uint32_t i = 0; i < pMemNt->cMdls; i++)
161 {
162 MmUnlockPages(pMemNt->apMdls[i]);
163 IoFreeMdl(pMemNt->apMdls[i]);
164 pMemNt->apMdls[i] = NULL;
165 }
166 break;
167
168 case RTR0MEMOBJTYPE_RES_VIRT:
169/* if (pMemNt->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
170 {
171 }
172 else
173 {
174 }*/
175 AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
176 return VERR_INTERNAL_ERROR;
177 break;
178
179 case RTR0MEMOBJTYPE_MAPPING:
180 {
181 Assert(pMemNt->cMdls == 0 && pMemNt->Core.pv);
182 PRTR0MEMOBJNT pMemNtParent = (PRTR0MEMOBJNT)pMemNt->Core.uRel.Child.pParent;
183 Assert(pMemNtParent);
184 if (pMemNtParent->cMdls)
185 {
186 Assert(pMemNtParent->cMdls == 1 && pMemNtParent->apMdls[0]);
187 Assert( pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS
188 || pMemNt->Core.u.Mapping.R0Process == RTR0ProcHandleSelf());
189 MmUnmapLockedPages(pMemNt->Core.pv, pMemNtParent->apMdls[0]);
190 }
191 else
192 {
193 Assert( pMemNtParent->Core.enmType == RTR0MEMOBJTYPE_PHYS
194 && !pMemNtParent->Core.u.Phys.fAllocated);
195 Assert(pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS);
196 MmUnmapIoSpace(pMemNt->Core.pv, pMemNt->Core.cb);
197 }
198 pMemNt->Core.pv = NULL;
199 break;
200 }
201
202 default:
203 AssertMsgFailed(("enmType=%d\n", pMemNt->Core.enmType));
204 return VERR_INTERNAL_ERROR;
205 }
206
207 return VINF_SUCCESS;
208}
209
210
211int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
212{
213 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
214
215 /*
216 * Try allocate the memory and create an MDL for them so
217 * we can query the physical addresses and do mappings later
218 * without running into out-of-memory conditions and similar problems.
219 */
220 int rc = VERR_NO_PAGE_MEMORY;
221 void *pv = ExAllocatePoolWithTag(NonPagedPool, cb, IPRT_NT_POOL_TAG);
222 if (pv)
223 {
224 PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
225 if (pMdl)
226 {
227 MmBuildMdlForNonPagedPool(pMdl);
228#ifdef RT_ARCH_AMD64
229 MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
230#endif
231
232 /*
233 * Create the IPRT memory object.
234 */
235 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PAGE, pv, cb);
236 if (pMemNt)
237 {
238 pMemNt->cMdls = 1;
239 pMemNt->apMdls[0] = pMdl;
240 *ppMem = &pMemNt->Core;
241 return VINF_SUCCESS;
242 }
243
244 rc = VERR_NO_MEMORY;
245 IoFreeMdl(pMdl);
246 }
247 ExFreePool(pv);
248 }
249 return rc;
250}
251
252
253int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
254{
255 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
256
257 /*
258 * Try see if we get lucky first...
259 * (We could probably just assume we're lucky on NT4.)
260 */
261 int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
262 if (RT_SUCCESS(rc))
263 {
264 size_t iPage = cb >> PAGE_SHIFT;
265 while (iPage-- > 0)
266 if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) >= _4G)
267 {
268 rc = VERR_NO_MEMORY;
269 break;
270 }
271 if (RT_SUCCESS(rc))
272 return rc;
273
274 /* The following ASSUMES that rtR0MemObjNativeAllocPage returns a completed object. */
275 RTR0MemObjFree(*ppMem, false);
276 *ppMem = NULL;
277 }
278
279#ifndef IPRT_TARGET_NT4
280 /*
281 * Use MmAllocatePagesForMdl to specify the range of physical addresses we wish to use.
282 */
283 PHYSICAL_ADDRESS Zero;
284 Zero.QuadPart = 0;
285 PHYSICAL_ADDRESS HighAddr;
286 HighAddr.QuadPart = _4G - 1;
287 PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
288 if (pMdl)
289 {
290 if (MmGetMdlByteCount(pMdl) >= cb)
291 {
292 __try
293 {
294 void *pv = MmMapLockedPagesSpecifyCache(pMdl, KernelMode, MmCached, NULL /* no base address */,
295 FALSE /* no bug check on failure */, NormalPagePriority);
296 if (pv)
297 {
298 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_LOW, pv, cb);
299 if (pMemNt)
300 {
301 pMemNt->fAllocatedPagesForMdl = true;
302 pMemNt->cMdls = 1;
303 pMemNt->apMdls[0] = pMdl;
304 *ppMem = &pMemNt->Core;
305 return VINF_SUCCESS;
306 }
307 MmUnmapLockedPages(pv, pMdl);
308 }
309 }
310 __except(EXCEPTION_EXECUTE_HANDLER)
311 {
312 NTSTATUS rcNt = GetExceptionCode();
313 Log(("rtR0MemObjNativeAllocLow: Exception Code %#x\n", rcNt));
314 /* nothing */
315 }
316 }
317 MmFreePagesFromMdl(pMdl);
318 ExFreePool(pMdl);
319 }
320#endif /* !IPRT_TARGET_NT4 */
321
322 /*
323 * Fall back on contiguous memory...
324 */
325 return rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
326}
327
328
329/**
330 * Internal worker for rtR0MemObjNativeAllocCont(), rtR0MemObjNativeAllocPhys()
331 * and rtR0MemObjNativeAllocPhysNC() that takes a max physical address in addition
332 * to what rtR0MemObjNativeAllocCont() does.
333 *
334 * @returns IPRT status code.
335 * @param ppMem Where to store the pointer to the ring-0 memory object.
336 * @param cb The size.
337 * @param fExecutable Whether the mapping should be executable or not.
338 * @param PhysHighest The highest physical address for the pages in allocation.
339 */
340static int rtR0MemObjNativeAllocContEx(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, RTHCPHYS PhysHighest)
341{
342 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
343
344 /*
345 * Allocate the memory and create an MDL for it.
346 */
347 PHYSICAL_ADDRESS PhysAddrHighest;
348 PhysAddrHighest.QuadPart = PhysHighest;
349 void *pv = MmAllocateContiguousMemory(cb, PhysAddrHighest);
350 if (!pv)
351 return VERR_NO_MEMORY;
352
353 PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
354 if (pMdl)
355 {
356 MmBuildMdlForNonPagedPool(pMdl);
357#ifdef RT_ARCH_AMD64
358 MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
359#endif
360
361 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_CONT, pv, cb);
362 if (pMemNt)
363 {
364 pMemNt->Core.u.Cont.Phys = (RTHCPHYS)*MmGetMdlPfnArray(pMdl) << PAGE_SHIFT;
365 pMemNt->cMdls = 1;
366 pMemNt->apMdls[0] = pMdl;
367 *ppMem = &pMemNt->Core;
368 return VINF_SUCCESS;
369 }
370
371 IoFreeMdl(pMdl);
372 }
373 MmFreeContiguousMemory(pv);
374 return VERR_NO_MEMORY;
375}
376
377
378int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
379{
380 return rtR0MemObjNativeAllocContEx(ppMem, cb, fExecutable, _4G-1);
381}
382
383
384int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
385{
386#ifndef IPRT_TARGET_NT4
387 /*
388 * Try and see if we're lucky and get a contiguous chunk from MmAllocatePagesForMdl.
389 *
390 * This is preferable to using MmAllocateContiguousMemory because there are
391 * a few situations where the memory shouldn't be mapped, like for instance
392 * VT-x control memory. Since these are rather small allocations (one or
393 * two pages) MmAllocatePagesForMdl will probably be able to satisfy the
394 * request.
395 *
396 * If the allocation is big, the chances are *probably* not very good. The
397 * current limit is kind of random...
