/* $Id: semevent-r0drv-nt.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */ /** @file * IPRT - Single Release Event Semaphores, Ring-0 Driver, NT. */ /* * Copyright (C) 2006-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define RTSEMEVENT_WITHOUT_REMAPPING #include "the-nt-kernel.h" #include #include #include #include #include #include #include #include #include "internal/magics.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * NT event semaphore. */ typedef struct RTSEMEVENTINTERNAL { /** Magic value (RTSEMEVENT_MAGIC). */ uint32_t volatile u32Magic; /** Reference counter. */ uint32_t volatile cRefs; /** The NT Event object. */ KEVENT Event; } RTSEMEVENTINTERNAL, *PRTSEMEVENTINTERNAL; RTDECL(int) RTSemEventCreate(PRTSEMEVENT phEventSem) { return RTSemEventCreateEx(phEventSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL); } RTDECL(int) RTSemEventCreateEx(PRTSEMEVENT phEventSem, uint32_t fFlags, RTLOCKVALCLASS hClass, const char *pszNameFmt, ...) { AssertReturn(!(fFlags & ~(RTSEMEVENT_FLAGS_NO_LOCK_VAL | RTSEMEVENT_FLAGS_BOOTSTRAP_HACK)), VERR_INVALID_PARAMETER); Assert(!(fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK) || (fFlags & RTSEMEVENT_FLAGS_NO_LOCK_VAL)); AssertCompile(sizeof(RTSEMEVENTINTERNAL) > sizeof(void *)); RT_NOREF2(hClass, pszNameFmt); PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)RTMemAlloc(sizeof(*pThis)); if (pThis) { pThis->u32Magic = RTSEMEVENT_MAGIC; pThis->cRefs = 1; KeInitializeEvent(&pThis->Event, SynchronizationEvent, FALSE /* not signalled */); *phEventSem = pThis; return VINF_SUCCESS; } return VERR_NO_MEMORY; } /** * Retains a reference to the semaphore. * * @param pThis The semaphore to retain. */ DECLINLINE(void) rtR0SemEventNtRetain(PRTSEMEVENTINTERNAL pThis) { uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs); Assert(cRefs < 100000); NOREF(cRefs); } /** * Releases a reference to the semaphore. * * @param pThis The semaphore to release */ DECLINLINE(void) rtR0SemEventNtRelease(PRTSEMEVENTINTERNAL pThis) { if (ASMAtomicDecU32(&pThis->cRefs) == 0) RTMemFree(pThis); } RTDECL(int) RTSemEventDestroy(RTSEMEVENT hEventSem) { /* * Validate input. */ PRTSEMEVENTINTERNAL pThis = hEventSem; if (pThis == NIL_RTSEMEVENT) return VINF_SUCCESS; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("pThis->u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE); /* * Invalidate it and signal the object just in case. */ ASMAtomicIncU32(&pThis->u32Magic); KeSetEvent(&pThis->Event, 0xfff, FALSE); rtR0SemEventNtRelease(pThis); return VINF_SUCCESS; } RTDECL(int) RTSemEventSignal(RTSEMEVENT hEventSem) { /* * Validate input. */ PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)hEventSem; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("pThis->u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE); rtR0SemEventNtRetain(pThis); /* * Signal the event object. */ KeSetEvent(&pThis->Event, 1, FALSE); rtR0SemEventNtRelease(pThis); return VINF_SUCCESS; } /** * Worker for RTSemEventWaitEx and RTSemEventWaitExDebug. * * @returns VBox status code. * @param pThis The event semaphore. * @param fFlags See RTSemEventWaitEx. * @param uTimeout See RTSemEventWaitEx. * @param pSrcPos The source code position of the wait. */ DECLINLINE(int) rtR0SemEventNtWait(PRTSEMEVENTINTERNAL pThis, uint32_t fFlags, uint64_t uTimeout, PCRTLOCKVALSRCPOS pSrcPos) { /* * Validate input. */ if (!pThis) return VERR_INVALID_PARAMETER; AssertPtrReturn(pThis, VERR_INVALID_PARAMETER); AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER); AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER); NOREF(pSrcPos); rtR0SemEventNtRetain(pThis); /* * Convert the timeout to a relative one because KeWaitForSingleObject * takes system time instead of interrupt time as input for absolute * timeout specifications. So, we're best of by giving it relative time. * * Lazy bird converts uTimeout to relative nanoseconds and then to Nt time. */ if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)) { if (fFlags & RTSEMWAIT_FLAGS_MILLISECS) uTimeout = uTimeout < UINT64_MAX / UINT32_C(1000000) * UINT32_C(1000000) ? uTimeout * UINT32_C(1000000) : UINT64_MAX; if (uTimeout == UINT64_MAX) fFlags |= RTSEMWAIT_FLAGS_INDEFINITE; else { if (fFlags & RTSEMWAIT_FLAGS_ABSOLUTE) { uint64_t u64Now = RTTimeSystemNanoTS(); uTimeout = u64Now < uTimeout ? uTimeout - u64Now : 0; } } } /* * Wait for it. * We're assuming interruptible waits should happen at UserMode level. */ NTSTATUS rcNt; BOOLEAN fInterruptible = !!(fFlags & RTSEMWAIT_FLAGS_INTERRUPTIBLE); KPROCESSOR_MODE WaitMode = fInterruptible ? UserMode : KernelMode; if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE) rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, NULL); else { LARGE_INTEGER Timeout; Timeout.QuadPart = -(int64_t)(uTimeout / 100); rcNt = KeWaitForSingleObject(&pThis->Event, Executive, WaitMode, fInterruptible, &Timeout); } int rc; if (pThis->u32Magic == RTSEMEVENT_MAGIC) { switch (rcNt) { case STATUS_SUCCESS: rc = VINF_SUCCESS; break; case STATUS_ALERTED: rc = VERR_INTERRUPTED; break; case STATUS_USER_APC: rc = VERR_INTERRUPTED; break; case STATUS_TIMEOUT: rc = VERR_TIMEOUT; break; default: AssertMsgFailed(("pThis->u32Magic=%RX32 pThis=%p: wait returned %lx!\n", pThis->u32Magic, pThis, (long)rcNt)); rc = VERR_INTERNAL_ERROR_4; break; } } else rc = VERR_SEM_DESTROYED; rtR0SemEventNtRelease(pThis); return rc; } RTDECL(int) RTSemEventWaitEx(RTSEMEVENT hEventSem, uint32_t fFlags, uint64_t uTimeout) { #ifndef RTSEMEVENT_STRICT return rtR0SemEventNtWait(hEventSem, fFlags, uTimeout, NULL); #else RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API(); return rtR0SemEventNtWait(hEventSem, fFlags, uTimeout, &SrcPos); #endif } RTDECL(int) RTSemEventWaitExDebug(RTSEMEVENT hEventSem, uint32_t fFlags, uint64_t uTimeout, RTHCUINTPTR uId, RT_SRC_POS_DECL) { RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API(); return rtR0SemEventNtWait(hEventSem, fFlags, uTimeout, &SrcPos); } RTDECL(uint32_t) RTSemEventGetResolution(void) { return RTTimerGetSystemGranularity(); }