1 | /* $Id: mp-r0drv-nt.cpp 70153 2017-12-15 15:07:27Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Multiprocessor, Ring-0 Driver, NT.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2008-2017 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*********************************************************************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *********************************************************************************************************************************/
|
---|
31 | #include "the-nt-kernel.h"
|
---|
32 |
|
---|
33 | #include <iprt/mp.h>
|
---|
34 | #include <iprt/cpuset.h>
|
---|
35 | #include <iprt/err.h>
|
---|
36 | #include <iprt/asm.h>
|
---|
37 | #include <iprt/log.h>
|
---|
38 | #include <iprt/mem.h>
|
---|
39 | #include <iprt/time.h>
|
---|
40 | #include "r0drv/mp-r0drv.h"
|
---|
41 | #include "symdb.h"
|
---|
42 | #include "internal-r0drv-nt.h"
|
---|
43 | #include "internal/mp.h"
|
---|
44 |
|
---|
45 |
|
---|
46 | /*********************************************************************************************************************************
|
---|
47 | * Structures and Typedefs *
|
---|
48 | *********************************************************************************************************************************/
|
---|
49 | typedef enum
|
---|
50 | {
|
---|
51 | RT_NT_CPUID_SPECIFIC,
|
---|
52 | RT_NT_CPUID_PAIR,
|
---|
53 | RT_NT_CPUID_OTHERS,
|
---|
54 | RT_NT_CPUID_ALL
|
---|
55 | } RT_NT_CPUID;
|
---|
56 |
|
---|
57 |
|
---|
58 | /**
|
---|
59 | * Used by the RTMpOnSpecific.
|
---|
60 | */
|
---|
61 | typedef struct RTMPNTONSPECIFICARGS
|
---|
62 | {
|
---|
63 | /** Set if we're executing. */
|
---|
64 | bool volatile fExecuting;
|
---|
65 | /** Set when done executing. */
|
---|
66 | bool volatile fDone;
|
---|
67 | /** Number of references to this heap block. */
|
---|
68 | uint32_t volatile cRefs;
|
---|
69 | /** Event that the calling thread is waiting on. */
|
---|
70 | KEVENT DoneEvt;
|
---|
71 | /** The deferred procedure call object. */
|
---|
72 | KDPC Dpc;
|
---|
73 | /** The callback argument package. */
|
---|
74 | RTMPARGS CallbackArgs;
|
---|
75 | } RTMPNTONSPECIFICARGS;
|
---|
76 | /** Pointer to an argument/state structure for RTMpOnSpecific on NT. */
|
---|
77 | typedef RTMPNTONSPECIFICARGS *PRTMPNTONSPECIFICARGS;
|
---|
78 |
|
---|
79 |
|
---|
80 | /*********************************************************************************************************************************
|
---|
81 | * Defined Constants And Macros *
|
---|
82 | *********************************************************************************************************************************/
|
---|
83 | /** Inactive bit for g_aidRtMpNtByCpuSetIdx. */
|
---|
84 | #define RTMPNT_ID_F_INACTIVE RT_BIT_32(31)
|
---|
85 |
|
---|
86 |
|
---|
87 | /*********************************************************************************************************************************
|
---|
88 | * Global Variables *
|
---|
89 | *********************************************************************************************************************************/
|
---|
90 | /** Maximum number of processor groups. */
|
---|
91 | uint32_t g_cRtMpNtMaxGroups;
|
---|
92 | /** Maximum number of processors. */
|
---|
93 | uint32_t g_cRtMpNtMaxCpus;
|
---|
94 | /** Number of active processors. */
|
---|
95 | uint32_t volatile g_cRtMpNtActiveCpus;
|
---|
96 | /** The NT CPU set.
|
---|
97 | * KeQueryActiveProcssors() cannot be called at all IRQLs and therefore we'll
|
---|
98 | * have to cache it. Fortunately, NT doesn't really support taking CPUs offline,
|
---|
99 | * and taking them online was introduced with W2K8 where it is intended for virtual
|
---|
100 | * machines and not real HW. We update this, g_cRtMpNtActiveCpus and
|
---|
101 | * g_aidRtMpNtByCpuSetIdx from the rtR0NtMpProcessorChangeCallback.
|
---|
102 | */
|
---|
103 | RTCPUSET g_rtMpNtCpuSet;
|
---|
104 |
|
---|
105 | /** Static per group info.
|
---|
106 | * @remarks With RTCPUSET_MAX_CPUS as 256, this takes up 33KB. */
|
---|
107 | static struct
|
---|
108 | {
|
---|
109 | /** The max CPUs in the group. */
|
---|
110 | uint16_t cMaxCpus;
|
---|
111 | /** The number of active CPUs at the time of initialization. */
|
---|
112 | uint16_t cActiveCpus;
|
---|
113 | /** CPU set indexes for each CPU in the group. */
|
---|
114 | int16_t aidxCpuSetMembers[64];
|
---|
115 | } g_aRtMpNtCpuGroups[RTCPUSET_MAX_CPUS];
|
---|
116 | /** Maps CPU set indexes to RTCPUID.
|
---|
117 | * Inactive CPUs has bit 31 set (RTMPNT_ID_F_INACTIVE) so we can identify them
|
---|
118 | * and shuffle duplicates during CPU hotplugging. We assign temporary IDs to
|
---|
119 | * the inactive CPUs starting at g_cRtMpNtMaxCpus - 1, ASSUMING that active
|
---|
120 | * CPUs has IDs from 0 to g_cRtMpNtActiveCpus. */
|
---|
121 | RTCPUID g_aidRtMpNtByCpuSetIdx[RTCPUSET_MAX_CPUS];
|
---|
122 | /** The handle of the rtR0NtMpProcessorChangeCallback registration. */
|
---|
123 | static PVOID g_pvMpCpuChangeCallback = NULL;
|
---|
124 |
|
---|
125 |
|
---|
126 | /*********************************************************************************************************************************
|
---|
127 | * Internal Functions *
|
---|
128 | *********************************************************************************************************************************/
|
---|
129 | static VOID __stdcall rtR0NtMpProcessorChangeCallback(void *pvUser, PKE_PROCESSOR_CHANGE_NOTIFY_CONTEXT pChangeCtx,
|
---|
130 | PNTSTATUS prcOperationStatus);
|
---|
131 | static int rtR0NtInitQueryGroupRelations(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **ppInfo);
|
---|
132 |
|
---|
133 |
|
---|
134 |
|
---|
135 | /**
|
---|
136 | * Initalizes multiprocessor globals (called by rtR0InitNative).
|
---|
137 | *
|
---|
138 | * @returns IPRT status code.
|
---|
139 | * @param pOsVerInfo Version information.
|
---|
140 | */
|
---|
141 | DECLHIDDEN(int) rtR0MpNtInit(RTNTSDBOSVER const *pOsVerInfo)
|
---|
142 | {
|
---|
143 | #define MY_CHECK_BREAK(a_Check, a_DbgPrintArgs) \
|
---|
144 | AssertMsgBreakStmt(a_Check, a_DbgPrintArgs, DbgPrint a_DbgPrintArgs; rc = VERR_INTERNAL_ERROR_4 )
|
---|
145 | #define MY_CHECK_RETURN(a_Check, a_DbgPrintArgs, a_rcRet) \
|
---|
146 | AssertMsgReturnStmt(a_Check, a_DbgPrintArgs, DbgPrint a_DbgPrintArgs, a_rcRet)
|
---|
147 | #define MY_CHECK(a_Check, a_DbgPrintArgs) \
|
---|
148 | AssertMsgStmt(a_Check, a_DbgPrintArgs, DbgPrint a_DbgPrintArgs; rc = VERR_INTERNAL_ERROR_4 )
|
---|
149 |
|
---|
150 | /*
|
---|
151 | * API combination checks.
|
---|
152 | */
|
---|
153 | MY_CHECK_RETURN(!g_pfnrtKeSetTargetProcessorDpcEx || g_pfnrtKeGetProcessorNumberFromIndex,
|
---|
154 | ("IPRT: Fatal: Missing KeSetTargetProcessorDpcEx without KeGetProcessorNumberFromIndex!\n"),
|
---|
155 | VERR_SYMBOL_NOT_FOUND);
|
---|
156 |
|
---|
157 | /*
|
---|
158 | * Get max number of processor groups.
|
---|
159 | *
|
---|
160 | * We may need to upadjust this number below, because windows likes to keep
|
---|
161 | * all options open when it comes to hotplugged CPU group assignments. A
|
---|
162 | * server advertising up to 64 CPUs in the ACPI table will get a result of
|
---|
163 | * 64 from KeQueryMaximumGroupCount. That makes sense. However, when windows
|
---|
164 | * server 2012 does a two processor group setup for it, the sum of the
|
---|
165 | * GroupInfo[*].MaximumProcessorCount members below is 128. This is probably
|
---|
166 | * because windows doesn't want to make decisions grouping of hotpluggable CPUs.
|
---|
167 | * So, we need to bump the maximum count to 128 below do deal with this as we
|
---|
168 | * want to have valid CPU set indexes for all potential CPUs - how could we
|
---|
169 | * otherwise use the RTMpGetSet() result and also RTCpuSetCount(RTMpGetSet())
|
---|
170 | * should equal RTMpGetCount().
|
---|
171 | */
|
---|
172 | if (g_pfnrtKeQueryMaximumGroupCount)
|
---|
173 | {
|
---|
174 | g_cRtMpNtMaxGroups = g_pfnrtKeQueryMaximumGroupCount();
|
---|
175 | MY_CHECK_RETURN(g_cRtMpNtMaxGroups <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxGroups > 0,
|
---|
176 | ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u\n", g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS),
|
---|
177 | VERR_MP_TOO_MANY_CPUS);
|
---|
178 | }
|
---|
179 | else
|
---|
180 | g_cRtMpNtMaxGroups = 1;
|
---|
181 |
|
---|
182 | /*
|
---|
183 | * Get max number CPUs.
|
---|
184 | * This also defines the range of NT CPU indexes, RTCPUID and index into RTCPUSET.
|
---|
185 | */
|
---|
186 | if (g_pfnrtKeQueryMaximumProcessorCountEx)
|
---|
187 | {
|
---|
188 | g_cRtMpNtMaxCpus = g_pfnrtKeQueryMaximumProcessorCountEx(ALL_PROCESSOR_GROUPS);
|
---|
189 | MY_CHECK_RETURN(g_cRtMpNtMaxCpus <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxCpus > 0,
|
---|
190 | ("IPRT: Fatal: g_cRtMpNtMaxCpus=%u, max %u [KeQueryMaximumProcessorCountEx]\n",
|
---|
191 | g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS),
|
---|
192 | VERR_MP_TOO_MANY_CPUS);
|
---|
193 | }
|
---|
194 | else if (g_pfnrtKeQueryMaximumProcessorCount)
|
---|
195 | {
|
---|
196 | g_cRtMpNtMaxCpus = g_pfnrtKeQueryMaximumProcessorCount();
|
---|
197 | MY_CHECK_RETURN(g_cRtMpNtMaxCpus <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxCpus > 0,
|
---|
198 | ("IPRT: Fatal: g_cRtMpNtMaxCpus=%u, max %u [KeQueryMaximumProcessorCount]\n",
|
---|
199 | g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS),
|
---|
200 | VERR_MP_TOO_MANY_CPUS);
|
---|
201 | }
|
---|
202 | else if (g_pfnrtKeQueryActiveProcessors)
|
---|
203 | {
|
---|
204 | KAFFINITY fActiveProcessors = g_pfnrtKeQueryActiveProcessors();
|
---|
205 | MY_CHECK_RETURN(fActiveProcessors != 0,
|
---|
206 | ("IPRT: Fatal: KeQueryActiveProcessors returned 0!\n"),
|
---|
207 | VERR_INTERNAL_ERROR_2);
|
---|
208 | g_cRtMpNtMaxCpus = 0;
|
---|
209 | do
|
---|
210 | {
|
---|
211 | g_cRtMpNtMaxCpus++;
|
---|
212 | fActiveProcessors >>= 1;
|
---|
213 | } while (fActiveProcessors);
|
---|
214 | }
|
---|
215 | else
|
---|
216 | g_cRtMpNtMaxCpus = KeNumberProcessors;
|
---|
217 |
|
---|
218 | /*
|
---|
219 | * Just because we're a bit paranoid about getting something wrong wrt to the
|
---|
220 | * kernel interfaces, we try 16 times to get the KeQueryActiveProcessorCountEx
|
---|
221 | * and KeQueryLogicalProcessorRelationship information to match up.
|
---|
222 | */
|
---|
223 | for (unsigned cTries = 0;; cTries++)
|
---|
224 | {
|
---|
225 | /*
|
---|
226 | * Get number of active CPUs.
|
---|
227 | */
|
---|
228 | if (g_pfnrtKeQueryActiveProcessorCountEx)
|
---|
229 | {
|
---|
230 | g_cRtMpNtActiveCpus = g_pfnrtKeQueryActiveProcessorCountEx(ALL_PROCESSOR_GROUPS);
|
---|
231 | MY_CHECK_RETURN(g_cRtMpNtActiveCpus <= g_cRtMpNtMaxCpus && g_cRtMpNtActiveCpus > 0,
|
---|
232 | ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u [KeQueryActiveProcessorCountEx]\n",
|
---|
233 | g_cRtMpNtMaxGroups, g_cRtMpNtMaxCpus),
|
---|
234 | VERR_MP_TOO_MANY_CPUS);
|
---|
235 | }
|
---|
236 | else if (g_pfnrtKeQueryActiveProcessorCount)
|
---|
237 | {
|
---|
238 | g_cRtMpNtActiveCpus = g_pfnrtKeQueryActiveProcessorCount(NULL);
|
---|
239 | MY_CHECK_RETURN(g_cRtMpNtActiveCpus <= g_cRtMpNtMaxCpus && g_cRtMpNtActiveCpus > 0,
|
---|
240 | ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u [KeQueryActiveProcessorCount]\n",
|
---|
241 | g_cRtMpNtMaxGroups, g_cRtMpNtMaxCpus),
|
---|
242 | VERR_MP_TOO_MANY_CPUS);
|
---|
243 | }
|
---|
244 | else
|
---|
245 | g_cRtMpNtActiveCpus = g_cRtMpNtMaxCpus;
|
---|
246 |
|
---|
247 | /*
|
---|
248 | * Query the details for the groups to figure out which CPUs are online as
|
---|
249 | * well as the NT index limit.
|
---|
250 | */
|
---|
251 | for (unsigned i = 0; i < RT_ELEMENTS(g_aidRtMpNtByCpuSetIdx); i++)
|
---|
252 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
253 | g_aidRtMpNtByCpuSetIdx[i] = NIL_RTCPUID;
|
---|
254 | #else
|
---|
255 | g_aidRtMpNtByCpuSetIdx[i] = i < g_cRtMpNtMaxCpus ? i : NIL_RTCPUID;
|
---|
256 | #endif
|
---|
257 | for (unsigned idxGroup = 0; idxGroup < RT_ELEMENTS(g_aRtMpNtCpuGroups); idxGroup++)
|
---|
258 | {
|
---|
259 | g_aRtMpNtCpuGroups[idxGroup].cMaxCpus = 0;
|
---|
260 | g_aRtMpNtCpuGroups[idxGroup].cActiveCpus = 0;
|
---|
261 | for (unsigned idxMember = 0; idxMember < RT_ELEMENTS(g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers); idxMember++)
|
---|
262 | g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = -1;
|
---|
263 | }
|
---|
264 |
|
---|
265 | if (g_pfnrtKeQueryLogicalProcessorRelationship)
|
---|
266 | {
|
---|
267 | MY_CHECK_RETURN(g_pfnrtKeGetProcessorIndexFromNumber,
|
---|
268 | ("IPRT: Fatal: Found KeQueryLogicalProcessorRelationship but not KeGetProcessorIndexFromNumber!\n"),
|
---|
269 | VERR_SYMBOL_NOT_FOUND);
|
---|
270 | MY_CHECK_RETURN(g_pfnrtKeGetProcessorNumberFromIndex,
|
---|
271 | ("IPRT: Fatal: Found KeQueryLogicalProcessorRelationship but not KeGetProcessorIndexFromNumber!\n"),
|
---|
272 | VERR_SYMBOL_NOT_FOUND);
|
---|
273 | MY_CHECK_RETURN(g_pfnrtKeSetTargetProcessorDpcEx,
|
---|
274 | ("IPRT: Fatal: Found KeQueryLogicalProcessorRelationship but not KeSetTargetProcessorDpcEx!\n"),
|
---|
275 | VERR_SYMBOL_NOT_FOUND);
|
---|
276 |
|
---|
277 | SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pInfo = NULL;
|
---|
278 | int rc = rtR0NtInitQueryGroupRelations(&pInfo);
|
---|
279 | if (RT_FAILURE(rc))
|
---|
280 | return rc;
|
---|
281 |
|
---|
282 | MY_CHECK(pInfo->Group.MaximumGroupCount == g_cRtMpNtMaxGroups,
|
---|
283 | ("IPRT: Fatal: MaximumGroupCount=%u != g_cRtMpNtMaxGroups=%u!\n",
|
---|
284 | pInfo->Group.MaximumGroupCount, g_cRtMpNtMaxGroups));
|
---|
285 | MY_CHECK(pInfo->Group.ActiveGroupCount > 0 && pInfo->Group.ActiveGroupCount <= g_cRtMpNtMaxGroups,
|
---|
286 | ("IPRT: Fatal: ActiveGroupCount=%u != g_cRtMpNtMaxGroups=%u!\n",
|
---|
287 | pInfo->Group.ActiveGroupCount, g_cRtMpNtMaxGroups));
|
---|
288 |
|
---|
289 | /*
|
---|
290 | * First we need to recalc g_cRtMpNtMaxCpus (see above).
|
---|
291 | */
|
---|
292 | uint32_t cMaxCpus = 0;
|
---|
293 | uint32_t idxGroup;
|
---|
294 | for (idxGroup = 0; RT_SUCCESS(rc) && idxGroup < pInfo->Group.ActiveGroupCount; idxGroup++)
|
---|
295 | {
|
---|
296 | const PROCESSOR_GROUP_INFO *pGrpInfo = &pInfo->Group.GroupInfo[idxGroup];
|
---|
297 | MY_CHECK_BREAK(pGrpInfo->MaximumProcessorCount <= MAXIMUM_PROC_PER_GROUP,
|
---|
298 | ("IPRT: Fatal: MaximumProcessorCount=%u\n", pGrpInfo->MaximumProcessorCount));
|
---|
299 | MY_CHECK_BREAK(pGrpInfo->ActiveProcessorCount <= pGrpInfo->MaximumProcessorCount,
|
---|
300 | ("IPRT: Fatal: ActiveProcessorCount=%u > MaximumProcessorCount=%u\n",
|
---|
301 | pGrpInfo->ActiveProcessorCount, pGrpInfo->MaximumProcessorCount));
|
---|
302 | cMaxCpus += pGrpInfo->MaximumProcessorCount;
|
---|
303 | }
|
---|
304 | if (cMaxCpus > g_cRtMpNtMaxCpus && RT_SUCCESS(rc))
|
---|
305 | {
|
---|
306 | DbgPrint("IPRT: g_cRtMpNtMaxCpus=%u -> %u\n", g_cRtMpNtMaxCpus, cMaxCpus);
|
---|
307 | #ifndef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
308 | uint32_t i = RT_MIN(cMaxCpus, RT_ELEMENTS(g_aidRtMpNtByCpuSetIdx));
|
---|
309 | while (i-- > g_cRtMpNtMaxCpus)
|
---|
310 | g_aidRtMpNtByCpuSetIdx[i] = i;
|
---|
311 | #endif
|
---|
312 | g_cRtMpNtMaxCpus = cMaxCpus;
|
---|
313 | if (g_cRtMpNtMaxGroups > RTCPUSET_MAX_CPUS)
|
---|
314 | {
|
---|
315 | MY_CHECK(g_cRtMpNtMaxGroups <= RTCPUSET_MAX_CPUS && g_cRtMpNtMaxGroups > 0,
|
---|
316 | ("IPRT: Fatal: g_cRtMpNtMaxGroups=%u, max %u\n", g_cRtMpNtMaxGroups, RTCPUSET_MAX_CPUS));
|
---|
317 | rc = VERR_MP_TOO_MANY_CPUS;
|
---|
318 | }
|
---|
319 | }
|
---|
320 |
|
---|
321 | /*
|
---|
322 | * Calc online mask, partition IDs and such.
|
---|
323 | *
|
---|
324 | * Also check ASSUMPTIONS:
|
---|
325 | *
|
---|
326 | * 1. Processor indexes going from 0 and up to
|
---|
327 | * KeQueryMaximumProcessorCountEx(ALL_PROCESSOR_GROUPS) - 1.
|
---|
328 | *
|
---|
329 | * 2. Currently valid processor indexes, i.e. accepted by
|
---|
330 | * KeGetProcessorIndexFromNumber & KeGetProcessorNumberFromIndex, goes
|
---|
331 | * from 0 thru KeQueryActiveProcessorCountEx(ALL_PROCESSOR_GROUPS) - 1.
|
---|
332 | *
|
---|
333 | * 3. PROCESSOR_GROUP_INFO::MaximumProcessorCount gives the number of
|
---|
334 | * relevant bits in the ActiveProcessorMask (from LSB).
|
---|
335 | *
|
---|
336 | * 4. Active processor count found in KeQueryLogicalProcessorRelationship
|
---|
337 | * output matches what KeQueryActiveProcessorCountEx(ALL) returns.
|
---|
338 | *
|
---|
339 | * 5. Active + inactive processor counts in same does not exceed
|
---|
340 | * KeQueryMaximumProcessorCountEx(ALL).
|
---|
341 | *
|
---|
342 | * Note! Processor indexes are assigned as CPUs come online and are not
|
---|
343 | * preallocated according to group maximums. Since CPUS are only taken
|
---|
344 | * online and never offlined, this means that internal CPU bitmaps are
|
---|
345 | * never sparse and no time is wasted scanning unused bits.
|
---|
346 | *
|
---|
347 | * Unfortunately, it means that ring-3 cannot easily guess the index
|
---|
348 | * assignments when hotswapping is used, and must use GIP when available.
|
---|
349 | */
|
---|
350 | RTCpuSetEmpty(&g_rtMpNtCpuSet);
|
---|
351 | uint32_t cInactive = 0;
|
---|
352 | uint32_t cActive = 0;
|
---|
353 | uint32_t idxCpuMax = 0;
|
---|
354 | uint32_t idxCpuSetNextInactive = g_cRtMpNtMaxCpus - 1;
|
---|
355 | for (idxGroup = 0; RT_SUCCESS(rc) && idxGroup < pInfo->Group.ActiveGroupCount; idxGroup++)
|
---|
356 | {
|
---|
357 | const PROCESSOR_GROUP_INFO *pGrpInfo = &pInfo->Group.GroupInfo[idxGroup];
|
---|
358 | MY_CHECK_BREAK(pGrpInfo->MaximumProcessorCount <= MAXIMUM_PROC_PER_GROUP,
|
---|
359 | ("IPRT: Fatal: MaximumProcessorCount=%u\n", pGrpInfo->MaximumProcessorCount));
|
---|
360 | MY_CHECK_BREAK(pGrpInfo->ActiveProcessorCount <= pGrpInfo->MaximumProcessorCount,
|
---|
361 | ("IPRT: Fatal: ActiveProcessorCount=%u > MaximumProcessorCount=%u\n",
|
---|
362 | pGrpInfo->ActiveProcessorCount, pGrpInfo->MaximumProcessorCount));
|
---|
363 |
|
---|
364 | g_aRtMpNtCpuGroups[idxGroup].cMaxCpus = pGrpInfo->MaximumProcessorCount;
|
---|
365 | g_aRtMpNtCpuGroups[idxGroup].cActiveCpus = pGrpInfo->ActiveProcessorCount;
|
---|
366 |
|
---|
367 | for (uint32_t idxMember = 0; idxMember < pGrpInfo->MaximumProcessorCount; idxMember++)
|
---|
368 | {
|
---|
369 | PROCESSOR_NUMBER ProcNum;
|
---|
370 | ProcNum.Group = (USHORT)idxGroup;
|
---|
371 | ProcNum.Number = (UCHAR)idxMember;
|
---|
372 | ProcNum.Reserved = 0;
|
---|
373 | ULONG idxCpu = g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum);
|
---|
374 | if (idxCpu != INVALID_PROCESSOR_INDEX)
|
---|
375 | {
|
---|
376 | MY_CHECK_BREAK(idxCpu < g_cRtMpNtMaxCpus && idxCpu < RTCPUSET_MAX_CPUS, /* ASSUMPTION #1 */
|
---|
377 | ("IPRT: Fatal: idxCpu=%u >= g_cRtMpNtMaxCpus=%u (RTCPUSET_MAX_CPUS=%u)\n",
|
---|
378 | idxCpu, g_cRtMpNtMaxCpus, RTCPUSET_MAX_CPUS));
|
---|
379 | if (idxCpu > idxCpuMax)
|
---|
380 | idxCpuMax = idxCpu;
|
---|
381 | g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = idxCpu;
|
---|
382 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
383 | g_aidRtMpNtByCpuSetIdx[idxCpu] = RTMPCPUID_FROM_GROUP_AND_NUMBER(idxGroup, idxMember);
|
---|
384 | #endif
|
---|
385 |
|
---|
386 | ProcNum.Group = UINT16_MAX;
|
---|
387 | ProcNum.Number = UINT8_MAX;
|
---|
388 | ProcNum.Reserved = UINT8_MAX;
|
---|
389 | NTSTATUS rcNt = g_pfnrtKeGetProcessorNumberFromIndex(idxCpu, &ProcNum);
|
---|
390 | MY_CHECK_BREAK(NT_SUCCESS(rcNt),
|
---|
391 | ("IPRT: Fatal: KeGetProcessorNumberFromIndex(%u,) -> %#x!\n", idxCpu, rcNt));
|
---|
392 | MY_CHECK_BREAK(ProcNum.Group == idxGroup && ProcNum.Number == idxMember,
|
---|
393 | ("IPRT: Fatal: KeGetProcessorXxxxFromYyyy roundtrip error for %#x! Group: %u vs %u, Number: %u vs %u\n",
|
---|
394 | idxCpu, ProcNum.Group, idxGroup, ProcNum.Number, idxMember));
|
---|
395 |
|
---|
396 | if (pGrpInfo->ActiveProcessorMask & RT_BIT_64(idxMember))
|
---|
397 | {
|
---|
398 | RTCpuSetAddByIndex(&g_rtMpNtCpuSet, idxCpu);
|
---|
399 | cActive++;
|
---|
400 | }
|
---|
401 | else
|
---|
402 | cInactive++; /* (This is a little unexpected, but not important as long as things add up below.) */
|
---|
403 | }
|
---|
404 | else
|
---|
405 | {
|
---|
406 | /* Must be not present / inactive when KeGetProcessorIndexFromNumber fails. */
|
---|
407 | MY_CHECK_BREAK(!(pGrpInfo->ActiveProcessorMask & RT_BIT_64(idxMember)),
|
---|
408 | ("IPRT: Fatal: KeGetProcessorIndexFromNumber(%u/%u) failed but CPU is active! cMax=%u cActive=%u fActive=%p\n",
|
---|
409 | idxGroup, idxMember, pGrpInfo->MaximumProcessorCount, pGrpInfo->ActiveProcessorCount,
|
---|
410 | pGrpInfo->ActiveProcessorMask));
|
---|
411 | cInactive++;
|
---|
412 | if (idxCpuSetNextInactive >= g_cRtMpNtActiveCpus)
|
---|
413 | {
|
---|
414 | g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = idxCpuSetNextInactive;
|
---|
415 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
416 | g_aidRtMpNtByCpuSetIdx[idxCpuSetNextInactive] = RTMPCPUID_FROM_GROUP_AND_NUMBER(idxGroup, idxMember)
|
---|
417 | | RTMPNT_ID_F_INACTIVE;
|
---|
418 | #endif
|
---|
419 | idxCpuSetNextInactive--;
|
---|
420 | }
|
---|
421 | }
|
---|
422 | }
|
---|
423 | }
|
---|
424 |
|
---|
425 | MY_CHECK(cInactive + cActive <= g_cRtMpNtMaxCpus, /* ASSUMPTION #5 (not '==' because of inactive groups) */
|
---|
426 | ("IPRT: Fatal: cInactive=%u + cActive=%u > g_cRtMpNtMaxCpus=%u\n", cInactive, cActive, g_cRtMpNtMaxCpus));
|
---|
427 |
|
---|
428 | /* Deal with inactive groups using KeQueryMaximumProcessorCountEx or as
|
---|
429 | best as we can by as best we can by stipulating maximum member counts
|
---|
430 | from the previous group. */
|
---|
431 | if ( RT_SUCCESS(rc)
|
---|
432 | && idxGroup < pInfo->Group.MaximumGroupCount)
|
---|
433 | {
|
---|
434 | uint16_t cInactiveLeft = g_cRtMpNtMaxCpus - (cInactive + cActive);
|
---|
435 | while (idxGroup < pInfo->Group.MaximumGroupCount)
|
---|
436 | {
|
---|
437 | uint32_t cMaxMembers = 0;
|
---|
438 | if (g_pfnrtKeQueryMaximumProcessorCountEx)
|
---|
439 | cMaxMembers = g_pfnrtKeQueryMaximumProcessorCountEx(idxGroup);
|
---|
440 | if (cMaxMembers != 0 || cInactiveLeft == 0)
|
---|
441 | AssertStmt(cMaxMembers <= cInactiveLeft, cMaxMembers = cInactiveLeft);
|
---|
442 | else
|
---|
443 | {
|
---|
444 | uint16_t cGroupsLeft = pInfo->Group.MaximumGroupCount - idxGroup;
|
---|
445 | cMaxMembers = pInfo->Group.GroupInfo[idxGroup - 1].MaximumProcessorCount;
|
---|
446 | while (cMaxMembers * cGroupsLeft < cInactiveLeft)
|
---|
447 | cMaxMembers++;
|
---|
448 | if (cMaxMembers > cInactiveLeft)
|
---|
449 | cMaxMembers = cInactiveLeft;
|
---|
450 | }
|
---|
451 |
|
---|
452 | g_aRtMpNtCpuGroups[idxGroup].cMaxCpus = (uint16_t)cMaxMembers;
|
---|
453 | g_aRtMpNtCpuGroups[idxGroup].cActiveCpus = 0;
|
---|
454 | for (uint16_t idxMember = 0; idxMember < cMaxMembers; idxMember++)
|
---|
455 | if (idxCpuSetNextInactive >= g_cRtMpNtActiveCpus)
|
---|
456 | {
|
---|
457 | g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember] = idxCpuSetNextInactive;
|
---|
458 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
459 | g_aidRtMpNtByCpuSetIdx[idxCpuSetNextInactive] = RTMPCPUID_FROM_GROUP_AND_NUMBER(idxGroup, idxMember)
|
---|
460 | | RTMPNT_ID_F_INACTIVE;
|
---|
461 | #endif
|
---|
462 | idxCpuSetNextInactive--;
|
---|
463 | }
|
---|
464 | cInactiveLeft -= cMaxMembers;
|
---|
465 | idxGroup++;
|
---|
466 | }
|
---|
467 | }
|
---|
468 |
|
---|
469 | /* We're done with pInfo now, free it so we can start returning when assertions fail. */
|
---|
470 | RTMemFree(pInfo);
|
---|
471 | if (RT_FAILURE(rc)) /* MY_CHECK_BREAK sets rc. */
|
---|
472 | return rc;
|
---|
473 | MY_CHECK_RETURN(cActive >= g_cRtMpNtActiveCpus,
|
---|
474 | ("IPRT: Fatal: cActive=%u < g_cRtMpNtActiveCpus=%u - CPUs removed?\n", cActive, g_cRtMpNtActiveCpus),
|
---|
475 | VERR_INTERNAL_ERROR_3);
|
---|
476 | MY_CHECK_RETURN(idxCpuMax < cActive, /* ASSUMPTION #2 */
|
---|
477 | ("IPRT: Fatal: idCpuMax=%u >= cActive=%u! Unexpected CPU index allocation. CPUs removed?\n",
|
---|
478 | idxCpuMax, cActive),
|
---|
479 | VERR_INTERNAL_ERROR_4);
|
---|
480 |
|
---|
481 | /* Retry if CPUs were added. */
|
---|
482 | if ( cActive != g_cRtMpNtActiveCpus
|
---|
483 | && cTries < 16)
|
---|
484 | continue;
|
---|
485 | MY_CHECK_RETURN(cActive == g_cRtMpNtActiveCpus, /* ASSUMPTION #4 */
|
---|
486 | ("IPRT: Fatal: cActive=%u != g_cRtMpNtActiveCpus=%u\n", cActive, g_cRtMpNtActiveCpus),
|
---|
487 | VERR_INTERNAL_ERROR_5);
|
---|
488 | }
|
---|
489 | else
|
---|
490 | {
|
---|
491 | /* Legacy: */
|
---|
492 | MY_CHECK_RETURN(g_cRtMpNtMaxGroups == 1, ("IPRT: Fatal: Missing KeQueryLogicalProcessorRelationship!\n"),
|
---|
493 | VERR_SYMBOL_NOT_FOUND);
|
---|
494 |
|
---|
495 | /** @todo Is it possible that the affinity mask returned by
|
---|
496 | * KeQueryActiveProcessors is sparse? */
|
---|
497 | if (g_pfnrtKeQueryActiveProcessors)
|
---|
498 | RTCpuSetFromU64(&g_rtMpNtCpuSet, g_pfnrtKeQueryActiveProcessors());
|
---|
499 | else if (g_cRtMpNtMaxCpus < 64)
|
---|
500 | RTCpuSetFromU64(&g_rtMpNtCpuSet, (UINT64_C(1) << g_cRtMpNtMaxCpus) - 1);
|
---|
501 | else
|
---|
502 | {
|
---|
503 | MY_CHECK_RETURN(g_cRtMpNtMaxCpus == 64, ("IPRT: Fatal: g_cRtMpNtMaxCpus=%u, expect 64 or less\n", g_cRtMpNtMaxCpus),
|
---|
504 | VERR_MP_TOO_MANY_CPUS);
|
---|
505 | RTCpuSetFromU64(&g_rtMpNtCpuSet, UINT64_MAX);
|
---|
506 | }
|
---|
507 |
|
---|
508 | g_aRtMpNtCpuGroups[0].cMaxCpus = g_cRtMpNtMaxCpus;
|
---|
509 | g_aRtMpNtCpuGroups[0].cActiveCpus = g_cRtMpNtMaxCpus;
|
---|
510 | for (unsigned i = 0; i < g_cRtMpNtMaxCpus; i++)
|
---|
511 | {
|
---|
512 | g_aRtMpNtCpuGroups[0].aidxCpuSetMembers[i] = i;
|
---|
513 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
514 | g_aidRtMpNtByCpuSetIdx[i] = RTMPCPUID_FROM_GROUP_AND_NUMBER(0, i);
|
---|
515 | #endif
|
---|
516 | }
|
---|
517 | }
|
---|
518 |
|
---|
519 | /*
|
---|
520 | * Register CPU hot plugging callback (it also counts active CPUs).
|
---|
521 | */
|
---|
522 | Assert(g_pvMpCpuChangeCallback == NULL);
|
---|
523 | if (g_pfnrtKeRegisterProcessorChangeCallback)
|
---|
524 | {
|
---|
525 | MY_CHECK_RETURN(g_pfnrtKeDeregisterProcessorChangeCallback,
|
---|
526 | ("IPRT: Fatal: KeRegisterProcessorChangeCallback without KeDeregisterProcessorChangeCallback!\n"),
|
---|
527 | VERR_SYMBOL_NOT_FOUND);
|
---|
528 |
|
---|
529 | RTCPUSET const ActiveSetCopy = g_rtMpNtCpuSet;
|
---|
530 | RTCpuSetEmpty(&g_rtMpNtCpuSet);
|
---|
531 | uint32_t const cActiveCpus = g_cRtMpNtActiveCpus;
|
---|
532 | g_cRtMpNtActiveCpus = 0;
|
---|
533 |
|
---|
534 | g_pvMpCpuChangeCallback = g_pfnrtKeRegisterProcessorChangeCallback(rtR0NtMpProcessorChangeCallback, NULL /*pvUser*/,
|
---|
535 | KE_PROCESSOR_CHANGE_ADD_EXISTING);
|
---|
536 | if (g_pvMpCpuChangeCallback)
|
---|
537 | {
|
---|
538 | if (cActiveCpus == g_cRtMpNtActiveCpus)
|
---|
539 | { /* likely */ }
|
---|
540 | else
|
---|
541 | {
|
---|
542 | g_pfnrtKeDeregisterProcessorChangeCallback(g_pvMpCpuChangeCallback);
|
---|
543 | if (cTries < 16)
|
---|
544 | {
|
---|
545 | /* Retry if CPUs were added. */
|
---|
546 | MY_CHECK_RETURN(g_cRtMpNtActiveCpus >= cActiveCpus,
|
---|
547 | ("IPRT: Fatal: g_cRtMpNtActiveCpus=%u < cActiveCpus=%u! CPUs removed?\n",
|
---|
548 | g_cRtMpNtActiveCpus, cActiveCpus),
|
---|
549 | VERR_INTERNAL_ERROR_2);
|
---|
550 | MY_CHECK_RETURN(g_cRtMpNtActiveCpus <= g_cRtMpNtMaxCpus,
|
---|
551 | ("IPRT: Fatal: g_cRtMpNtActiveCpus=%u > g_cRtMpNtMaxCpus=%u!\n",
|
---|
552 | g_cRtMpNtActiveCpus, g_cRtMpNtMaxCpus),
|
---|
553 | VERR_INTERNAL_ERROR_2);
|
---|
554 | continue;
|
---|
555 | }
|
---|
556 | MY_CHECK_RETURN(0, ("IPRT: Fatal: g_cRtMpNtActiveCpus=%u cActiveCpus=%u\n", g_cRtMpNtActiveCpus, cActiveCpus),
|
---|
557 | VERR_INTERNAL_ERROR_3);
|
---|
558 | }
|
---|
559 | }
|
---|
560 | else
|
---|
561 | {
|
---|
562 | AssertFailed();
|
---|
563 | g_rtMpNtCpuSet = ActiveSetCopy;
|
---|
564 | g_cRtMpNtActiveCpus = cActiveCpus;
|
---|
565 | }
|
---|
566 | }
|
---|
567 | break;
|
---|
568 | } /* Retry loop for stable active CPU count. */
|
---|
569 |
|
---|
570 | #undef MY_CHECK_RETURN
|
---|
571 |
|
---|
572 | /*
|
---|
573 | * Special IPI fun for RTMpPokeCpu.
|
---|
574 | *
|
---|
575 | * On Vista and later the DPC method doesn't seem to reliably send IPIs,
|
---|
576 | * so we have to use alternative methods.
|
---|
577 | *
|
---|
578 | * On AMD64 We used to use the HalSendSoftwareInterrupt API (also x86 on
|
---|
579 | * W10+), it looks faster and more convenient to use, however we're either
|
---|
580 | * using it wrong or it doesn't reliably do what we want (see @bugref{8343}).
|
---|
581 | *
|
---|
582 | * The HalRequestIpip API is thus far the only alternative to KeInsertQueueDpc
|
---|
583 | * for doing targetted IPIs. Trouble with this API is that it changed
|
---|
584 | * fundamentally in Window 7 when they added support for lots of processors.
|
---|
585 | *
|
---|
586 | * If we really think we cannot use KeInsertQueueDpc, we use the broadcast IPI
|
---|
587 | * API KeIpiGenericCall.
|
---|
588 | */
|
---|
589 | if ( pOsVerInfo->uMajorVer > 6
|
---|
590 | || (pOsVerInfo->uMajorVer == 6 && pOsVerInfo->uMinorVer > 0))
|
---|
591 | g_pfnrtHalRequestIpiPreW7 = NULL;
|
---|
592 | else
|
---|
593 | g_pfnrtHalRequestIpiW7Plus = NULL;
|
---|
594 |
|
---|
595 | g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingDpc;
|
---|
596 | if ( g_pfnrtHalRequestIpiW7Plus
|
---|
597 | && g_pfnrtKeInitializeAffinityEx
|
---|
598 | && g_pfnrtKeAddProcessorAffinityEx
|
---|
599 | && g_pfnrtKeGetProcessorIndexFromNumber)
|
---|
600 | {
|
---|
601 | DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingHalReqestIpiW7Plus\n");
|
---|
602 | g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingHalReqestIpiW7Plus;
|
---|
603 | }
|
---|
604 | else if (pOsVerInfo->uMajorVer >= 6 && g_pfnrtKeIpiGenericCall)
|
---|
605 | {
|
---|
606 | DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingBroadcastIpi\n");
|
---|
607 | g_pfnrtMpPokeCpuWorker = rtMpPokeCpuUsingBroadcastIpi;
|
---|
608 | }
|
---|
609 | else
|
---|
610 | DbgPrint("IPRT: RTMpPoke => rtMpPokeCpuUsingDpc\n");
|
---|
611 | /* else: Windows XP should send always send an IPI -> VERIFY */
|
---|
612 |
|
---|
613 | return VINF_SUCCESS;
|
---|
614 | }
|
---|
615 |
|
---|
616 |
|
---|
617 | /**
|
---|
618 | * Called by rtR0TermNative.
|
---|
619 | */
|
---|
620 | DECLHIDDEN(void) rtR0MpNtTerm(void)
|
---|
621 | {
|
---|
622 | /*
|
---|
623 | * Deregister the processor change callback.
|
---|
624 | */
|
---|
625 | PVOID pvMpCpuChangeCallback = g_pvMpCpuChangeCallback;
|
---|
626 | g_pvMpCpuChangeCallback = NULL;
|
---|
627 | if (pvMpCpuChangeCallback)
|
---|
628 | {
|
---|
629 | AssertReturnVoid(g_pfnrtKeDeregisterProcessorChangeCallback);
|
---|
630 | g_pfnrtKeDeregisterProcessorChangeCallback(pvMpCpuChangeCallback);
|
---|
631 | }
|
---|
632 | }
|
---|
633 |
|
---|
634 |
|
---|
635 | DECLHIDDEN(int) rtR0MpNotificationNativeInit(void)
|
---|
636 | {
|
---|
637 | return VINF_SUCCESS;
|
---|
638 | }
|
---|
639 |
|
---|
640 |
|
---|
641 | DECLHIDDEN(void) rtR0MpNotificationNativeTerm(void)
|
---|
642 | {
|
---|
643 | }
|
---|
644 |
|
---|
645 |
|
---|
646 | /**
|
---|
647 | * Implements the NT PROCESSOR_CALLBACK_FUNCTION callback function.
|
---|
648 | *
|
---|
649 | * This maintains the g_rtMpNtCpuSet and works MP notification callbacks. When
|
---|
650 | * registered, it's called for each active CPU in the system, avoiding racing
|
---|
651 | * CPU hotplugging (as well as testing the callback).
|
---|
652 | *
|
---|
653 | * @param pvUser User context (not used).
|
---|
654 | * @param pChangeCtx Change context (in).
|
---|
655 | * @param prcOperationStatus Operation status (in/out).
|
---|
656 | *
|
---|
657 | * @remarks ASSUMES no concurrent execution of KeProcessorAddCompleteNotify
|
---|
658 | * notification callbacks. At least during callback registration
|
---|
659 | * callout, we're owning KiDynamicProcessorLock.
|
---|
660 | *
|
---|
661 | * @remarks When registering the handler, we first get KeProcessorAddStartNotify
|
---|
662 | * callbacks for all active CPUs, and after they all succeed we get the
|
---|
663 | * KeProcessorAddCompleteNotify callbacks.
|
---|
664 | */
|
---|
665 | static VOID __stdcall rtR0NtMpProcessorChangeCallback(void *pvUser, PKE_PROCESSOR_CHANGE_NOTIFY_CONTEXT pChangeCtx,
|
---|
666 | PNTSTATUS prcOperationStatus)
|
---|
667 | {
|
---|
668 | RT_NOREF(pvUser, prcOperationStatus);
|
---|
669 | switch (pChangeCtx->State)
|
---|
670 | {
|
---|
671 | /*
|
---|
672 | * Check whether we can deal with the CPU, failing the start operation if we
|
---|
673 | * can't. The checks we are doing here are to avoid complicated/impossible
|
---|
674 | * cases in KeProcessorAddCompleteNotify. They are really just verify specs.
|
---|
675 | */
|
---|
676 | case KeProcessorAddStartNotify:
|
---|
677 | {
|
---|
678 | NTSTATUS rcNt = STATUS_SUCCESS;
|
---|
679 | if (pChangeCtx->NtNumber < RTCPUSET_MAX_CPUS)
|
---|
680 | {
|
---|
681 | if (pChangeCtx->NtNumber >= g_cRtMpNtMaxCpus)
|
---|
682 | {
|
---|
683 | DbgPrint("IPRT: KeProcessorAddStartNotify failure: NtNumber=%u is higher than the max CPU count (%u)!\n",
|
---|
684 | pChangeCtx->NtNumber, g_cRtMpNtMaxCpus);
|
---|
685 | rcNt = STATUS_INTERNAL_ERROR;
|
---|
686 | }
|
---|
687 |
|
---|
688 | /* The ProcessNumber field was introduced in Windows 7. */
|
---|
689 | PROCESSOR_NUMBER ProcNum;
|
---|
690 | if (g_pfnrtKeGetProcessorIndexFromNumber)
|
---|
691 | {
|
---|
692 | ProcNum = pChangeCtx->ProcNumber;
|
---|
693 | KEPROCESSORINDEX idxCpu = g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum);
|
---|
694 | if (idxCpu != pChangeCtx->NtNumber)
|
---|
695 | {
|
---|
696 | DbgPrint("IPRT: KeProcessorAddStartNotify failure: g_pfnrtKeGetProcessorIndexFromNumber(%u.%u) -> %u, expected %u!\n",
|
---|
697 | ProcNum.Group, ProcNum.Number, idxCpu, pChangeCtx->NtNumber);
|
---|
698 | rcNt = STATUS_INTERNAL_ERROR;
|
---|
699 | }
|
---|
700 | }
|
---|
701 | else
|
---|
702 | {
|
---|
703 | ProcNum.Group = 0;
|
---|
704 | ProcNum.Number = pChangeCtx->NtNumber;
|
---|
705 | }
|
---|
706 |
|
---|
707 | if ( ProcNum.Group < RT_ELEMENTS(g_aRtMpNtCpuGroups)
|
---|
708 | && ProcNum.Number < RT_ELEMENTS(g_aRtMpNtCpuGroups[0].aidxCpuSetMembers))
|
---|
709 | {
|
---|
710 | if (ProcNum.Group >= g_cRtMpNtMaxGroups)
|
---|
711 | {
|
---|
712 | DbgPrint("IPRT: KeProcessorAddStartNotify failure: %u.%u is out of range - max groups: %u!\n",
|
---|
713 | ProcNum.Group, ProcNum.Number, g_cRtMpNtMaxGroups);
|
---|
714 | rcNt = STATUS_INTERNAL_ERROR;
|
---|
715 | }
|
---|
716 |
|
---|
717 | if (ProcNum.Number < g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus)
|
---|
718 | {
|
---|
719 | Assert(g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] != -1);
|
---|
720 | if (g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] == -1)
|
---|
721 | {
|
---|
722 | DbgPrint("IPRT: KeProcessorAddStartNotify failure: Internal error! %u.%u was assigned -1 as set index!\n",
|
---|
723 | ProcNum.Group, ProcNum.Number);
|
---|
724 | rcNt = STATUS_INTERNAL_ERROR;
|
---|
725 | }
|
---|
726 |
|
---|
727 | Assert(g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] != NIL_RTCPUID);
|
---|
728 | if (g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] == NIL_RTCPUID)
|
---|
729 | {
|
---|
730 | DbgPrint("IPRT: KeProcessorAddStartNotify failure: Internal error! %u (%u.%u) translates to NIL_RTCPUID!\n",
|
---|
731 | pChangeCtx->NtNumber, ProcNum.Group, ProcNum.Number);
|
---|
732 | rcNt = STATUS_INTERNAL_ERROR;
|
---|
733 | }
|
---|
734 | }
|
---|
735 | else
|
---|
736 | {
|
---|
737 | DbgPrint("IPRT: KeProcessorAddStartNotify failure: max processors in group %u is %u, cannot add %u to it!\n",
|
---|
738 | ProcNum.Group, g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus, ProcNum.Group, ProcNum.Number);
|
---|
739 | rcNt = STATUS_INTERNAL_ERROR;
|
---|
740 | }
|
---|
741 | }
|
---|
742 | else
|
---|
743 | {
|
---|
744 | DbgPrint("IPRT: KeProcessorAddStartNotify failure: %u.%u is out of range (max %u.%u)!\n",
|
---|
745 | ProcNum.Group, ProcNum.Number, RT_ELEMENTS(g_aRtMpNtCpuGroups), RT_ELEMENTS(g_aRtMpNtCpuGroups[0].aidxCpuSetMembers));
|
---|
746 | rcNt = STATUS_INTERNAL_ERROR;
|
---|
747 | }
|
---|
748 | }
|
---|
749 | else
|
---|
750 | {
|
---|
751 | DbgPrint("IPRT: KeProcessorAddStartNotify failure: NtNumber=%u is outside RTCPUSET_MAX_CPUS (%u)!\n",
|
---|
752 | pChangeCtx->NtNumber, RTCPUSET_MAX_CPUS);
|
---|
753 | rcNt = STATUS_INTERNAL_ERROR;
|
---|
754 | }
|
---|
755 | if (!NT_SUCCESS(rcNt))
|
---|
756 | *prcOperationStatus = rcNt;
|
---|
757 | break;
|
---|
758 | }
|
---|
759 |
|
---|
760 | /*
|
---|
761 | * Update the globals. Since we've checked out range limits and other
|
---|
762 | * limitations already we just AssertBreak here.
|
---|
763 | */
|
---|
764 | case KeProcessorAddCompleteNotify:
|
---|
765 | {
|
---|
766 | /*
|
---|
767 | * Calc the processor number and assert conditions checked in KeProcessorAddStartNotify.
|
---|
768 | */
|
---|
769 | AssertBreak(pChangeCtx->NtNumber < RTCPUSET_MAX_CPUS);
|
---|
770 | AssertBreak(pChangeCtx->NtNumber < g_cRtMpNtMaxCpus);
|
---|
771 | Assert(pChangeCtx->NtNumber == g_cRtMpNtActiveCpus); /* light assumption */
|
---|
772 | PROCESSOR_NUMBER ProcNum;
|
---|
773 | if (g_pfnrtKeGetProcessorIndexFromNumber)
|
---|
774 | {
|
---|
775 | ProcNum = pChangeCtx->ProcNumber;
|
---|
776 | AssertBreak(g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum) == pChangeCtx->NtNumber);
|
---|
777 | AssertBreak(ProcNum.Group < RT_ELEMENTS(g_aRtMpNtCpuGroups));
|
---|
778 | AssertBreak(ProcNum.Group < g_cRtMpNtMaxGroups);
|
---|
779 | }
|
---|
780 | else
|
---|
781 | {
|
---|
782 | ProcNum.Group = 0;
|
---|
783 | ProcNum.Number = pChangeCtx->NtNumber;
|
---|
784 | }
|
---|
785 | AssertBreak(ProcNum.Number < RT_ELEMENTS(g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers));
|
---|
786 | AssertBreak(ProcNum.Number < g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus);
|
---|
787 | AssertBreak(g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] != -1);
|
---|
788 | AssertBreak(g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] != NIL_RTCPUID);
|
---|
789 |
|
---|
790 | /*
|
---|
791 | * Add ourselves to the online CPU set and update the active CPU count.
|
---|
792 | */
|
---|
793 | RTCpuSetAddByIndex(&g_rtMpNtCpuSet, pChangeCtx->NtNumber);
|
---|
794 | ASMAtomicIncU32(&g_cRtMpNtActiveCpus);
|
---|
795 |
|
---|
796 | /*
|
---|
797 | * Update the group info.
|
---|
798 | *
|
---|
799 | * If the index prediction failed (real hotplugging callbacks only) we
|
---|
800 | * have to switch it around. This is particularly annoying when we
|
---|
801 | * use the index as the ID.
|
---|
802 | */
|
---|
803 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
804 | RTCPUID idCpu = RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
|
---|
805 | RTCPUID idOld = g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber];
|
---|
806 | if ((idOld & ~RTMPNT_ID_F_INACTIVE) != idCpu)
|
---|
807 | {
|
---|
808 | Assert(idOld & RTMPNT_ID_F_INACTIVE);
|
---|
809 | int idxDest = g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number];
|
---|
810 | g_aRtMpNtCpuGroups[rtMpCpuIdGetGroup(idOld)].aidxCpuSetMembers[rtMpCpuIdGetGroupMember(idOld)] = idxDest;
|
---|
811 | g_aidRtMpNtByCpuSetIdx[idxDest] = idOld;
|
---|
812 | }
|
---|
813 | g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] = idCpu;
|
---|
814 | #else
|
---|
815 | Assert(g_aidRtMpNtByCpuSetIdx[pChangeCtx->NtNumber] == pChangeCtx->NtNumber);
|
---|
816 | int idxDest = g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number];
|
---|
817 | if ((ULONG)idxDest != pChangeCtx->NtNumber)
|
---|
818 | {
|
---|
819 | bool fFound = false;
|
---|
820 | uint32_t idxOldGroup = g_cRtMpNtMaxGroups;
|
---|
821 | while (idxOldGroup-- > 0 && !fFound)
|
---|
822 | {
|
---|
823 | uint32_t idxMember = g_aRtMpNtCpuGroups[idxOldGroup].cMaxCpus;
|
---|
824 | while (idxMember-- > 0)
|
---|
825 | if (g_aRtMpNtCpuGroups[idxOldGroup].aidxCpuSetMembers[idxMember] == (int)pChangeCtx->NtNumber)
|
---|
826 | {
|
---|
827 | g_aRtMpNtCpuGroups[idxOldGroup].aidxCpuSetMembers[idxMember] = idxDest;
|
---|
828 | fFound = true;
|
---|
829 | break;
|
---|
830 | }
|
---|
831 | }
|
---|
832 | Assert(fFound);
|
---|
833 | }
|
---|
834 | #endif
|
---|
835 | g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] = pChangeCtx->NtNumber;
|
---|
836 |
|
---|
837 | /*
|
---|
838 | * Do MP notification callbacks.
|
---|
839 | */
|
---|
840 | rtMpNotificationDoCallbacks(RTMPEVENT_ONLINE, pChangeCtx->NtNumber);
|
---|
841 | break;
|
---|
842 | }
|
---|
843 |
|
---|
844 | case KeProcessorAddFailureNotify:
|
---|
845 | /* ignore */
|
---|
846 | break;
|
---|
847 |
|
---|
848 | default:
|
---|
849 | AssertMsgFailed(("State=%u\n", pChangeCtx->State));
|
---|
850 | }
|
---|
851 | }
|
---|
852 |
|
---|
853 |
|
---|
854 | /**
|
---|
855 | * Wrapper around KeQueryLogicalProcessorRelationship.
|
---|
856 | *
|
---|
857 | * @returns IPRT status code.
|
---|
858 | * @param ppInfo Where to return the info. Pass to RTMemFree when done.
|
---|
859 | */
|
---|
860 | static int rtR0NtInitQueryGroupRelations(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX **ppInfo)
|
---|
861 | {
|
---|
862 | ULONG cbInfo = sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX)
|
---|
863 | + g_cRtMpNtMaxGroups * sizeof(GROUP_RELATIONSHIP);
|
---|
864 | NTSTATUS rcNt;
|
---|
865 | do
|
---|
866 | {
|
---|
867 | SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *pInfo = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)RTMemAlloc(cbInfo);
|
---|
868 | if (pInfo)
|
---|
869 | {
|
---|
870 | rcNt = g_pfnrtKeQueryLogicalProcessorRelationship(NULL /*pProcNumber*/, RelationGroup, pInfo, &cbInfo);
|
---|
871 | if (NT_SUCCESS(rcNt))
|
---|
872 | {
|
---|
873 | *ppInfo = pInfo;
|
---|
874 | return VINF_SUCCESS;
|
---|
875 | }
|
---|
876 |
|
---|
877 | RTMemFree(pInfo);
|
---|
878 | pInfo = NULL;
|
---|
879 | }
|
---|
880 | else
|
---|
881 | rcNt = STATUS_NO_MEMORY;
|
---|
882 | } while (rcNt == STATUS_INFO_LENGTH_MISMATCH);
|
---|
883 | DbgPrint("IPRT: Fatal: KeQueryLogicalProcessorRelationship failed: %#x\n", rcNt);
|
---|
884 | AssertMsgFailed(("KeQueryLogicalProcessorRelationship failed: %#x\n", rcNt));
|
---|
885 | return RTErrConvertFromNtStatus(rcNt);
|
---|
886 | }
|
---|
887 |
|
---|
888 |
|
---|
889 |
|
---|
890 |
|
---|
891 |
|
---|
892 | RTDECL(RTCPUID) RTMpCpuId(void)
|
---|
893 | {
|
---|
894 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
895 |
|
---|
896 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
897 | PROCESSOR_NUMBER ProcNum;
|
---|
898 | ProcNum.Group = 0;
|
---|
899 | if (g_pfnrtKeGetCurrentProcessorNumberEx)
|
---|
900 | {
|
---|
901 | ProcNum.Number = 0;
|
---|
902 | g_pfnrtKeGetCurrentProcessorNumberEx(&ProcNum);
|
---|
903 | }
|
---|
904 | else
|
---|
905 | ProcNum.Number = KeGetCurrentProcessorNumber(); /* Number is 8-bit, so we're not subject to BYTE -> WORD upgrade in WDK. */
|
---|
906 | return RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
|
---|
907 |
|
---|
908 | #else
|
---|
909 |
|
---|
910 | if (g_pfnrtKeGetCurrentProcessorNumberEx)
|
---|
911 | {
|
---|
912 | KEPROCESSORINDEX idxCpu = g_pfnrtKeGetCurrentProcessorNumberEx(NULL);
|
---|
913 | Assert(idxCpu < RTCPUSET_MAX_CPUS);
|
---|
914 | return idxCpu;
|
---|
915 | }
|
---|
916 |
|
---|
917 | return (uint8_t)KeGetCurrentProcessorNumber(); /* PCR->Number was changed from BYTE to WORD in the WDK, thus the cast. */
|
---|
918 | #endif
|
---|
919 | }
|
---|
920 |
|
---|
921 |
|
---|
922 | RTDECL(int) RTMpCurSetIndex(void)
|
---|
923 | {
|
---|
924 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
925 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
926 |
|
---|
927 | if (g_pfnrtKeGetCurrentProcessorNumberEx)
|
---|
928 | {
|
---|
929 | KEPROCESSORINDEX idxCpu = g_pfnrtKeGetCurrentProcessorNumberEx(NULL);
|
---|
930 | Assert(idxCpu < RTCPUSET_MAX_CPUS);
|
---|
931 | return idxCpu;
|
---|
932 | }
|
---|
933 | return (uint8_t)KeGetCurrentProcessorNumber(); /* PCR->Number was changed from BYTE to WORD in the WDK, thus the cast. */
|
---|
934 | #else
|
---|
935 | return (int)RTMpCpuId();
|
---|
936 | #endif
|
---|
937 | }
|
---|
938 |
|
---|
939 |
|
---|
940 | RTDECL(int) RTMpCurSetIndexAndId(PRTCPUID pidCpu)
|
---|
941 | {
|
---|
942 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
943 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
944 |
|
---|
945 | PROCESSOR_NUMBER ProcNum = { 0 , 0, 0 };
|
---|
946 | KEPROCESSORINDEX idxCpu = g_pfnrtKeGetCurrentProcessorNumberEx(&ProcNum);
|
---|
947 | Assert(idxCpu < RTCPUSET_MAX_CPUS);
|
---|
948 | *pidCpu = RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
|
---|
949 | return idxCpu;
|
---|
950 | #else
|
---|
951 | return *pidCpu = RTMpCpuId();
|
---|
952 | #endif
|
---|
953 | }
|
---|
954 |
|
---|
955 |
|
---|
956 | RTDECL(int) RTMpCpuIdToSetIndex(RTCPUID idCpu)
|
---|
957 | {
|
---|
958 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
959 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
960 |
|
---|
961 | if (idCpu != NIL_RTCPUID)
|
---|
962 | {
|
---|
963 | if (g_pfnrtKeGetProcessorIndexFromNumber)
|
---|
964 | {
|
---|
965 | PROCESSOR_NUMBER ProcNum;
|
---|
966 | ProcNum.Group = rtMpCpuIdGetGroup(idCpu);
|
---|
967 | ProcNum.Number = rtMpCpuIdGetGroupMember(idCpu);
|
---|
968 | ProcNum.Reserved = 0;
|
---|
969 | KEPROCESSORINDEX idxCpu = g_pfnrtKeGetProcessorIndexFromNumber(&ProcNum);
|
---|
970 | if (idxCpu != INVALID_PROCESSOR_INDEX)
|
---|
971 | {
|
---|
972 | Assert(idxCpu < g_cRtMpNtMaxCpus);
|
---|
973 | Assert((ULONG)g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number] == idxCpu);
|
---|
974 | return idxCpu;
|
---|
975 | }
|
---|
976 |
|
---|
977 | /* Since NT assigned indexes as the CPUs come online, we cannot produce an ID <-> index
|
---|
978 | mapping for not-yet-onlined CPUS that is consistent. We just have to do our best... */
|
---|
979 | if ( ProcNum.Group < g_cRtMpNtMaxGroups
|
---|
980 | && ProcNum.Number < g_aRtMpNtCpuGroups[ProcNum.Group].cMaxCpus)
|
---|
981 | return g_aRtMpNtCpuGroups[ProcNum.Group].aidxCpuSetMembers[ProcNum.Number];
|
---|
982 | }
|
---|
983 | else if (rtMpCpuIdGetGroup(idCpu) == 0)
|
---|
984 | return rtMpCpuIdGetGroupMember(idCpu);
|
---|
985 | }
|
---|
986 | return -1;
|
---|
987 | #else
|
---|
988 | /* 1:1 mapping, just do range checks. */
|
---|
989 | return idCpu < RTCPUSET_MAX_CPUS ? (int)idCpu : -1;
|
---|
990 | #endif
|
---|
991 | }
|
---|
992 |
|
---|
993 |
|
---|
994 | RTDECL(RTCPUID) RTMpCpuIdFromSetIndex(int iCpu)
|
---|
995 | {
|
---|
996 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
997 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
998 |
|
---|
999 | if ((unsigned)iCpu < g_cRtMpNtMaxCpus)
|
---|
1000 | {
|
---|
1001 | if (g_pfnrtKeGetProcessorIndexFromNumber)
|
---|
1002 | {
|
---|
1003 | PROCESSOR_NUMBER ProcNum = { 0, 0, 0 };
|
---|
1004 | NTSTATUS rcNt = g_pfnrtKeGetProcessorNumberFromIndex(iCpu, &ProcNum);
|
---|
1005 | if (NT_SUCCESS(rcNt))
|
---|
1006 | {
|
---|
1007 | Assert(ProcNum.Group <= g_cRtMpNtMaxGroups);
|
---|
1008 | Assert( (g_aidRtMpNtByCpuSetIdx[iCpu] & ~RTMPNT_ID_F_INACTIVE)
|
---|
1009 | == RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number));
|
---|
1010 | return RTMPCPUID_FROM_GROUP_AND_NUMBER(ProcNum.Group, ProcNum.Number);
|
---|
1011 | }
|
---|
1012 | }
|
---|
1013 | return g_aidRtMpNtByCpuSetIdx[iCpu];
|
---|
1014 | }
|
---|
1015 | return NIL_RTCPUID;
|
---|
1016 | #else
|
---|
1017 | /* 1:1 mapping, just do range checks. */
|
---|
1018 | return (unsigned)iCpu < RTCPUSET_MAX_CPUS ? iCpu : NIL_RTCPUID;
|
---|
1019 | #endif
|
---|
1020 | }
|
---|
1021 |
|
---|
1022 |
|
---|
1023 | RTDECL(int) RTMpSetIndexFromCpuGroupMember(uint32_t idxGroup, uint32_t idxMember)
|
---|
1024 | {
|
---|
1025 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
1026 |
|
---|
1027 | if (idxGroup < g_cRtMpNtMaxGroups)
|
---|
1028 | if (idxMember < g_aRtMpNtCpuGroups[idxGroup].cMaxCpus)
|
---|
1029 | return g_aRtMpNtCpuGroups[idxGroup].aidxCpuSetMembers[idxMember];
|
---|
1030 | return -1;
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 |
|
---|
1034 | RTDECL(uint32_t) RTMpGetCpuGroupCounts(uint32_t idxGroup, uint32_t *pcActive)
|
---|
1035 | {
|
---|
1036 | if (idxGroup < g_cRtMpNtMaxGroups)
|
---|
1037 | {
|
---|
1038 | if (pcActive)
|
---|
1039 | *pcActive = g_aRtMpNtCpuGroups[idxGroup].cActiveCpus;
|
---|
1040 | return g_aRtMpNtCpuGroups[idxGroup].cMaxCpus;
|
---|
1041 | }
|
---|
1042 | if (pcActive)
|
---|
1043 | *pcActive = 0;
|
---|
1044 | return 0;
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 |
|
---|
1048 | RTDECL(uint32_t) RTMpGetMaxCpuGroupCount(void)
|
---|
1049 | {
|
---|
1050 | return g_cRtMpNtMaxGroups;
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 |
|
---|
1054 | RTDECL(RTCPUID) RTMpGetMaxCpuId(void)
|
---|
1055 | {
|
---|
1056 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
1057 |
|
---|
1058 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
1059 | return RTMPCPUID_FROM_GROUP_AND_NUMBER(g_cRtMpNtMaxGroups - 1, g_aRtMpNtCpuGroups[g_cRtMpNtMaxGroups - 1].cMaxCpus - 1);
|
---|
1060 | #else
|
---|
1061 | /* According to MSDN the processor indexes goes from 0 to the maximum
|
---|
1062 | number of CPUs in the system. We've check this in initterm-r0drv-nt.cpp. */
|
---|
1063 | return g_cRtMpNtMaxCpus - 1;
|
---|
1064 | #endif
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 |
|
---|
1068 | RTDECL(bool) RTMpIsCpuOnline(RTCPUID idCpu)
|
---|
1069 | {
|
---|
1070 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
1071 | return RTCpuSetIsMember(&g_rtMpNtCpuSet, idCpu);
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 |
|
---|
1075 | RTDECL(bool) RTMpIsCpuPossible(RTCPUID idCpu)
|
---|
1076 | {
|
---|
1077 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
1078 |
|
---|
1079 | #ifdef IPRT_WITH_RTCPUID_AS_GROUP_AND_NUMBER
|
---|
1080 | if (idCpu != NIL_RTCPUID)
|
---|
1081 | {
|
---|
1082 | unsigned idxGroup = rtMpCpuIdGetGroup(idCpu);
|
---|
1083 | if (idxGroup < g_cRtMpNtMaxGroups)
|
---|
1084 | return rtMpCpuIdGetGroupMember(idCpu) < g_aRtMpNtCpuGroups[idxGroup].cMaxCpus;
|
---|
1085 | }
|
---|
1086 | return false;
|
---|
1087 |
|
---|
1088 | #else
|
---|
1089 | /* A possible CPU ID is one with a value lower than g_cRtMpNtMaxCpus (see
|
---|
1090 | comment in RTMpGetMaxCpuId). */
|
---|
1091 | return idCpu < g_cRtMpNtMaxCpus;
|
---|
1092 | #endif
|
---|
1093 | }
|
---|
1094 |
|
---|
1095 |
|
---|
1096 |
|
---|
1097 | RTDECL(PRTCPUSET) RTMpGetSet(PRTCPUSET pSet)
|
---|
1098 | {
|
---|
1099 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
1100 |
|
---|
1101 | /* The set of possible CPU IDs(/indexes) are from 0 up to
|
---|
1102 | g_cRtMpNtMaxCpus (see comment in RTMpGetMaxCpuId). */
|
---|
1103 | RTCpuSetEmpty(pSet);
|
---|
1104 | int idxCpu = g_cRtMpNtMaxCpus;
|
---|
1105 | while (idxCpu-- > 0)
|
---|
1106 | RTCpuSetAddByIndex(pSet, idxCpu);
|
---|
1107 | return pSet;
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 |
|
---|
1111 | RTDECL(RTCPUID) RTMpGetCount(void)
|
---|
1112 | {
|
---|
1113 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
1114 | return g_cRtMpNtMaxCpus;
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 |
|
---|
1118 | RTDECL(PRTCPUSET) RTMpGetOnlineSet(PRTCPUSET pSet)
|
---|
1119 | {
|
---|
1120 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
1121 |
|
---|
1122 | *pSet = g_rtMpNtCpuSet;
|
---|
1123 | return pSet;
|
---|
1124 | }
|
---|
1125 |
|
---|
1126 |
|
---|
1127 | RTDECL(RTCPUID) RTMpGetOnlineCount(void)
|
---|
1128 | {
|
---|
1129 | RTCPUSET Set;
|
---|
1130 | RTMpGetOnlineSet(&Set);
|
---|
1131 | return RTCpuSetCount(&Set);
|
---|
1132 | }
|
---|
1133 |
|
---|
1134 |
|
---|
1135 | RTDECL(RTCPUID) RTMpGetOnlineCoreCount(void)
|
---|
1136 | {
|
---|
1137 | /** @todo fix me */
|
---|
1138 | return RTMpGetOnlineCount();
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 |
|
---|
1142 |
|
---|
1143 | #if 0
|
---|
1144 | /* Experiment with checking the undocumented KPRCB structure
|
---|
1145 | * 'dt nt!_kprcb 0xaddress' shows the layout
|
---|
1146 | */
|
---|
1147 | typedef struct
|
---|
1148 | {
|
---|
1149 | LIST_ENTRY DpcListHead;
|
---|
1150 | ULONG_PTR DpcLock;
|
---|
1151 | volatile ULONG DpcQueueDepth;
|
---|
1152 | ULONG DpcQueueCount;
|
---|
1153 | } KDPC_DATA, *PKDPC_DATA;
|
---|
1154 |
|
---|
1155 | RTDECL(bool) RTMpIsCpuWorkPending(void)
|
---|
1156 | {
|
---|
1157 | uint8_t *pkprcb;
|
---|
1158 | PKDPC_DATA pDpcData;
|
---|
1159 |
|
---|
1160 | _asm {
|
---|
1161 | mov eax, fs:0x20
|
---|
1162 | mov pkprcb, eax
|
---|
1163 | }
|
---|
1164 | pDpcData = (PKDPC_DATA)(pkprcb + 0x19e0);
|
---|
1165 | if (pDpcData->DpcQueueDepth)
|
---|
1166 | return true;
|
---|
1167 |
|
---|
1168 | pDpcData++;
|
---|
1169 | if (pDpcData->DpcQueueDepth)
|
---|
1170 | return true;
|
---|
1171 | return false;
|
---|
1172 | }
|
---|
1173 | #else
|
---|
1174 | RTDECL(bool) RTMpIsCpuWorkPending(void)
|
---|
1175 | {
|
---|
1176 | /** @todo not implemented */
|
---|
1177 | return false;
|
---|
1178 | }
|
---|
1179 | #endif
|
---|
1180 |
|
---|
1181 |
|
---|
1182 | /**
|
---|
1183 | * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
|
---|
1184 | * the RTMpOnAll case.
|
---|
1185 | *
|
---|
1186 | * @param uUserCtx The user context argument (PRTMPARGS).
|
---|
1187 | */
|
---|
1188 | static ULONG_PTR rtmpNtOnAllBroadcastIpiWrapper(ULONG_PTR uUserCtx)
|
---|
1189 | {
|
---|
1190 | PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
|
---|
1191 | /*ASMAtomicIncU32(&pArgs->cHits); - not needed */
|
---|
1192 | pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2);
|
---|
1193 | return 0;
|
---|
1194 | }
|
---|
1195 |
|
---|
1196 |
|
---|
1197 | /**
|
---|
1198 | * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
|
---|
1199 | * the RTMpOnOthers case.
|
---|
1200 | *
|
---|
1201 | * @param uUserCtx The user context argument (PRTMPARGS).
|
---|
1202 | */
|
---|
1203 | static ULONG_PTR rtmpNtOnOthersBroadcastIpiWrapper(ULONG_PTR uUserCtx)
|
---|
1204 | {
|
---|
1205 | PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
|
---|
1206 | RTCPUID idCpu = RTMpCpuId();
|
---|
1207 | if (pArgs->idCpu != idCpu)
|
---|
1208 | {
|
---|
1209 | /*ASMAtomicIncU32(&pArgs->cHits); - not needed */
|
---|
1210 | pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
|
---|
1211 | }
|
---|
1212 | return 0;
|
---|
1213 | }
|
---|
1214 |
|
---|
1215 |
|
---|
1216 | /**
|
---|
1217 | * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
|
---|
1218 | * the RTMpOnPair case.
|
---|
1219 | *
|
---|
1220 | * @param uUserCtx The user context argument (PRTMPARGS).
|
---|
1221 | */
|
---|
1222 | static ULONG_PTR rtmpNtOnPairBroadcastIpiWrapper(ULONG_PTR uUserCtx)
|
---|
1223 | {
|
---|
1224 | PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
|
---|
1225 | RTCPUID idCpu = RTMpCpuId();
|
---|
1226 | if ( pArgs->idCpu == idCpu
|
---|
1227 | || pArgs->idCpu2 == idCpu)
|
---|
1228 | {
|
---|
1229 | ASMAtomicIncU32(&pArgs->cHits);
|
---|
1230 | pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
|
---|
1231 | }
|
---|
1232 | return 0;
|
---|
1233 | }
|
---|
1234 |
|
---|
1235 |
|
---|
1236 | /**
|
---|
1237 | * Wrapper between the native KIPI_BROADCAST_WORKER and IPRT's PFNRTMPWORKER for
|
---|
1238 | * the RTMpOnSpecific case.
|
---|
1239 | *
|
---|
1240 | * @param uUserCtx The user context argument (PRTMPARGS).
|
---|
1241 | */
|
---|
1242 | static ULONG_PTR rtmpNtOnSpecificBroadcastIpiWrapper(ULONG_PTR uUserCtx)
|
---|
1243 | {
|
---|
1244 | PRTMPARGS pArgs = (PRTMPARGS)uUserCtx;
|
---|
1245 | RTCPUID idCpu = RTMpCpuId();
|
---|
1246 | if (pArgs->idCpu == idCpu)
|
---|
1247 | {
|
---|
1248 | ASMAtomicIncU32(&pArgs->cHits);
|
---|
1249 | pArgs->pfnWorker(idCpu, pArgs->pvUser1, pArgs->pvUser2);
|
---|
1250 | }
|
---|
1251 | return 0;
|
---|
1252 | }
|
---|
1253 |
|
---|
1254 |
|
---|
1255 | /**
|
---|
1256 | * Internal worker for the RTMpOn* APIs using KeIpiGenericCall.
|
---|
1257 | *
|
---|
1258 | * @returns VINF_SUCCESS.
|
---|
1259 | * @param pfnWorker The callback.
|
---|
1260 | * @param pvUser1 User argument 1.
|
---|
1261 | * @param pvUser2 User argument 2.
|
---|
1262 | * @param pfnNativeWrapper The wrapper between the NT and IPRT callbacks.
|
---|
1263 | * @param idCpu First CPU to match, ultimately specific to the
|
---|
1264 | * pfnNativeWrapper used.
|
---|
1265 | * @param idCpu2 Second CPU to match, ultimately specific to the
|
---|
1266 | * pfnNativeWrapper used.
|
---|
1267 | * @param pcHits Where to return the number of this. Optional.
|
---|
1268 | */
|
---|
1269 | static int rtMpCallUsingBroadcastIpi(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2,
|
---|
1270 | PKIPI_BROADCAST_WORKER pfnNativeWrapper, RTCPUID idCpu, RTCPUID idCpu2,
|
---|
1271 | uint32_t *pcHits)
|
---|
1272 | {
|
---|
1273 | RTMPARGS Args;
|
---|
1274 | Args.pfnWorker = pfnWorker;
|
---|
1275 | Args.pvUser1 = pvUser1;
|
---|
1276 | Args.pvUser2 = pvUser2;
|
---|
1277 | Args.idCpu = idCpu;
|
---|
1278 | Args.idCpu2 = idCpu2;
|
---|
1279 | Args.cRefs = 0;
|
---|
1280 | Args.cHits = 0;
|
---|
1281 |
|
---|
1282 | AssertPtr(g_pfnrtKeIpiGenericCall);
|
---|
1283 | g_pfnrtKeIpiGenericCall(pfnNativeWrapper, (uintptr_t)&Args);
|
---|
1284 | if (pcHits)
|
---|
1285 | *pcHits = Args.cHits;
|
---|
1286 | return VINF_SUCCESS;
|
---|
1287 | }
|
---|
1288 |
|
---|
1289 |
|
---|
1290 | /**
|
---|
1291 | * Wrapper between the native nt per-cpu callbacks and PFNRTWORKER
|
---|
1292 | *
|
---|
1293 | * @param Dpc DPC object
|
---|
1294 | * @param DeferredContext Context argument specified by KeInitializeDpc
|
---|
1295 | * @param SystemArgument1 Argument specified by KeInsertQueueDpc
|
---|
1296 | * @param SystemArgument2 Argument specified by KeInsertQueueDpc
|
---|
1297 | */
|
---|
1298 | static VOID rtmpNtDPCWrapper(IN PKDPC Dpc, IN PVOID DeferredContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2)
|
---|
1299 | {
|
---|
1300 | PRTMPARGS pArgs = (PRTMPARGS)DeferredContext;
|
---|
1301 | RT_NOREF3(Dpc, SystemArgument1, SystemArgument2);
|
---|
1302 |
|
---|
1303 | ASMAtomicIncU32(&pArgs->cHits);
|
---|
1304 | pArgs->pfnWorker(RTMpCpuId(), pArgs->pvUser1, pArgs->pvUser2);
|
---|
1305 |
|
---|
1306 | /* Dereference the argument structure. */
|
---|
1307 | int32_t cRefs = ASMAtomicDecS32(&pArgs->cRefs);
|
---|
1308 | Assert(cRefs >= 0);
|
---|
1309 | if (cRefs == 0)
|
---|
1310 | RTMemFree(pArgs);
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 |
|
---|
1314 | /**
|
---|
1315 | * Wrapper around KeSetTargetProcessorDpcEx / KeSetTargetProcessorDpc.
|
---|
1316 | *
|
---|
1317 | * This is shared with the timer code.
|
---|
1318 | *
|
---|
1319 | * @returns IPRT status code (errors are asserted).
|
---|
1320 | * @param pDpc The DPC.
|
---|
1321 | * @param idCpu The ID of the new target CPU.
|
---|
1322 | */
|
---|
1323 | DECLHIDDEN(int) rtMpNtSetTargetProcessorDpc(KDPC *pDpc, RTCPUID idCpu)
|
---|
1324 | {
|
---|
1325 | if (g_pfnrtKeSetTargetProcessorDpcEx)
|
---|
1326 | {
|
---|
1327 | /* Convert to stupid process number (bet KeSetTargetProcessorDpcEx does
|
---|
1328 | the reverse conversion internally). */
|
---|
1329 | PROCESSOR_NUMBER ProcNum;
|
---|
1330 | NTSTATUS rcNt = g_pfnrtKeGetProcessorNumberFromIndex(RTMpCpuIdToSetIndex(idCpu), &ProcNum);
|
---|
1331 | AssertMsgReturn(NT_SUCCESS(rcNt),
|
---|
1332 | ("KeGetProcessorNumberFromIndex(%u) -> %#x\n", idCpu, rcNt),
|
---|
1333 | RTErrConvertFromNtStatus(rcNt));
|
---|
1334 |
|
---|
1335 | rcNt = g_pfnrtKeSetTargetProcessorDpcEx(pDpc, &ProcNum);
|
---|
1336 | AssertMsgReturn(NT_SUCCESS(rcNt),
|
---|
1337 | ("KeSetTargetProcessorDpcEx(,%u(%u/%u)) -> %#x\n", idCpu, ProcNum.Group, ProcNum.Number, rcNt),
|
---|
1338 | RTErrConvertFromNtStatus(rcNt));
|
---|
1339 | }
|
---|
1340 | else
|
---|
1341 | KeSetTargetProcessorDpc(pDpc, RTMpCpuIdToSetIndex(idCpu));
|
---|
1342 | return VINF_SUCCESS;
|
---|
1343 | }
|
---|
1344 |
|
---|
1345 |
|
---|
1346 | /**
|
---|
1347 | * Internal worker for the RTMpOn* APIs.
|
---|
1348 | *
|
---|
1349 | * @returns IPRT status code.
|
---|
1350 | * @param pfnWorker The callback.
|
---|
1351 | * @param pvUser1 User argument 1.
|
---|
1352 | * @param pvUser2 User argument 2.
|
---|
1353 | * @param enmCpuid What to do / is idCpu valid.
|
---|
1354 | * @param idCpu Used if enmCpuid is RT_NT_CPUID_SPECIFIC or
|
---|
1355 | * RT_NT_CPUID_PAIR, otherwise ignored.
|
---|
1356 | * @param idCpu2 Used if enmCpuid is RT_NT_CPUID_PAIR, otherwise ignored.
|
---|
1357 | * @param pcHits Where to return the number of this. Optional.
|
---|
1358 | */
|
---|
1359 | static int rtMpCallUsingDpcs(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2,
|
---|
1360 | RT_NT_CPUID enmCpuid, RTCPUID idCpu, RTCPUID idCpu2, uint32_t *pcHits)
|
---|
1361 | {
|
---|
1362 | #if 0
|
---|
1363 | /* KeFlushQueuedDpcs must be run at IRQL PASSIVE_LEVEL according to MSDN, but the
|
---|
1364 | * driver verifier doesn't complain...
|
---|
1365 | */
|
---|
1366 | AssertMsg(KeGetCurrentIrql() == PASSIVE_LEVEL, ("%d != %d (PASSIVE_LEVEL)\n", KeGetCurrentIrql(), PASSIVE_LEVEL));
|
---|
1367 | #endif
|
---|
1368 | /* KeFlushQueuedDpcs is not present in Windows 2000; import it dynamically so we can just fail this call. */
|
---|
1369 | if (!g_pfnrtNtKeFlushQueuedDpcs)
|
---|
1370 | return VERR_NOT_SUPPORTED;
|
---|
1371 |
|
---|
1372 | /*
|
---|
1373 | * Make a copy of the active CPU set and figure out how many KDPCs we really need.
|
---|
1374 | * We must not try setup DPCs for CPUs which aren't there, because that may fail.
|
---|
1375 | */
|
---|
1376 | RTCPUSET OnlineSet = g_rtMpNtCpuSet;
|
---|
1377 | uint32_t cDpcsNeeded;
|
---|
1378 | switch (enmCpuid)
|
---|
1379 | {
|
---|
1380 | case RT_NT_CPUID_SPECIFIC:
|
---|
1381 | cDpcsNeeded = 1;
|
---|
1382 | break;
|
---|
1383 | case RT_NT_CPUID_PAIR:
|
---|
1384 | cDpcsNeeded = 2;
|
---|
1385 | break;
|
---|
1386 | default:
|
---|
1387 | do
|
---|
1388 | {
|
---|
1389 | cDpcsNeeded = g_cRtMpNtActiveCpus;
|
---|
1390 | OnlineSet = g_rtMpNtCpuSet;
|
---|
1391 | } while (cDpcsNeeded != g_cRtMpNtActiveCpus);
|
---|
1392 | break;
|
---|
1393 | }
|
---|
1394 |
|
---|
1395 | /*
|
---|
1396 | * Allocate an RTMPARGS structure followed by cDpcsNeeded KDPCs
|
---|
1397 | * and initialize them.
|
---|
1398 | */
|
---|
1399 | PRTMPARGS pArgs = (PRTMPARGS)RTMemAllocZ(sizeof(RTMPARGS) + cDpcsNeeded * sizeof(KDPC));
|
---|
1400 | if (!pArgs)
|
---|
1401 | return VERR_NO_MEMORY;
|
---|
1402 |
|
---|
1403 | pArgs->pfnWorker = pfnWorker;
|
---|
1404 | pArgs->pvUser1 = pvUser1;
|
---|
1405 | pArgs->pvUser2 = pvUser2;
|
---|
1406 | pArgs->idCpu = NIL_RTCPUID;
|
---|
1407 | pArgs->idCpu2 = NIL_RTCPUID;
|
---|
1408 | pArgs->cHits = 0;
|
---|
1409 | pArgs->cRefs = 1;
|
---|
1410 |
|
---|
1411 | int rc;
|
---|
1412 | KDPC *paExecCpuDpcs = (KDPC *)(pArgs + 1);
|
---|
1413 | if (enmCpuid == RT_NT_CPUID_SPECIFIC)
|
---|
1414 | {
|
---|
1415 | KeInitializeDpc(&paExecCpuDpcs[0], rtmpNtDPCWrapper, pArgs);
|
---|
1416 | KeSetImportanceDpc(&paExecCpuDpcs[0], HighImportance);
|
---|
1417 | rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[0], idCpu);
|
---|
1418 | pArgs->idCpu = idCpu;
|
---|
1419 | }
|
---|
1420 | else if (enmCpuid == RT_NT_CPUID_PAIR)
|
---|
1421 | {
|
---|
1422 | KeInitializeDpc(&paExecCpuDpcs[0], rtmpNtDPCWrapper, pArgs);
|
---|
1423 | KeSetImportanceDpc(&paExecCpuDpcs[0], HighImportance);
|
---|
1424 | rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[0], idCpu);
|
---|
1425 | pArgs->idCpu = idCpu;
|
---|
1426 |
|
---|
1427 | KeInitializeDpc(&paExecCpuDpcs[1], rtmpNtDPCWrapper, pArgs);
|
---|
1428 | KeSetImportanceDpc(&paExecCpuDpcs[1], HighImportance);
|
---|
1429 | if (RT_SUCCESS(rc))
|
---|
1430 | rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[1], (int)idCpu2);
|
---|
1431 | pArgs->idCpu2 = idCpu2;
|
---|
1432 | }
|
---|
1433 | else
|
---|
1434 | {
|
---|
1435 | rc = VINF_SUCCESS;
|
---|
1436 | for (uint32_t i = 0; i < cDpcsNeeded && RT_SUCCESS(rc); i++)
|
---|
1437 | if (RTCpuSetIsMemberByIndex(&OnlineSet, i))
|
---|
1438 | {
|
---|
1439 | KeInitializeDpc(&paExecCpuDpcs[i], rtmpNtDPCWrapper, pArgs);
|
---|
1440 | KeSetImportanceDpc(&paExecCpuDpcs[i], HighImportance);
|
---|
1441 | rc = rtMpNtSetTargetProcessorDpc(&paExecCpuDpcs[i], RTMpCpuIdFromSetIndex(i));
|
---|
1442 | }
|
---|
1443 | }
|
---|
1444 | if (RT_FAILURE(rc))
|
---|
1445 | {
|
---|
1446 | RTMemFree(pArgs);
|
---|
1447 | return rc;
|
---|
1448 | }
|
---|
1449 |
|
---|
1450 | /*
|
---|
1451 | * Raise the IRQL to DISPATCH_LEVEL so we can't be rescheduled to another cpu.
|
---|
1452 | * KeInsertQueueDpc must also be executed at IRQL >= DISPATCH_LEVEL.
|
---|
1453 | */
|
---|
1454 | KIRQL oldIrql;
|
---|
1455 | KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);
|
---|
1456 |
|
---|
1457 | /*
|
---|
1458 | * We cannot do other than assume a 1:1 relationship between the
|
---|
1459 | * affinity mask and the process despite the warnings in the docs.
|
---|
1460 | * If someone knows a better way to get this done, please let bird know.
|
---|
1461 | */
|
---|
1462 | ASMCompilerBarrier(); /* paranoia */
|
---|
1463 | if (enmCpuid == RT_NT_CPUID_SPECIFIC)
|
---|
1464 | {
|
---|
1465 | ASMAtomicIncS32(&pArgs->cRefs);
|
---|
1466 | BOOLEAN fRc = KeInsertQueueDpc(&paExecCpuDpcs[0], 0, 0);
|
---|
1467 | Assert(fRc); NOREF(fRc);
|
---|
1468 | }
|
---|
1469 | else if (enmCpuid == RT_NT_CPUID_PAIR)
|
---|
1470 | {
|
---|
1471 | ASMAtomicIncS32(&pArgs->cRefs);
|
---|
1472 | BOOLEAN fRc = KeInsertQueueDpc(&paExecCpuDpcs[0], 0, 0);
|
---|
1473 | Assert(fRc); NOREF(fRc);
|
---|
1474 |
|
---|
1475 | ASMAtomicIncS32(&pArgs->cRefs);
|
---|
1476 | fRc = KeInsertQueueDpc(&paExecCpuDpcs[1], 0, 0);
|
---|
1477 | Assert(fRc); NOREF(fRc);
|
---|
1478 | }
|
---|
1479 | else
|
---|
1480 | {
|
---|
1481 | uint32_t iSelf = RTMpCurSetIndex();
|
---|
1482 | for (uint32_t i = 0; i < cDpcsNeeded; i++)
|
---|
1483 | {
|
---|
1484 | if ( (i != iSelf)
|
---|
1485 | && RTCpuSetIsMemberByIndex(&OnlineSet, i))
|
---|
1486 | {
|
---|
1487 | ASMAtomicIncS32(&pArgs->cRefs);
|
---|
1488 | BOOLEAN fRc = KeInsertQueueDpc(&paExecCpuDpcs[i], 0, 0);
|
---|
1489 | Assert(fRc); NOREF(fRc);
|
---|
1490 | }
|
---|
1491 | }
|
---|
1492 | if (enmCpuid != RT_NT_CPUID_OTHERS)
|
---|
1493 | pfnWorker(iSelf, pvUser1, pvUser2);
|
---|
1494 | }
|
---|
1495 |
|
---|
1496 | KeLowerIrql(oldIrql);
|
---|
1497 |
|
---|
1498 | /*
|
---|
1499 | * Flush all DPCs and wait for completion. (can take long!)
|
---|
1500 | */
|
---|
1501 | /** @todo Consider changing this to an active wait using some atomic inc/dec
|
---|
1502 | * stuff (and check for the current cpu above in the specific case). */
|
---|
1503 | /** @todo Seems KeFlushQueuedDpcs doesn't wait for the DPCs to be completely
|
---|
1504 | * executed. Seen pArgs being freed while some CPU was using it before
|
---|
1505 | * cRefs was added. */
|
---|
1506 | if (g_pfnrtNtKeFlushQueuedDpcs)
|
---|
1507 | g_pfnrtNtKeFlushQueuedDpcs();
|
---|
1508 |
|
---|
1509 | if (pcHits)
|
---|
1510 | *pcHits = pArgs->cHits;
|
---|
1511 |
|
---|
1512 | /* Dereference the argument structure. */
|
---|
1513 | int32_t cRefs = ASMAtomicDecS32(&pArgs->cRefs);
|
---|
1514 | Assert(cRefs >= 0);
|
---|
1515 | if (cRefs == 0)
|
---|
1516 | RTMemFree(pArgs);
|
---|
1517 |
|
---|
1518 | return VINF_SUCCESS;
|
---|
1519 | }
|
---|
1520 |
|
---|
1521 |
|
---|
1522 | RTDECL(int) RTMpOnAll(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
|
---|
1523 | {
|
---|
1524 | if (g_pfnrtKeIpiGenericCall)
|
---|
1525 | return rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnAllBroadcastIpiWrapper,
|
---|
1526 | NIL_RTCPUID, NIL_RTCPUID, NULL);
|
---|
1527 | return rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_ALL, NIL_RTCPUID, NIL_RTCPUID, NULL);
|
---|
1528 | }
|
---|
1529 |
|
---|
1530 |
|
---|
1531 | RTDECL(int) RTMpOnOthers(PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
|
---|
1532 | {
|
---|
1533 | if (g_pfnrtKeIpiGenericCall)
|
---|
1534 | return rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnOthersBroadcastIpiWrapper,
|
---|
1535 | NIL_RTCPUID, NIL_RTCPUID, NULL);
|
---|
1536 | return rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_OTHERS, NIL_RTCPUID, NIL_RTCPUID, NULL);
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 |
|
---|
1540 | RTDECL(int) RTMpOnPair(RTCPUID idCpu1, RTCPUID idCpu2, uint32_t fFlags, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
|
---|
1541 | {
|
---|
1542 | int rc;
|
---|
1543 | AssertReturn(idCpu1 != idCpu2, VERR_INVALID_PARAMETER);
|
---|
1544 | AssertReturn(!(fFlags & RTMPON_F_VALID_MASK), VERR_INVALID_FLAGS);
|
---|
1545 | if ((fFlags & RTMPON_F_CONCURRENT_EXEC) && !g_pfnrtKeIpiGenericCall)
|
---|
1546 | return VERR_NOT_SUPPORTED;
|
---|
1547 |
|
---|
1548 | /*
|
---|
1549 | * Check that both CPUs are online before doing the broadcast call.
|
---|
1550 | */
|
---|
1551 | if ( RTMpIsCpuOnline(idCpu1)
|
---|
1552 | && RTMpIsCpuOnline(idCpu2))
|
---|
1553 | {
|
---|
1554 | /*
|
---|
1555 | * The broadcast IPI isn't quite as bad as it could have been, because
|
---|
1556 | * it looks like windows doesn't synchronize CPUs on the way out, they
|
---|
1557 | * seems to get back to normal work while the pair is still busy.
|
---|
1558 | */
|
---|
1559 | uint32_t cHits = 0;
|
---|
1560 | if (g_pfnrtKeIpiGenericCall)
|
---|
1561 | rc = rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnPairBroadcastIpiWrapper, idCpu1, idCpu2, &cHits);
|
---|
1562 | else
|
---|
1563 | rc = rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_PAIR, idCpu1, idCpu2, &cHits);
|
---|
1564 | if (RT_SUCCESS(rc))
|
---|
1565 | {
|
---|
1566 | Assert(cHits <= 2);
|
---|
1567 | if (cHits == 2)
|
---|
1568 | rc = VINF_SUCCESS;
|
---|
1569 | else if (cHits == 1)
|
---|
1570 | rc = VERR_NOT_ALL_CPUS_SHOWED;
|
---|
1571 | else if (cHits == 0)
|
---|
1572 | rc = VERR_CPU_OFFLINE;
|
---|
1573 | else
|
---|
1574 | rc = VERR_CPU_IPE_1;
|
---|
1575 | }
|
---|
1576 | }
|
---|
1577 | /*
|
---|
1578 | * A CPU must be present to be considered just offline.
|
---|
1579 | */
|
---|
1580 | else if ( RTMpIsCpuPresent(idCpu1)
|
---|
1581 | && RTMpIsCpuPresent(idCpu2))
|
---|
1582 | rc = VERR_CPU_OFFLINE;
|
---|
1583 | else
|
---|
1584 | rc = VERR_CPU_NOT_FOUND;
|
---|
1585 | return rc;
|
---|
1586 | }
|
---|
1587 |
|
---|
1588 |
|
---|
1589 | RTDECL(bool) RTMpOnPairIsConcurrentExecSupported(void)
|
---|
1590 | {
|
---|
1591 | return g_pfnrtKeIpiGenericCall != NULL;
|
---|
1592 | }
|
---|
1593 |
|
---|
1594 |
|
---|
1595 | /**
|
---|
1596 | * Releases a reference to a RTMPNTONSPECIFICARGS heap allocation, freeing it
|
---|
1597 | * when the last reference is released.
|
---|
1598 | */
|
---|
1599 | DECLINLINE(void) rtMpNtOnSpecificRelease(PRTMPNTONSPECIFICARGS pArgs)
|
---|
1600 | {
|
---|
1601 | uint32_t cRefs = ASMAtomicDecU32(&pArgs->cRefs);
|
---|
1602 | AssertMsg(cRefs <= 1, ("cRefs=%#x\n", cRefs));
|
---|
1603 | if (cRefs == 0)
|
---|
1604 | RTMemFree(pArgs);
|
---|
1605 | }
|
---|
1606 |
|
---|
1607 |
|
---|
1608 | /**
|
---|
1609 | * Wrapper between the native nt per-cpu callbacks and PFNRTWORKER
|
---|
1610 | *
|
---|
1611 | * @param Dpc DPC object
|
---|
1612 | * @param DeferredContext Context argument specified by KeInitializeDpc
|
---|
1613 | * @param SystemArgument1 Argument specified by KeInsertQueueDpc
|
---|
1614 | * @param SystemArgument2 Argument specified by KeInsertQueueDpc
|
---|
1615 | */
|
---|
1616 | static VOID rtMpNtOnSpecificDpcWrapper(IN PKDPC Dpc, IN PVOID DeferredContext,
|
---|
1617 | IN PVOID SystemArgument1, IN PVOID SystemArgument2)
|
---|
1618 | {
|
---|
1619 | PRTMPNTONSPECIFICARGS pArgs = (PRTMPNTONSPECIFICARGS)DeferredContext;
|
---|
1620 | RT_NOREF3(Dpc, SystemArgument1, SystemArgument2);
|
---|
1621 |
|
---|
1622 | ASMAtomicWriteBool(&pArgs->fExecuting, true);
|
---|
1623 |
|
---|
1624 | pArgs->CallbackArgs.pfnWorker(RTMpCpuId(), pArgs->CallbackArgs.pvUser1, pArgs->CallbackArgs.pvUser2);
|
---|
1625 |
|
---|
1626 | ASMAtomicWriteBool(&pArgs->fDone, true);
|
---|
1627 | KeSetEvent(&pArgs->DoneEvt, 1 /*PriorityIncrement*/, FALSE /*Wait*/);
|
---|
1628 |
|
---|
1629 | rtMpNtOnSpecificRelease(pArgs);
|
---|
1630 | }
|
---|
1631 |
|
---|
1632 |
|
---|
1633 | RTDECL(int) RTMpOnSpecific(RTCPUID idCpu, PFNRTMPWORKER pfnWorker, void *pvUser1, void *pvUser2)
|
---|
1634 | {
|
---|
1635 | /*
|
---|
1636 | * Don't try mess with an offline CPU.
|
---|
1637 | */
|
---|
1638 | if (!RTMpIsCpuOnline(idCpu))
|
---|
1639 | return !RTMpIsCpuPossible(idCpu)
|
---|
1640 | ? VERR_CPU_NOT_FOUND
|
---|
1641 | : VERR_CPU_OFFLINE;
|
---|
1642 |
|
---|
1643 | /*
|
---|
1644 | * Use the broadcast IPI routine if there are no more than two CPUs online,
|
---|
1645 | * or if the current IRQL is unsuitable for KeWaitForSingleObject.
|
---|
1646 | */
|
---|
1647 | int rc;
|
---|
1648 | uint32_t cHits = 0;
|
---|
1649 | if ( g_pfnrtKeIpiGenericCall
|
---|
1650 | && ( RTMpGetOnlineCount() <= 2
|
---|
1651 | || KeGetCurrentIrql() > APC_LEVEL)
|
---|
1652 | )
|
---|
1653 | {
|
---|
1654 | rc = rtMpCallUsingBroadcastIpi(pfnWorker, pvUser1, pvUser2, rtmpNtOnSpecificBroadcastIpiWrapper,
|
---|
1655 | idCpu, NIL_RTCPUID, &cHits);
|
---|
1656 | if (RT_SUCCESS(rc))
|
---|
1657 | {
|
---|
1658 | if (cHits == 1)
|
---|
1659 | return VINF_SUCCESS;
|
---|
1660 | rc = cHits == 0 ? VERR_CPU_OFFLINE : VERR_CPU_IPE_1;
|
---|
1661 | }
|
---|
1662 | return rc;
|
---|
1663 | }
|
---|
1664 |
|
---|
1665 | #if 0
|
---|
1666 | rc = rtMpCallUsingDpcs(pfnWorker, pvUser1, pvUser2, RT_NT_CPUID_SPECIFIC, idCpu, NIL_RTCPUID, &cHits);
|
---|
1667 | if (RT_SUCCESS(rc))
|
---|
1668 | {
|
---|
1669 | if (cHits == 1)
|
---|
1670 | return VINF_SUCCESS;
|
---|
1671 | rc = cHits == 0 ? VERR_CPU_OFFLINE : VERR_CPU_IPE_1;
|
---|
1672 | }
|
---|
1673 | return rc;
|
---|
1674 |
|
---|
1675 | #else
|
---|
1676 | /*
|
---|
1677 | * Initialize the argument package and the objects within it.
|
---|
1678 | * The package is referenced counted to avoid unnecessary spinning to
|
---|
1679 | * synchronize cleanup and prevent stack corruption.
|
---|
1680 | */
|
---|
1681 | PRTMPNTONSPECIFICARGS pArgs = (PRTMPNTONSPECIFICARGS)RTMemAllocZ(sizeof(*pArgs));
|
---|
1682 | if (!pArgs)
|
---|
1683 | return VERR_NO_MEMORY;
|
---|
1684 | pArgs->cRefs = 2;
|
---|
1685 | pArgs->fExecuting = false;
|
---|
1686 | pArgs->fDone = false;
|
---|
1687 | pArgs->CallbackArgs.pfnWorker = pfnWorker;
|
---|
1688 | pArgs->CallbackArgs.pvUser1 = pvUser1;
|
---|
1689 | pArgs->CallbackArgs.pvUser2 = pvUser2;
|
---|
1690 | pArgs->CallbackArgs.idCpu = idCpu;
|
---|
1691 | pArgs->CallbackArgs.cHits = 0;
|
---|
1692 | pArgs->CallbackArgs.cRefs = 2;
|
---|
1693 | KeInitializeEvent(&pArgs->DoneEvt, SynchronizationEvent, FALSE /* not signalled */);
|
---|
1694 | KeInitializeDpc(&pArgs->Dpc, rtMpNtOnSpecificDpcWrapper, pArgs);
|
---|
1695 | KeSetImportanceDpc(&pArgs->Dpc, HighImportance);
|
---|
1696 | rc = rtMpNtSetTargetProcessorDpc(&pArgs->Dpc, idCpu);
|
---|
1697 | if (RT_FAILURE(rc))
|
---|
1698 | {
|
---|
1699 | RTMemFree(pArgs);
|
---|
1700 | return rc;
|
---|
1701 | }
|
---|
1702 |
|
---|
1703 | /*
|
---|
1704 | * Disable preemption while we check the current processor and inserts the DPC.
|
---|
1705 | */
|
---|
1706 | KIRQL bOldIrql;
|
---|
1707 | KeRaiseIrql(DISPATCH_LEVEL, &bOldIrql);
|
---|
1708 | ASMCompilerBarrier(); /* paranoia */
|
---|
1709 |
|
---|
1710 | if (RTMpCpuId() == idCpu)
|
---|
1711 | {
|
---|
1712 | /* Just execute the callback on the current CPU. */
|
---|
1713 | pfnWorker(idCpu, pvUser1, pvUser2);
|
---|
1714 | KeLowerIrql(bOldIrql);
|
---|
1715 |
|
---|
1716 | RTMemFree(pArgs);
|
---|
1717 | return VINF_SUCCESS;
|
---|
1718 | }
|
---|
1719 |
|
---|
1720 | /* Different CPU, so queue it if the CPU is still online. */
|
---|
1721 | if (RTMpIsCpuOnline(idCpu))
|
---|
1722 | {
|
---|
1723 | BOOLEAN fRc = KeInsertQueueDpc(&pArgs->Dpc, 0, 0);
|
---|
1724 | Assert(fRc); NOREF(fRc);
|
---|
1725 | KeLowerIrql(bOldIrql);
|
---|
1726 |
|
---|
1727 | uint64_t const nsRealWaitTS = RTTimeNanoTS();
|
---|
1728 |
|
---|
1729 | /*
|
---|
1730 | * Wait actively for a while in case the CPU/thread responds quickly.
|
---|
1731 | */
|
---|
1732 | uint32_t cLoopsLeft = 0x20000;
|
---|
1733 | while (cLoopsLeft-- > 0)
|
---|
1734 | {
|
---|
1735 | if (pArgs->fDone)
|
---|
1736 | {
|
---|
1737 | rtMpNtOnSpecificRelease(pArgs);
|
---|
1738 | return VINF_SUCCESS;
|
---|
1739 | }
|
---|
1740 | ASMNopPause();
|
---|
1741 | }
|
---|
1742 |
|
---|
1743 | /*
|
---|
1744 | * It didn't respond, so wait on the event object, poking the CPU if it's slow.
|
---|
1745 | */
|
---|
1746 | LARGE_INTEGER Timeout;
|
---|
1747 | Timeout.QuadPart = -10000; /* 1ms */
|
---|
1748 | NTSTATUS rcNt = KeWaitForSingleObject(&pArgs->DoneEvt, Executive, KernelMode, FALSE /* Alertable */, &Timeout);
|
---|
1749 | if (rcNt == STATUS_SUCCESS)
|
---|
1750 | {
|
---|
1751 | rtMpNtOnSpecificRelease(pArgs);
|
---|
1752 | return VINF_SUCCESS;
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 | /* If it hasn't respondend yet, maybe poke it and wait some more. */
|
---|
1756 | if (rcNt == STATUS_TIMEOUT)
|
---|
1757 | {
|
---|
1758 | if ( !pArgs->fExecuting
|
---|
1759 | && ( g_pfnrtMpPokeCpuWorker == rtMpPokeCpuUsingHalReqestIpiW7Plus
|
---|
1760 | || g_pfnrtMpPokeCpuWorker == rtMpPokeCpuUsingHalReqestIpiPreW7))
|
---|
1761 | RTMpPokeCpu(idCpu);
|
---|
1762 |
|
---|
1763 | Timeout.QuadPart = -1280000; /* 128ms */
|
---|
1764 | rcNt = KeWaitForSingleObject(&pArgs->DoneEvt, Executive, KernelMode, FALSE /* Alertable */, &Timeout);
|
---|
1765 | if (rcNt == STATUS_SUCCESS)
|
---|
1766 | {
|
---|
1767 | rtMpNtOnSpecificRelease(pArgs);
|
---|
1768 | return VINF_SUCCESS;
|
---|
1769 | }
|
---|
1770 | }
|
---|
1771 |
|
---|
1772 | /*
|
---|
1773 | * Something weird is happening, try bail out.
|
---|
1774 | */
|
---|
1775 | if (KeRemoveQueueDpc(&pArgs->Dpc))
|
---|
1776 | {
|
---|
1777 | RTMemFree(pArgs); /* DPC was still queued, so we can return without further ado. */
|
---|
1778 | LogRel(("RTMpOnSpecific(%#x): Not processed after %llu ns: rcNt=%#x\n", idCpu, RTTimeNanoTS() - nsRealWaitTS, rcNt));
|
---|
1779 | }
|
---|
1780 | else
|
---|
1781 | {
|
---|
1782 | /* DPC is running, wait a good while for it to complete. */
|
---|
1783 | LogRel(("RTMpOnSpecific(%#x): Still running after %llu ns: rcNt=%#x\n", idCpu, RTTimeNanoTS() - nsRealWaitTS, rcNt));
|
---|
1784 |
|
---|
1785 | Timeout.QuadPart = -30*1000*1000*10; /* 30 seconds */
|
---|
1786 | rcNt = KeWaitForSingleObject(&pArgs->DoneEvt, Executive, KernelMode, FALSE /* Alertable */, &Timeout);
|
---|
1787 | if (rcNt != STATUS_SUCCESS)
|
---|
1788 | LogRel(("RTMpOnSpecific(%#x): Giving up on running worker after %llu ns: rcNt=%#x\n", idCpu, RTTimeNanoTS() - nsRealWaitTS, rcNt));
|
---|
1789 | }
|
---|
1790 | rc = RTErrConvertFromNtStatus(rcNt);
|
---|
1791 | }
|
---|
1792 | else
|
---|
1793 | {
|
---|
1794 | /* CPU is offline.*/
|
---|
1795 | KeLowerIrql(bOldIrql);
|
---|
1796 | rc = !RTMpIsCpuPossible(idCpu) ? VERR_CPU_NOT_FOUND : VERR_CPU_OFFLINE;
|
---|
1797 | }
|
---|
1798 |
|
---|
1799 | rtMpNtOnSpecificRelease(pArgs);
|
---|
1800 | return rc;
|
---|
1801 | #endif
|
---|
1802 | }
|
---|
1803 |
|
---|
1804 |
|
---|
1805 |
|
---|
1806 |
|
---|
1807 | static VOID rtMpNtPokeCpuDummy(IN PKDPC Dpc, IN PVOID DeferredContext, IN PVOID SystemArgument1, IN PVOID SystemArgument2)
|
---|
1808 | {
|
---|
1809 | NOREF(Dpc);
|
---|
1810 | NOREF(DeferredContext);
|
---|
1811 | NOREF(SystemArgument1);
|
---|
1812 | NOREF(SystemArgument2);
|
---|
1813 | }
|
---|
1814 |
|
---|
1815 |
|
---|
1816 | /** Callback used by rtMpPokeCpuUsingBroadcastIpi. */
|
---|
1817 | static ULONG_PTR rtMpIpiGenericCall(ULONG_PTR Argument)
|
---|
1818 | {
|
---|
1819 | NOREF(Argument);
|
---|
1820 | return 0;
|
---|
1821 | }
|
---|
1822 |
|
---|
1823 |
|
---|
1824 | /**
|
---|
1825 | * RTMpPokeCpu worker that uses broadcast IPIs for doing the work.
|
---|
1826 | *
|
---|
1827 | * @returns VINF_SUCCESS
|
---|
1828 | * @param idCpu The CPU identifier.
|
---|
1829 | */
|
---|
1830 | int rtMpPokeCpuUsingBroadcastIpi(RTCPUID idCpu)
|
---|
1831 | {
|
---|
1832 | NOREF(idCpu);
|
---|
1833 | g_pfnrtKeIpiGenericCall(rtMpIpiGenericCall, 0);
|
---|
1834 | return VINF_SUCCESS;
|
---|
1835 | }
|
---|
1836 |
|
---|
1837 |
|
---|
1838 | /**
|
---|
1839 | * RTMpPokeCpu worker that uses the Windows 7 and later version of
|
---|
1840 | * HalRequestIpip to get the job done.
|
---|
1841 | *
|
---|
1842 | * @returns VINF_SUCCESS
|
---|
1843 | * @param idCpu The CPU identifier.
|
---|
1844 | */
|
---|
1845 | int rtMpPokeCpuUsingHalReqestIpiW7Plus(RTCPUID idCpu)
|
---|
1846 | {
|
---|
1847 | /* idCpu is an HAL processor index, so we can use it directly. */
|
---|
1848 | KAFFINITY_EX Target;
|
---|
1849 | g_pfnrtKeInitializeAffinityEx(&Target);
|
---|
1850 | g_pfnrtKeAddProcessorAffinityEx(&Target, idCpu);
|
---|
1851 |
|
---|
1852 | g_pfnrtHalRequestIpiW7Plus(0, &Target);
|
---|
1853 | return VINF_SUCCESS;
|
---|
1854 | }
|
---|
1855 |
|
---|
1856 |
|
---|
1857 | /**
|
---|
1858 | * RTMpPokeCpu worker that uses the Vista and earlier version of HalRequestIpip
|
---|
1859 | * to get the job done.
|
---|
1860 | *
|
---|
1861 | * @returns VINF_SUCCESS
|
---|
1862 | * @param idCpu The CPU identifier.
|
---|
1863 | */
|
---|
1864 | int rtMpPokeCpuUsingHalReqestIpiPreW7(RTCPUID idCpu)
|
---|
1865 | {
|
---|
1866 | __debugbreak(); /** @todo this code needs testing!! */
|
---|
1867 | KAFFINITY Target = 1;
|
---|
1868 | Target <<= idCpu;
|
---|
1869 | g_pfnrtHalRequestIpiPreW7(Target);
|
---|
1870 | return VINF_SUCCESS;
|
---|
1871 | }
|
---|
1872 |
|
---|
1873 |
|
---|
1874 | int rtMpPokeCpuUsingDpc(RTCPUID idCpu)
|
---|
1875 | {
|
---|
1876 | Assert(g_cRtMpNtMaxCpus > 0 && g_cRtMpNtMaxGroups > 0); /* init order */
|
---|
1877 |
|
---|
1878 | /*
|
---|
1879 | * APC fallback.
|
---|
1880 | */
|
---|
1881 | static KDPC s_aPokeDpcs[RTCPUSET_MAX_CPUS] = {0};
|
---|
1882 | static bool s_fPokeDPCsInitialized = false;
|
---|
1883 |
|
---|
1884 | if (!s_fPokeDPCsInitialized)
|
---|
1885 | {
|
---|
1886 | for (unsigned i = 0; i < g_cRtMpNtMaxCpus; i++)
|
---|
1887 | {
|
---|
1888 | KeInitializeDpc(&s_aPokeDpcs[i], rtMpNtPokeCpuDummy, NULL);
|
---|
1889 | KeSetImportanceDpc(&s_aPokeDpcs[i], HighImportance);
|
---|
1890 | int rc = rtMpNtSetTargetProcessorDpc(&s_aPokeDpcs[i], idCpu);
|
---|
1891 | if (RT_FAILURE(rc))
|
---|
1892 | return rc;
|
---|
1893 | }
|
---|
1894 |
|
---|
1895 | s_fPokeDPCsInitialized = true;
|
---|
1896 | }
|
---|
1897 |
|
---|
1898 | /* Raise the IRQL to DISPATCH_LEVEL so we can't be rescheduled to another cpu.
|
---|
1899 | KeInsertQueueDpc must also be executed at IRQL >= DISPATCH_LEVEL. */
|
---|
1900 | KIRQL oldIrql;
|
---|
1901 | KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);
|
---|
1902 |
|
---|
1903 | KeSetImportanceDpc(&s_aPokeDpcs[idCpu], HighImportance);
|
---|
1904 | KeSetTargetProcessorDpc(&s_aPokeDpcs[idCpu], (int)idCpu);
|
---|
1905 |
|
---|
1906 | /* Assuming here that high importance DPCs will be delivered immediately; or at least an IPI will be sent immediately.
|
---|
1907 | Note! Not true on at least Vista & Windows 7 */
|
---|
1908 | BOOLEAN fRet = KeInsertQueueDpc(&s_aPokeDpcs[idCpu], 0, 0);
|
---|
1909 |
|
---|
1910 | KeLowerIrql(oldIrql);
|
---|
1911 | return fRet == TRUE ? VINF_SUCCESS : VERR_ACCESS_DENIED /* already queued */;
|
---|
1912 | }
|
---|
1913 |
|
---|
1914 |
|
---|
1915 | RTDECL(int) RTMpPokeCpu(RTCPUID idCpu)
|
---|
1916 | {
|
---|
1917 | if (!RTMpIsCpuOnline(idCpu))
|
---|
1918 | return !RTMpIsCpuPossible(idCpu)
|
---|
1919 | ? VERR_CPU_NOT_FOUND
|
---|
1920 | : VERR_CPU_OFFLINE;
|
---|
1921 | /* Calls rtMpPokeCpuUsingDpc, rtMpPokeCpuUsingHalReqestIpiW7Plus or rtMpPokeCpuUsingBroadcastIpi. */
|
---|
1922 | return g_pfnrtMpPokeCpuWorker(idCpu);
|
---|
1923 | }
|
---|
1924 |
|
---|
1925 |
|
---|
1926 | RTDECL(bool) RTMpOnAllIsConcurrentSafe(void)
|
---|
1927 | {
|
---|
1928 | return false;
|
---|
1929 | }
|
---|
1930 |
|
---|