398 */
399 if (cb < _128K)
400 {
401 PHYSICAL_ADDRESS Zero;
402 Zero.QuadPart = 0;
403 PHYSICAL_ADDRESS HighAddr;
404 HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
405 PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
406 if (pMdl)
407 {
408 if (MmGetMdlByteCount(pMdl) >= cb)
409 {
410 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMdl);
411 PFN_NUMBER Pfn = paPfns[0] + 1;
412 const size_t cPages = cb >> PAGE_SHIFT;
413 size_t iPage;
414 for (iPage = 1; iPage < cPages; iPage++, Pfn++)
415 if (paPfns[iPage] != Pfn)
416 break;
417 if (iPage >= cPages)
418 {
419 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
420 if (pMemNt)
421 {
422 pMemNt->Core.u.Phys.fAllocated = true;
423 pMemNt->Core.u.Phys.PhysBase = (RTHCPHYS)paPfns[0] << PAGE_SHIFT;
424 pMemNt->fAllocatedPagesForMdl = true;
425 pMemNt->cMdls = 1;
426 pMemNt->apMdls[0] = pMdl;
427 *ppMem = &pMemNt->Core;
428 return VINF_SUCCESS;
429 }
430 }
431 }
432 MmFreePagesFromMdl(pMdl);
433 ExFreePool(pMdl);
434 }
435 }
436#endif /* !IPRT_TARGET_NT4 */
437
438 return rtR0MemObjNativeAllocContEx(ppMem, cb, false, PhysHighest);
439}
440
441
442int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
443{
444#ifndef IPRT_TARGET_NT4
445 PHYSICAL_ADDRESS Zero;
446 Zero.QuadPart = 0;
447 PHYSICAL_ADDRESS HighAddr;
448 HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
449 PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
450 if (pMdl)
451 {
452 if (MmGetMdlByteCount(pMdl) >= cb)
453 {
454 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
455 if (pMemNt)
456 {
457 pMemNt->fAllocatedPagesForMdl = true;
458 pMemNt->cMdls = 1;
459 pMemNt->apMdls[0] = pMdl;
460 *ppMem = &pMemNt->Core;
461 return VINF_SUCCESS;
462 }
463 }
464 MmFreePagesFromMdl(pMdl);
465 ExFreePool(pMdl);
466 }
467 return VERR_NO_MEMORY;
468#else /* IPRT_TARGET_NT4 */
469 return VERR_NOT_SUPPORTED;
470#endif /* IPRT_TARGET_NT4 */
471}
472
473
474int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
475{
476 /*
477 * Validate the address range and create a descriptor for it.
478 */
479 PFN_NUMBER Pfn = (PFN_NUMBER)(Phys >> PAGE_SHIFT);
480 if (((RTHCPHYS)Pfn << PAGE_SHIFT) != Phys)
481 return VERR_ADDRESS_TOO_BIG;
482
483 /*
484 * Create the IPRT memory object.
485 */
486 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
487 if (pMemNt)
488 {
489 pMemNt->Core.u.Phys.PhysBase = Phys;
490 pMemNt->Core.u.Phys.fAllocated = false;
491 *ppMem = &pMemNt->Core;
492 return VINF_SUCCESS;
493 }
494 return VERR_NO_MEMORY;
495}
496
497
498/**
499 * Internal worker for locking down pages.
500 *
501 * @return IPRT status code.
502 *
503 * @param ppMem Where to store the memory object pointer.
504 * @param pv First page.
505 * @param cb Number of bytes.
506 * @param R0Process The process \a pv and \a cb refers to.
507 */
508static int rtR0MemObjNtLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, RTR0PROCESS R0Process)
509{
510 /*
511 * Calc the number of MDLs we need and allocate the memory object structure.
512 */
513 size_t cMdls = cb / MAX_LOCK_MEM_SIZE;
514 if (cb % MAX_LOCK_MEM_SIZE)
515 cMdls++;
516 if (cMdls >= UINT32_MAX)
517 return VERR_OUT_OF_RANGE;
518 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJNT, apMdls[cMdls]),
519 RTR0MEMOBJTYPE_LOCK, pv, cb);
520 if (!pMemNt)
521 return VERR_NO_MEMORY;
522
523 /*
524 * Loop locking down the sub parts of the memory.
525 */
526 int rc = VINF_SUCCESS;
527 size_t cbTotal = 0;
528 uint8_t *pb = (uint8_t *)pv;
529 uint32_t iMdl;
530 for (iMdl = 0; iMdl < cMdls; iMdl++)
531 {
532 /*
533 * Calc the Mdl size and allocate it.
534 */
535 size_t cbCur = cb - cbTotal;
536 if (cbCur > MAX_LOCK_MEM_SIZE)
537 cbCur = MAX_LOCK_MEM_SIZE;
538 AssertMsg(cbCur, ("cbCur: 0!\n"));
539 PMDL pMdl = IoAllocateMdl(pb, (ULONG)cbCur, FALSE, FALSE, NULL);
540 if (!pMdl)
541 {
542 rc = VERR_NO_MEMORY;
543 break;
544 }
545
546 /*
547 * Lock the pages.
548 */
549 __try
550 {
551 MmProbeAndLockPages(pMdl, R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode, IoModifyAccess);
552
553 pMemNt->apMdls[iMdl] = pMdl;
554 pMemNt->cMdls++;
555 }
556 __except(EXCEPTION_EXECUTE_HANDLER)
557 {
558 IoFreeMdl(pMdl);
559 rc = VERR_LOCK_FAILED;
560 break;
561 }
562
563 if (R0Process != NIL_RTR0PROCESS )
564 {
565 /* Make sure the user process can't change the allocation. */
566 pMemNt->pvSecureMem = MmSecureVirtualMemory(pv, cb, PAGE_READWRITE);
567 if (!pMemNt->pvSecureMem)
568 {
569 rc = VERR_NO_MEMORY;
570 break;
571 }
572 }
573
574 /* next */
575 cbTotal += cbCur;
576 pb += cbCur;
577 }
578 if (RT_SUCCESS(rc))
579 {
580 Assert(pMemNt->cMdls == cMdls);
581 pMemNt->Core.u.Lock.R0Process = R0Process;
582 *ppMem = &pMemNt->Core;
583 return rc;
584 }
585
586 /*
587 * We failed, perform cleanups.
588 */
589 while (iMdl-- > 0)
590 {
591 MmUnlockPages(pMemNt->apMdls[iMdl]);
592 IoFreeMdl(pMemNt->apMdls[iMdl]);
593 pMemNt->apMdls[iMdl] = NULL;
594 }
595 if (pMemNt->pvSecureMem)
596 {
597 MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
598 pMemNt->pvSecureMem = NULL;
599 }
600
601 rtR0MemObjDelete(&pMemNt->Core);
602 return rc;
603}
604
605
606int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, RTR0PROCESS R0Process)
607{
608 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
609 /* (Can use MmProbeAndLockProcessPages if we need to mess with other processes later.) */
610 return rtR0MemObjNtLock(ppMem, (void *)R3Ptr, cb, R0Process);
611}
612
613
614int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb)
615{
616 return rtR0MemObjNtLock(ppMem, pv, cb, NIL_RTR0PROCESS);
617}
618
619
620int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
621{
622 /*
623 * MmCreateSection(SEC_RESERVE) + MmMapViewInSystemSpace perhaps?
624 */
625 return VERR_NOT_IMPLEMENTED;
626}
627
628
629int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
630{
631 /*
632 * ZeCreateSection(SEC_RESERVE) + ZwMapViewOfSection perhaps?
633 */
634 return VERR_NOT_IMPLEMENTED;
635}
636
637
638/**
639 * Internal worker for rtR0MemObjNativeMapKernel and rtR0MemObjNativeMapUser.
640 *
641 * @returns IPRT status code.
642 * @param ppMem Where to store the memory object for the mapping.
643 * @param pMemToMap The memory object to map.
644 * @param pvFixed Where to map it. (void *)-1 if anywhere is fine.
645 * @param uAlignment The alignment requirement for the mapping.
646 * @param fProt The desired page protection for the mapping.
647 * @param R0Process If NIL_RTR0PROCESS map into system (kernel) memory.
648 * If not nil, it's the current process.
649 */
650static int rtR0MemObjNtMap(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
651 unsigned fProt, RTR0PROCESS R0Process)
652{
653 int rc = VERR_MAP_FAILED;
654
655 /*
656 * There are two basic cases here, either we've got an MDL and can
657 * map it using MmMapLockedPages, or we've got a contiguous physical
658 * range (MMIO most likely) and can use MmMapIoSpace.
659 */
660 PRTR0MEMOBJNT pMemNtToMap = (PRTR0MEMOBJNT)pMemToMap;
661 if (pMemNtToMap->cMdls)
662 {
663 /* don't attempt map locked regions with more than one mdl. */
664 if (pMemNtToMap->cMdls != 1)
665 return VERR_NOT_SUPPORTED;
666
667 /* we can't map anything to the first page, sorry. */
668 if (pvFixed == 0)
669 return VERR_NOT_SUPPORTED;
670
671 /* only one system mapping for now - no time to figure out MDL restrictions right now. */
672 if ( pMemNtToMap->Core.uRel.Parent.cMappings
673 && R0Process == NIL_RTR0PROCESS)
674 return VERR_NOT_SUPPORTED;
675
676 __try
677 {
678 /** @todo uAlignment */
679 /** @todo How to set the protection on the pages? */
680 void *pv = MmMapLockedPagesSpecifyCache(pMemNtToMap->apMdls[0],
681 R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
682 MmCached,
683 pvFixed != (void *)-1 ? pvFixed : NULL,
684 FALSE /* no bug check on failure */,
685 NormalPagePriority);
686 if (pv)
687 {
688 NOREF(fProt);
689
690 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
691 pMemNtToMap->Core.cb);
692 if (pMemNt)
693 {
694 pMemNt->Core.u.Mapping.R0Process = R0Process;
695 *ppMem = &pMemNt->Core;
696 return VINF_SUCCESS;
697 }
698
699 rc = VERR_NO_MEMORY;
700 MmUnmapLockedPages(pv, pMemNtToMap->apMdls[0]);
701 }
702 }
703 __except(EXCEPTION_EXECUTE_HANDLER)
704 {
705 NTSTATUS rcNt = GetExceptionCode();
706 Log(("rtR0MemObjNtMap: Exception Code %#x\n", rcNt));
707
708 /* nothing */
709 rc = VERR_MAP_FAILED;
710 }
711
712 }
713 else
714 {
715 AssertReturn( pMemNtToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS
716 && !pMemNtToMap->Core.u.Phys.fAllocated, VERR_INTERNAL_ERROR);
717
718 /* cannot map phys mem to user space (yet). */
719 if (R0Process != NIL_RTR0PROCESS)
720 return VERR_NOT_SUPPORTED;
721
722 /** @todo uAlignment */
723 /** @todo How to set the protection on the pages? */
724 PHYSICAL_ADDRESS Phys;
725 Phys.QuadPart = pMemNtToMap->Core.u.Phys.PhysBase;
726 void *pv = MmMapIoSpace(Phys, pMemNtToMap->Core.cb, MmCached); /** @todo add cache type to fProt. */
727 if (pv)
728 {
729 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
730 pMemNtToMap->Core.cb);
731 if (pMemNt)
732 {
733 pMemNt->Core.u.Mapping.R0Process = R0Process;
734 *ppMem = &pMemNt->Core;
735 return VINF_SUCCESS;
736 }
737
738 rc = VERR_NO_MEMORY;
739 MmUnmapIoSpace(pv, pMemNtToMap->Core.cb);
740 }
741 }
742
743 NOREF(uAlignment); NOREF(fProt);
744 return rc;
745}
746
747
748int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
749 unsigned fProt, size_t offSub, size_t cbSub)
750{
751 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
752 return rtR0MemObjNtMap(ppMem, pMemToMap, pvFixed, uAlignment, fProt, NIL_RTR0PROCESS);
753}
754
755
756int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
757{
758 AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_NOT_SUPPORTED);
759 return rtR0MemObjNtMap(ppMem, pMemToMap, (void *)R3PtrFixed, uAlignment, fProt, R0Process);
760}
761
762
763RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
764{
765 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
766
767 if (pMemNt->cMdls)
768 {
769 if (pMemNt->cMdls == 1)
770 {
771 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[0]);
772 return (RTHCPHYS)paPfns[iPage] << PAGE_SHIFT;
773 }
774
775 size_t iMdl = iPage / (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
776 size_t iMdlPfn = iPage % (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
777 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[iMdl]);
778 return (RTHCPHYS)paPfns[iMdlPfn] << PAGE_SHIFT;
779 }
780
781 switch (pMemNt->Core.enmType)
782 {
783 case RTR0MEMOBJTYPE_MAPPING:
784 return rtR0MemObjNativeGetPagePhysAddr(pMemNt->Core.uRel.Child.pParent, iPage);
785
786 case RTR0MEMOBJTYPE_PHYS:
787 return pMemNt->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
788
789 case RTR0MEMOBJTYPE_PAGE:
790 case RTR0MEMOBJTYPE_PHYS_NC:
791 case RTR0MEMOBJTYPE_LOW:
792 case RTR0MEMOBJTYPE_CONT:
793 case RTR0MEMOBJTYPE_LOCK:
794 default:
795 AssertMsgFailed(("%d\n", pMemNt->Core.enmType));
796 case RTR0MEMOBJTYPE_RES_VIRT:
797 return NIL_RTHCPHYS;
798 }
799}
800
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette