VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/nt/memobj-r0drv-nt.cpp@ 26430

Last change on this file since 26430 was 26430, checked in by vboxsync, 15 years ago

Introducing RTR0MemObjAllocPhysEx

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 28.1 KB
Line 
1/* $Id: memobj-r0drv-nt.cpp 26430 2010-02-11 14:23:01Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, NT.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 *
26 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
27 * Clara, CA 95054 USA or visit http://www.sun.com if you need
28 * additional information or have any questions.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-nt-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/alloc.h>
39#include <iprt/assert.h>
40#include <iprt/log.h>
41#include <iprt/param.h>
42#include <iprt/string.h>
43#include <iprt/process.h>
44#include "internal/memobj.h"
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** Maximum number of bytes we try to lock down in one go.
51 * This is supposed to have a limit right below 256MB, but this appears
52 * to actually be much lower. The values here have been determined experimentally.
53 */
54#ifdef RT_ARCH_X86
55# define MAX_LOCK_MEM_SIZE (32*1024*1024) /* 32MB */
56#endif
57#ifdef RT_ARCH_AMD64
58# define MAX_LOCK_MEM_SIZE (24*1024*1024) /* 24MB */
59#endif
60
61
62/*******************************************************************************
63* Structures and Typedefs *
64*******************************************************************************/
65/**
66 * The NT version of the memory object structure.
67 */
68typedef struct RTR0MEMOBJNT
69{
70 /** The core structure. */
71 RTR0MEMOBJINTERNAL Core;
72#ifndef IPRT_TARGET_NT4
73 /** Used MmAllocatePagesForMdl(). */
74 bool fAllocatedPagesForMdl;
75#endif
76 /** Pointer returned by MmSecureVirtualMemory */
77 PVOID pvSecureMem;
78 /** The number of PMDLs (memory descriptor lists) in the array. */
79 uint32_t cMdls;
80 /** Array of MDL pointers. (variable size) */
81 PMDL apMdls[1];
82} RTR0MEMOBJNT, *PRTR0MEMOBJNT;
83
84
85int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
86{
87 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
88
89 /*
90 * Deal with it on a per type basis (just as a variation).
91 */
92 switch (pMemNt->Core.enmType)
93 {
94 case RTR0MEMOBJTYPE_LOW:
95#ifndef IPRT_TARGET_NT4
96 if (pMemNt->fAllocatedPagesForMdl)
97 {
98 Assert(pMemNt->Core.pv && pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
99 MmUnmapLockedPages(pMemNt->Core.pv, pMemNt->apMdls[0]);
100 pMemNt->Core.pv = NULL;
101 if (pMemNt->pvSecureMem)
102 {
103 MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
104 pMemNt->pvSecureMem = NULL;
105 }
106
107 MmFreePagesFromMdl(pMemNt->apMdls[0]);
108 ExFreePool(pMemNt->apMdls[0]);
109 pMemNt->apMdls[0] = NULL;
110 pMemNt->cMdls = 0;
111 break;
112 }
113#endif
114 AssertFailed();
115 break;
116
117 case RTR0MEMOBJTYPE_PAGE:
118 Assert(pMemNt->Core.pv);
119 ExFreePool(pMemNt->Core.pv);
120 pMemNt->Core.pv = NULL;
121
122 Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
123 IoFreeMdl(pMemNt->apMdls[0]);
124 pMemNt->apMdls[0] = NULL;
125 pMemNt->cMdls = 0;
126 break;
127
128 case RTR0MEMOBJTYPE_CONT:
129 Assert(pMemNt->Core.pv);
130 MmFreeContiguousMemory(pMemNt->Core.pv);
131 pMemNt->Core.pv = NULL;
132
133 Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
134 IoFreeMdl(pMemNt->apMdls[0]);
135 pMemNt->apMdls[0] = NULL;
136 pMemNt->cMdls = 0;
137 break;
138
139 case RTR0MEMOBJTYPE_PHYS:
140 case RTR0MEMOBJTYPE_PHYS_NC:
141#ifndef IPRT_TARGET_NT4
142 if (pMemNt->fAllocatedPagesForMdl)
143 {
144 MmFreePagesFromMdl(pMemNt->apMdls[0]);
145 ExFreePool(pMemNt->apMdls[0]);
146 pMemNt->apMdls[0] = NULL;
147 pMemNt->cMdls = 0;
148 break;
149 }
150#endif
151 AssertFailed();
152 break;
153
154 case RTR0MEMOBJTYPE_LOCK:
155 if (pMemNt->pvSecureMem)
156 {
157 MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
158 pMemNt->pvSecureMem = NULL;
159 }
160 for (uint32_t i = 0; i < pMemNt->cMdls; i++)
161 {
162 MmUnlockPages(pMemNt->apMdls[i]);
163 IoFreeMdl(pMemNt->apMdls[i]);
164 pMemNt->apMdls[i] = NULL;
165 }
166 break;
167
168 case RTR0MEMOBJTYPE_RES_VIRT:
169/* if (pMemNt->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
170 {
171 }
172 else
173 {
174 }*/
175 AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
176 return VERR_INTERNAL_ERROR;
177 break;
178
179 case RTR0MEMOBJTYPE_MAPPING:
180 {
181 Assert(pMemNt->cMdls == 0 && pMemNt->Core.pv);
182 PRTR0MEMOBJNT pMemNtParent = (PRTR0MEMOBJNT)pMemNt->Core.uRel.Child.pParent;
183 Assert(pMemNtParent);
184 if (pMemNtParent->cMdls)
185 {
186 Assert(pMemNtParent->cMdls == 1 && pMemNtParent->apMdls[0]);
187 Assert( pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS
188 || pMemNt->Core.u.Mapping.R0Process == RTR0ProcHandleSelf());
189 MmUnmapLockedPages(pMemNt->Core.pv, pMemNtParent->apMdls[0]);
190 }
191 else
192 {
193 Assert( pMemNtParent->Core.enmType == RTR0MEMOBJTYPE_PHYS
194 && !pMemNtParent->Core.u.Phys.fAllocated);
195 Assert(pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS);
196 MmUnmapIoSpace(pMemNt->Core.pv, pMemNt->Core.cb);
197 }
198 pMemNt->Core.pv = NULL;
199 break;
200 }
201
202 default:
203 AssertMsgFailed(("enmType=%d\n", pMemNt->Core.enmType));
204 return VERR_INTERNAL_ERROR;
205 }
206
207 return VINF_SUCCESS;
208}
209
210
211int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
212{
213 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
214
215 /*
216 * Try allocate the memory and create an MDL for them so
217 * we can query the physical addresses and do mappings later
218 * without running into out-of-memory conditions and similar problems.
219 */
220 int rc = VERR_NO_PAGE_MEMORY;
221 void *pv = ExAllocatePoolWithTag(NonPagedPool, cb, IPRT_NT_POOL_TAG);
222 if (pv)
223 {
224 PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
225 if (pMdl)
226 {
227 MmBuildMdlForNonPagedPool(pMdl);
228#ifdef RT_ARCH_AMD64
229 MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
230#endif
231
232 /*
233 * Create the IPRT memory object.
234 */
235 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PAGE, pv, cb);
236 if (pMemNt)
237 {
238 pMemNt->cMdls = 1;
239 pMemNt->apMdls[0] = pMdl;
240 *ppMem = &pMemNt->Core;
241 return VINF_SUCCESS;
242 }
243
244 rc = VERR_NO_MEMORY;
245 IoFreeMdl(pMdl);
246 }
247 ExFreePool(pv);
248 }
249 return rc;
250}
251
252
253int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
254{
255 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
256
257 /*
258 * Try see if we get lucky first...
259 * (We could probably just assume we're lucky on NT4.)
260 */
261 int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
262 if (RT_SUCCESS(rc))
263 {
264 size_t iPage = cb >> PAGE_SHIFT;
265 while (iPage-- > 0)
266 if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) >= _4G)
267 {
268 rc = VERR_NO_MEMORY;
269 break;
270 }
271 if (RT_SUCCESS(rc))
272 return rc;
273
274 /* The following ASSUMES that rtR0MemObjNativeAllocPage returns a completed object. */
275 RTR0MemObjFree(*ppMem, false);
276 *ppMem = NULL;
277 }
278
279#ifndef IPRT_TARGET_NT4
280 /*
281 * Use MmAllocatePagesForMdl to specify the range of physical addresses we wish to use.
282 */
283 PHYSICAL_ADDRESS Zero;
284 Zero.QuadPart = 0;
285 PHYSICAL_ADDRESS HighAddr;
286 HighAddr.QuadPart = _4G - 1;
287 PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
288 if (pMdl)
289 {
290 if (MmGetMdlByteCount(pMdl) >= cb)
291 {
292 __try
293 {
294 void *pv = MmMapLockedPagesSpecifyCache(pMdl, KernelMode, MmCached, NULL /* no base address */,
295 FALSE /* no bug check on failure */, NormalPagePriority);
296 if (pv)
297 {
298 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_LOW, pv, cb);
299 if (pMemNt)
300 {
301 pMemNt->fAllocatedPagesForMdl = true;
302 pMemNt->cMdls = 1;
303 pMemNt->apMdls[0] = pMdl;
304 *ppMem = &pMemNt->Core;
305 return VINF_SUCCESS;
306 }
307 MmUnmapLockedPages(pv, pMdl);
308 }
309 }
310 __except(EXCEPTION_EXECUTE_HANDLER)
311 {
312 NTSTATUS rcNt = GetExceptionCode();
313 Log(("rtR0MemObjNativeAllocLow: Exception Code %#x\n", rcNt));
314 /* nothing */
315 }
316 }
317 MmFreePagesFromMdl(pMdl);
318 ExFreePool(pMdl);
319 }
320#endif /* !IPRT_TARGET_NT4 */
321
322 /*
323 * Fall back on contiguous memory...
324 */
325 return rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
326}
327
328
329/**
330 * Internal worker for rtR0MemObjNativeAllocCont(), rtR0MemObjNativeAllocPhys()
331 * and rtR0MemObjNativeAllocPhysNC() that takes a max physical address in addition
332 * to what rtR0MemObjNativeAllocCont() does.
333 *
334 * @returns IPRT status code.
335 * @param ppMem Where to store the pointer to the ring-0 memory object.
336 * @param cb The size.
337 * @param fExecutable Whether the mapping should be executable or not.
338 * @param PhysHighest The highest physical address for the pages in allocation.
339 * @param uAlignment The alignment of the physical memory to allocate.
340 * Supported values are 0 (alias for PAGE_SIZE), PAGE_SIZE, _2M, _4M and _1G.
341 */
342static int rtR0MemObjNativeAllocContEx(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, RTHCPHYS PhysHighest, size_t uAlignment)
343{
344 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
345
346 /* @todo */
347 if ( uAlignment != 0
348 && uAlignment != PAGE_SIZE)
349 return VERR_NOT_SUPPORTED;
350
351 /*
352 * Allocate the memory and create an MDL for it.
353 */
354 PHYSICAL_ADDRESS PhysAddrHighest;
355 PhysAddrHighest.QuadPart = PhysHighest;
356 void *pv = MmAllocateContiguousMemory(cb, PhysAddrHighest);
357 if (!pv)
358 return VERR_NO_MEMORY;
359
360 PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
361 if (pMdl)
362 {
363 MmBuildMdlForNonPagedPool(pMdl);
364#ifdef RT_ARCH_AMD64
365 MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
366#endif
367
368 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_CONT, pv, cb);
369 if (pMemNt)
370 {
371 pMemNt->Core.u.Cont.Phys = (RTHCPHYS)*MmGetMdlPfnArray(pMdl) << PAGE_SHIFT;
372 pMemNt->cMdls = 1;
373 pMemNt->apMdls[0] = pMdl;
374 *ppMem = &pMemNt->Core;
375 return VINF_SUCCESS;
376 }
377
378 IoFreeMdl(pMdl);
379 }
380 MmFreeContiguousMemory(pv);
381 return VERR_NO_MEMORY;
382}
383
384
385int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
386{
387 return rtR0MemObjNativeAllocContEx(ppMem, cb, fExecutable, _4G-1, PAGE_SIZE /* alignment */);
388}
389
390
391int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
392{
393#ifndef IPRT_TARGET_NT4
394 /*
395 * Try and see if we're lucky and get a contiguous chunk from MmAllocatePagesForMdl.
396 *
397 * This is preferable to using MmAllocateContiguousMemory because there are
398 * a few situations where the memory shouldn't be mapped, like for instance
399 * VT-x control memory. Since these are rather small allocations (one or
400 * two pages) MmAllocatePagesForMdl will probably be able to satisfy the
401 * request.
402 *
403 * If the allocation is big, the chances are *probably* not very good. The
404 * current limit is kind of random...
405 */
406 if (cb < _128K)
407 {
408 PHYSICAL_ADDRESS Zero;
409 Zero.QuadPart = 0;
410 PHYSICAL_ADDRESS HighAddr;
411 HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
412 PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
413 if (pMdl)
414 {
415 if (MmGetMdlByteCount(pMdl) >= cb)
416 {
417 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMdl);
418 PFN_NUMBER Pfn = paPfns[0] + 1;
419 const size_t cPages = cb >> PAGE_SHIFT;
420 size_t iPage;
421 for (iPage = 1; iPage < cPages; iPage++, Pfn++)
422 if (paPfns[iPage] != Pfn)
423 break;
424 if (iPage >= cPages)
425 {
426 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
427 if (pMemNt)
428 {
429 pMemNt->Core.u.Phys.fAllocated = true;
430 pMemNt->Core.u.Phys.PhysBase = (RTHCPHYS)paPfns[0] << PAGE_SHIFT;
431 pMemNt->fAllocatedPagesForMdl = true;
432 pMemNt->cMdls = 1;
433 pMemNt->apMdls[0] = pMdl;
434 *ppMem = &pMemNt->Core;
435 return VINF_SUCCESS;
436 }
437 }
438 }
439 MmFreePagesFromMdl(pMdl);
440 ExFreePool(pMdl);
441 }
442 }
443#endif /* !IPRT_TARGET_NT4 */
444
445 return rtR0MemObjNativeAllocContEx(ppMem, cb, false, PhysHighest, uAlignment);
446}
447
448
449int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
450{
451#ifndef IPRT_TARGET_NT4
452 PHYSICAL_ADDRESS Zero;
453 Zero.QuadPart = 0;
454 PHYSICAL_ADDRESS HighAddr;
455 HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
456 PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
457 if (pMdl)
458 {
459 if (MmGetMdlByteCount(pMdl) >= cb)
460 {
461 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
462 if (pMemNt)
463 {
464 pMemNt->fAllocatedPagesForMdl = true;
465 pMemNt->cMdls = 1;
466 pMemNt->apMdls[0] = pMdl;
467 *ppMem = &pMemNt->Core;
468 return VINF_SUCCESS;
469 }
470 }
471 MmFreePagesFromMdl(pMdl);
472 ExFreePool(pMdl);
473 }
474 return VERR_NO_MEMORY;
475#else /* IPRT_TARGET_NT4 */
476 return VERR_NOT_SUPPORTED;
477#endif /* IPRT_TARGET_NT4 */
478}
479
480
481int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
482{
483 /*
484 * Validate the address range and create a descriptor for it.
485 */
486 PFN_NUMBER Pfn = (PFN_NUMBER)(Phys >> PAGE_SHIFT);
487 if (((RTHCPHYS)Pfn << PAGE_SHIFT) != Phys)
488 return VERR_ADDRESS_TOO_BIG;
489
490 /*
491 * Create the IPRT memory object.
492 */
493 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
494 if (pMemNt)
495 {
496 pMemNt->Core.u.Phys.PhysBase = Phys;
497 pMemNt->Core.u.Phys.fAllocated = false;
498 *ppMem = &pMemNt->Core;
499 return VINF_SUCCESS;
500 }
501 return VERR_NO_MEMORY;
502}
503
504
505/**
506 * Internal worker for locking down pages.
507 *
508 * @return IPRT status code.
509 *
510 * @param ppMem Where to store the memory object pointer.
511 * @param pv First page.
512 * @param cb Number of bytes.
513 * @param fAccess The desired access, a combination of RTMEM_PROT_READ
514 * and RTMEM_PROT_WRITE.
515 * @param R0Process The process \a pv and \a cb refers to.
516 */
517static int rtR0MemObjNtLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
518{
519 /*
520 * Calc the number of MDLs we need and allocate the memory object structure.
521 */
522 size_t cMdls = cb / MAX_LOCK_MEM_SIZE;
523 if (cb % MAX_LOCK_MEM_SIZE)
524 cMdls++;
525 if (cMdls >= UINT32_MAX)
526 return VERR_OUT_OF_RANGE;
527 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJNT, apMdls[cMdls]),
528 RTR0MEMOBJTYPE_LOCK, pv, cb);
529 if (!pMemNt)
530 return VERR_NO_MEMORY;
531
532 /*
533 * Loop locking down the sub parts of the memory.
534 */
535 int rc = VINF_SUCCESS;
536 size_t cbTotal = 0;
537 uint8_t *pb = (uint8_t *)pv;
538 uint32_t iMdl;
539 for (iMdl = 0; iMdl < cMdls; iMdl++)
540 {
541 /*
542 * Calc the Mdl size and allocate it.
543 */
544 size_t cbCur = cb - cbTotal;
545 if (cbCur > MAX_LOCK_MEM_SIZE)
546 cbCur = MAX_LOCK_MEM_SIZE;
547 AssertMsg(cbCur, ("cbCur: 0!\n"));
548 PMDL pMdl = IoAllocateMdl(pb, (ULONG)cbCur, FALSE, FALSE, NULL);
549 if (!pMdl)
550 {
551 rc = VERR_NO_MEMORY;
552 break;
553 }
554
555 /*
556 * Lock the pages.
557 */
558 __try
559 {
560 MmProbeAndLockPages(pMdl,
561 R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
562 fAccess == RTMEM_PROT_READ
563 ? IoReadAccess
564 : fAccess == RTMEM_PROT_WRITE
565 ? IoWriteAccess
566 : IoModifyAccess);
567
568 pMemNt->apMdls[iMdl] = pMdl;
569 pMemNt->cMdls++;
570 }
571 __except(EXCEPTION_EXECUTE_HANDLER)
572 {
573 IoFreeMdl(pMdl);
574 rc = VERR_LOCK_FAILED;
575 break;
576 }
577
578 if (R0Process != NIL_RTR0PROCESS)
579 {
580 /* Make sure the user process can't change the allocation. */
581 pMemNt->pvSecureMem = MmSecureVirtualMemory(pv, cb,
582 fAccess & RTMEM_PROT_WRITE
583 ? PAGE_READWRITE
584 : PAGE_READONLY);
585 if (!pMemNt->pvSecureMem)
586 {
587 rc = VERR_NO_MEMORY;
588 break;
589 }
590 }
591
592 /* next */
593 cbTotal += cbCur;
594 pb += cbCur;
595 }
596 if (RT_SUCCESS(rc))
597 {
598 Assert(pMemNt->cMdls == cMdls);
599 pMemNt->Core.u.Lock.R0Process = R0Process;
600 *ppMem = &pMemNt->Core;
601 return rc;
602 }
603
604 /*
605 * We failed, perform cleanups.
606 */
607 while (iMdl-- > 0)
608 {
609 MmUnlockPages(pMemNt->apMdls[iMdl]);
610 IoFreeMdl(pMemNt->apMdls[iMdl]);
611 pMemNt->apMdls[iMdl] = NULL;
612 }
613 if (pMemNt->pvSecureMem)
614 {
615 MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
616 pMemNt->pvSecureMem = NULL;
617 }
618
619 rtR0MemObjDelete(&pMemNt->Core);
620 return rc;
621}
622
623
624int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
625{
626 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
627 /* (Can use MmProbeAndLockProcessPages if we need to mess with other processes later.) */
628 return rtR0MemObjNtLock(ppMem, (void *)R3Ptr, cb, fAccess, R0Process);
629}
630
631
632int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
633{
634 return rtR0MemObjNtLock(ppMem, pv, cb, fAccess, NIL_RTR0PROCESS);
635}
636
637
638int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
639{
640 /*
641 * MmCreateSection(SEC_RESERVE) + MmMapViewInSystemSpace perhaps?
642 */
643 return VERR_NOT_IMPLEMENTED;
644}
645
646
647int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
648{
649 /*
650 * ZeCreateSection(SEC_RESERVE) + ZwMapViewOfSection perhaps?
651 */
652 return VERR_NOT_IMPLEMENTED;
653}
654
655
656/**
657 * Internal worker for rtR0MemObjNativeMapKernel and rtR0MemObjNativeMapUser.
658 *
659 * @returns IPRT status code.
660 * @param ppMem Where to store the memory object for the mapping.
661 * @param pMemToMap The memory object to map.
662 * @param pvFixed Where to map it. (void *)-1 if anywhere is fine.
663 * @param uAlignment The alignment requirement for the mapping.
664 * @param fProt The desired page protection for the mapping.
665 * @param R0Process If NIL_RTR0PROCESS map into system (kernel) memory.
666 * If not nil, it's the current process.
667 */
668static int rtR0MemObjNtMap(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
669 unsigned fProt, RTR0PROCESS R0Process)
670{
671 int rc = VERR_MAP_FAILED;
672
673 /*
674 * Check that the specified alignment is supported.
675 */
676 if (uAlignment > PAGE_SIZE)
677 return VERR_NOT_SUPPORTED;
678
679 /*
680 * There are two basic cases here, either we've got an MDL and can
681 * map it using MmMapLockedPages, or we've got a contiguous physical
682 * range (MMIO most likely) and can use MmMapIoSpace.
683 */
684 PRTR0MEMOBJNT pMemNtToMap = (PRTR0MEMOBJNT)pMemToMap;
685 if (pMemNtToMap->cMdls)
686 {
687 /* don't attempt map locked regions with more than one mdl. */
688 if (pMemNtToMap->cMdls != 1)
689 return VERR_NOT_SUPPORTED;
690
691#ifdef IPRT_TARGET_NT4
692 /* NT SP0 can't map to a specific address. */
693 if (pvFixed != (void *)-1)
694 return VERR_NOT_SUPPORTED;
695#endif
696
697 /* we can't map anything to the first page, sorry. */
698 if (pvFixed == 0)
699 return VERR_NOT_SUPPORTED;
700
701 /* only one system mapping for now - no time to figure out MDL restrictions right now. */
702 if ( pMemNtToMap->Core.uRel.Parent.cMappings
703 && R0Process == NIL_RTR0PROCESS)
704 return VERR_NOT_SUPPORTED;
705
706 __try
707 {
708 /** @todo uAlignment */
709 /** @todo How to set the protection on the pages? */
710#ifdef IPRT_TARGET_NT4
711 void *pv = MmMapLockedPages(pMemNtToMap->apMdls[0],
712 R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode);
713#else
714 void *pv = MmMapLockedPagesSpecifyCache(pMemNtToMap->apMdls[0],
715 R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
716 MmCached,
717 pvFixed != (void *)-1 ? pvFixed : NULL,
718 FALSE /* no bug check on failure */,
719 NormalPagePriority);
720#endif
721 if (pv)
722 {
723 NOREF(fProt);
724
725 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
726 pMemNtToMap->Core.cb);
727 if (pMemNt)
728 {
729 pMemNt->Core.u.Mapping.R0Process = R0Process;
730 *ppMem = &pMemNt->Core;
731 return VINF_SUCCESS;
732 }
733
734 rc = VERR_NO_MEMORY;
735 MmUnmapLockedPages(pv, pMemNtToMap->apMdls[0]);
736 }
737 }
738 __except(EXCEPTION_EXECUTE_HANDLER)
739 {
740 NTSTATUS rcNt = GetExceptionCode();
741 Log(("rtR0MemObjNtMap: Exception Code %#x\n", rcNt));
742
743 /* nothing */
744 rc = VERR_MAP_FAILED;
745 }
746
747 }
748 else
749 {
750 AssertReturn( pMemNtToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS
751 && !pMemNtToMap->Core.u.Phys.fAllocated, VERR_INTERNAL_ERROR);
752
753 /* cannot map phys mem to user space (yet). */
754 if (R0Process != NIL_RTR0PROCESS)
755 return VERR_NOT_SUPPORTED;
756
757 /** @todo uAlignment */
758 /** @todo How to set the protection on the pages? */
759 PHYSICAL_ADDRESS Phys;
760 Phys.QuadPart = pMemNtToMap->Core.u.Phys.PhysBase;
761 void *pv = MmMapIoSpace(Phys, pMemNtToMap->Core.cb, MmCached); /** @todo add cache type to fProt. */
762 if (pv)
763 {
764 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
765 pMemNtToMap->Core.cb);
766 if (pMemNt)
767 {
768 pMemNt->Core.u.Mapping.R0Process = R0Process;
769 *ppMem = &pMemNt->Core;
770 return VINF_SUCCESS;
771 }
772
773 rc = VERR_NO_MEMORY;
774 MmUnmapIoSpace(pv, pMemNtToMap->Core.cb);
775 }
776 }
777
778 NOREF(uAlignment); NOREF(fProt);
779 return rc;
780}
781
782
783int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
784 unsigned fProt, size_t offSub, size_t cbSub)
785{
786 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
787 return rtR0MemObjNtMap(ppMem, pMemToMap, pvFixed, uAlignment, fProt, NIL_RTR0PROCESS);
788}
789
790
791int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
792{
793 AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_NOT_SUPPORTED);
794 return rtR0MemObjNtMap(ppMem, pMemToMap, (void *)R3PtrFixed, uAlignment, fProt, R0Process);
795}
796
797
798int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
799{
800 NOREF(pMem);
801 NOREF(offSub);
802 NOREF(cbSub);
803 NOREF(fProt);
804 return VERR_NOT_SUPPORTED;
805}
806
807
808RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
809{
810 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
811
812 if (pMemNt->cMdls)
813 {
814 if (pMemNt->cMdls == 1)
815 {
816 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[0]);
817 return (RTHCPHYS)paPfns[iPage] << PAGE_SHIFT;
818 }
819
820 size_t iMdl = iPage / (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
821 size_t iMdlPfn = iPage % (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
822 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[iMdl]);
823 return (RTHCPHYS)paPfns[iMdlPfn] << PAGE_SHIFT;
824 }
825
826 switch (pMemNt->Core.enmType)
827 {
828 case RTR0MEMOBJTYPE_MAPPING:
829 return rtR0MemObjNativeGetPagePhysAddr(pMemNt->Core.uRel.Child.pParent, iPage);
830
831 case RTR0MEMOBJTYPE_PHYS:
832 return pMemNt->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
833
834 case RTR0MEMOBJTYPE_PAGE:
835 case RTR0MEMOBJTYPE_PHYS_NC:
836 case RTR0MEMOBJTYPE_LOW:
837 case RTR0MEMOBJTYPE_CONT:
838 case RTR0MEMOBJTYPE_LOCK:
839 default:
840 AssertMsgFailed(("%d\n", pMemNt->Core.enmType));
841 case RTR0MEMOBJTYPE_RES_VIRT:
842 return NIL_RTHCPHYS;
843 }
844}
845
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette