VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/os2/memobj-r0drv-os2.cpp@ 28999

Last change on this file since 28999 was 28777, checked in by vboxsync, 15 years ago

iprt: added CachePolicy parameter to RTR0MemObjEnterPhys()

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 18.3 KB
Line 
1/* $Id: memobj-r0drv-os2.cpp 28777 2010-04-26 19:45:16Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, OS/2.
4 */
5
6/*
7 * Copyright (c) 2007 knut st. osmundsen <[email protected]>
8 *
9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without
12 * restriction, including without limitation the rights to use,
13 * copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the
15 * Software is furnished to do so, subject to the following
16 * conditions:
17 *
18 * The above copyright notice and this permission notice shall be
19 * included in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
23 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
25 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
26 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
28 * OTHER DEALINGS IN THE SOFTWARE.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-os2-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/mem.h>
39#include <iprt/err.h>
40#include <iprt/assert.h>
41#include <iprt/log.h>
42#include <iprt/param.h>
43#include <iprt/process.h>
44#include "internal/memobj.h"
45
46
47/*******************************************************************************
48* Structures and Typedefs *
49*******************************************************************************/
50/**
51 * The OS/2 version of the memory object structure.
52 */
53typedef struct RTR0MEMOBJDARWIN
54{
55 /** The core structure. */
56 RTR0MEMOBJINTERNAL Core;
57 /** Lock for the ring-3 / ring-0 pinned objectes.
58 * This member might not be allocated for some object types. */
59 KernVMLock_t Lock;
60 /** Array of physical pages.
61 * This array can be 0 in length for some object types. */
62 KernPageList_t aPages[1];
63} RTR0MEMOBJOS2, *PRTR0MEMOBJOS2;
64
65
66/*******************************************************************************
67* Internal Functions *
68*******************************************************************************/
69static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet);
70
71
72int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
73{
74 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
75 int rc;
76
77 switch (pMemOs2->Core.enmType)
78 {
79 case RTR0MEMOBJTYPE_PHYS_NC:
80 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
81 return VERR_INTERNAL_ERROR;
82 break;
83
84 case RTR0MEMOBJTYPE_PHYS:
85 if (!pMemOs2->Core.pv)
86 break;
87
88 case RTR0MEMOBJTYPE_MAPPING:
89 if (pMemOs2->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
90 break;
91
92 /* fall thru */
93 case RTR0MEMOBJTYPE_PAGE:
94 case RTR0MEMOBJTYPE_LOW:
95 case RTR0MEMOBJTYPE_CONT:
96 rc = KernVMFree(pMemOs2->Core.pv);
97 AssertMsg(!rc, ("rc=%d type=%d pv=%p cb=%#zx\n", rc, pMemOs2->Core.enmType, pMemOs2->Core.pv, pMemOs2->Core.cb));
98 break;
99
100 case RTR0MEMOBJTYPE_LOCK:
101 rc = KernVMUnlock(&pMemOs2->Lock);
102 AssertMsg(!rc, ("rc=%d\n", rc));
103 break;
104
105 case RTR0MEMOBJTYPE_RES_VIRT:
106 default:
107 AssertMsgFailed(("enmType=%d\n", pMemOs2->Core.enmType));
108 return VERR_INTERNAL_ERROR;
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
116{
117 NOREF(fExecutable);
118
119 /* create the object. */
120 const ULONG cPages = cb >> PAGE_SHIFT;
121 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_PAGE, NULL, cb);
122 if (!pMemOs2)
123 return VERR_NO_MEMORY;
124
125 /* do the allocation. */
126 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
127 if (!rc)
128 {
129 ULONG cPagesRet = cPages;
130 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
131 if (!rc)
132 {
133 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
134 *ppMem = &pMemOs2->Core;
135 return VINF_SUCCESS;
136 }
137 KernVMFree(pMemOs2->Core.pv);
138 }
139 rtR0MemObjDelete(&pMemOs2->Core);
140 return RTErrConvertFromOS2(rc);
141}
142
143
144int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
145{
146 NOREF(fExecutable);
147
148 /* create the object. */
149 const ULONG cPages = cb >> PAGE_SHIFT;
150 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOW, NULL, cb);
151 if (!pMemOs2)
152 return VERR_NO_MEMORY;
153
154 /* do the allocation. */
155 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
156 if (!rc)
157 {
158 ULONG cPagesRet = cPages;
159 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
160 if (!rc)
161 {
162 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
163 *ppMem = &pMemOs2->Core;
164 return VINF_SUCCESS;
165 }
166 KernVMFree(pMemOs2->Core.pv);
167 }
168 rtR0MemObjDelete(&pMemOs2->Core);
169 return RTErrConvertFromOS2(rc);
170}
171
172
173int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
174{
175 NOREF(fExecutable);
176
177 /* create the object. */
178 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_CONT, NULL, cb);
179 if (!pMemOs2)
180 return VERR_NO_MEMORY;
181
182 /* do the allocation. */
183 ULONG ulPhys = ~0UL;
184 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG, &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
185 if (!rc)
186 {
187 Assert(ulPhys != ~0UL);
188 pMemOs2->Core.u.Cont.Phys = ulPhys;
189 *ppMem = &pMemOs2->Core;
190 return VINF_SUCCESS;
191 }
192 rtR0MemObjDelete(&pMemOs2->Core);
193 return RTErrConvertFromOS2(rc);
194}
195
196
197int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
198{
199 AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_IMPLEMENTED);
200
201 /** @todo alignment */
202 if (uAlignment != PAGE_SIZE)
203 return VERR_NOT_SUPPORTED;
204
205 /* create the object. */
206 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
207 if (!pMemOs2)
208 return VERR_NO_MEMORY;
209
210 /* do the allocation. */
211 ULONG ulPhys = ~0UL;
212 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG | (PhysHighest < _4G ? VMDHA_16M : 0), &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
213 if (!rc)
214 {
215 Assert(ulPhys != ~0UL);
216 pMemOs2->Core.u.Phys.fAllocated = true;
217 pMemOs2->Core.u.Phys.PhysBase = ulPhys;
218 *ppMem = &pMemOs2->Core;
219 return VINF_SUCCESS;
220 }
221 rtR0MemObjDelete(&pMemOs2->Core);
222 return RTErrConvertFromOS2(rc);
223}
224
225
226int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
227{
228 /** @todo rtR0MemObjNativeAllocPhys / darwin. */
229 return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest, PAGE_SIZE);
230}
231
232
233int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, unsigned CachePolicy)
234{
235 AssertReturn(CachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_IMPLEMENTED);
236
237 /* create the object. */
238 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
239 if (!pMemOs2)
240 return VERR_NO_MEMORY;
241
242 /* there is no allocation here, right? it needs to be mapped somewhere first. */
243 pMemOs2->Core.u.Phys.fAllocated = false;
244 pMemOs2->Core.u.Phys.PhysBase = Phys;
245 *ppMem = &pMemOs2->Core;
246 return VINF_SUCCESS;
247}
248
249
250int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
251{
252 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
253
254 /* create the object. */
255 const ULONG cPages = cb >> PAGE_SHIFT;
256 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
257 if (!pMemOs2)
258 return VERR_NO_MEMORY;
259
260 /* lock it. */
261 ULONG cPagesRet = cPages;
262 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
263 (void *)R3Ptr, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
264 if (!rc)
265 {
266 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
267 Assert(cb == pMemOs2->Core.cb);
268 Assert(R3Ptr == (RTR3PTR)pMemOs2->Core.pv);
269 pMemOs2->Core.u.Lock.R0Process = R0Process;
270 *ppMem = &pMemOs2->Core;
271 return VINF_SUCCESS;
272 }
273 rtR0MemObjDelete(&pMemOs2->Core);
274 return RTErrConvertFromOS2(rc);
275}
276
277
278int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
279{
280 /* create the object. */
281 const ULONG cPages = cb >> PAGE_SHIFT;
282 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
283 if (!pMemOs2)
284 return VERR_NO_MEMORY;
285
286 /* lock it. */
287 ULONG cPagesRet = cPages;
288 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
289 pv, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
290 if (!rc)
291 {
292 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
293 pMemOs2->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
294 *ppMem = &pMemOs2->Core;
295 return VINF_SUCCESS;
296 }
297 rtR0MemObjDelete(&pMemOs2->Core);
298 return RTErrConvertFromOS2(rc);
299}
300
301
302int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
303{
304 return VERR_NOT_IMPLEMENTED;
305}
306
307
308int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
309{
310 return VERR_NOT_IMPLEMENTED;
311}
312
313
314int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
315 unsigned fProt, size_t offSub, size_t cbSub)
316{
317 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
318 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
319
320 /*
321 * Check that the specified alignment is supported.
322 */
323 if (uAlignment > PAGE_SIZE)
324 return VERR_NOT_SUPPORTED;
325
326
327/** @todo finish the implementation. */
328
329 int rc;
330 void *pvR0 = NULL;
331 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
332 switch (pMemToMapOs2->Core.enmType)
333 {
334 /*
335 * These has kernel mappings.
336 */
337 case RTR0MEMOBJTYPE_PAGE:
338 case RTR0MEMOBJTYPE_LOW:
339 case RTR0MEMOBJTYPE_CONT:
340 pvR0 = pMemToMapOs2->Core.pv;
341 break;
342
343 case RTR0MEMOBJTYPE_PHYS:
344 pvR0 = pMemToMapOs2->Core.pv;
345 if (!pvR0)
346 {
347 /* no ring-0 mapping, so allocate a mapping in the process. */
348 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
349 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
350 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
351 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS, &pvR0, (PPVOID)&ulPhys, NULL);
352 if (rc)
353 return RTErrConvertFromOS2(rc);
354 pMemToMapOs2->Core.pv = pvR0;
355 }
356 break;
357
358 case RTR0MEMOBJTYPE_PHYS_NC:
359 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
360 return VERR_NOT_IMPLEMENTED;
361 break;
362
363 case RTR0MEMOBJTYPE_LOCK:
364 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
365 return VERR_NOT_SUPPORTED; /** @todo implement this... */
366 pvR0 = pMemToMapOs2->Core.pv;
367 break;
368
369 case RTR0MEMOBJTYPE_RES_VIRT:
370 case RTR0MEMOBJTYPE_MAPPING:
371 default:
372 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
373 return VERR_INTERNAL_ERROR;
374 }
375
376 /*
377 * Create a dummy mapping object for it.
378 *
379 * All mappings are read/write/execute in OS/2 and there isn't
380 * any cache options, so sharing is ok. And the main memory object
381 * isn't actually freed until all the mappings have been freed up
382 * (reference counting).
383 */
384 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR0, pMemToMapOs2->Core.cb);
385 if (pMemOs2)
386 {
387 pMemOs2->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
388 *ppMem = &pMemOs2->Core;
389 return VINF_SUCCESS;
390 }
391 return VERR_NO_MEMORY;
392}
393
394
395int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
396{
397 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
398 AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
399 if (uAlignment > PAGE_SIZE)
400 return VERR_NOT_SUPPORTED;
401
402 int rc;
403 void *pvR0;
404 void *pvR3 = NULL;
405 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
406 switch (pMemToMapOs2->Core.enmType)
407 {
408 /*
409 * These has kernel mappings.
410 */
411 case RTR0MEMOBJTYPE_PAGE:
412 case RTR0MEMOBJTYPE_LOW:
413 case RTR0MEMOBJTYPE_CONT:
414 pvR0 = pMemToMapOs2->Core.pv;
415 break;
416
417 case RTR0MEMOBJTYPE_PHYS:
418 pvR0 = pMemToMapOs2->Core.pv;
419#if 0/* this is wrong. */
420 if (!pvR0)
421 {
422 /* no ring-0 mapping, so allocate a mapping in the process. */
423 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
424 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
425 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
426 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS | VMDHA_PROCESS, &pvR3, (PPVOID)&ulPhys, NULL);
427 if (rc)
428 return RTErrConvertFromOS2(rc);
429 }
430 break;
431#endif
432 return VERR_NOT_SUPPORTED;
433
434 case RTR0MEMOBJTYPE_PHYS_NC:
435 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
436 return VERR_NOT_IMPLEMENTED;
437 break;
438
439 case RTR0MEMOBJTYPE_LOCK:
440 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
441 return VERR_NOT_SUPPORTED; /** @todo implement this... */
442 pvR0 = pMemToMapOs2->Core.pv;
443 break;
444
445 case RTR0MEMOBJTYPE_RES_VIRT:
446 case RTR0MEMOBJTYPE_MAPPING:
447 default:
448 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
449 return VERR_INTERNAL_ERROR;
450 }
451
452 /*
453 * Map the ring-0 memory into the current process.
454 */
455 if (!pvR3)
456 {
457 Assert(pvR0);
458 ULONG flFlags = 0;
459 if (uAlignment == PAGE_SIZE)
460 flFlags |= VMDHGP_4MB;
461 if (fProt & RTMEM_PROT_WRITE)
462 flFlags |= VMDHGP_WRITE;
463 rc = RTR0Os2DHVMGlobalToProcess(flFlags, pvR0, pMemToMapOs2->Core.cb, &pvR3);
464 if (rc)
465 return RTErrConvertFromOS2(rc);
466 }
467 Assert(pvR3);
468
469 /*
470 * Create a mapping object for it.
471 */
472 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR3, pMemToMapOs2->Core.cb);
473 if (pMemOs2)
474 {
475 Assert(pMemOs2->Core.pv == pvR3);
476 pMemOs2->Core.u.Mapping.R0Process = R0Process;
477 *ppMem = &pMemOs2->Core;
478 return VINF_SUCCESS;
479 }
480 KernVMFree(pvR3);
481 return VERR_NO_MEMORY;
482}
483
484
485int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
486{
487 NOREF(pMem);
488 NOREF(offSub);
489 NOREF(cbSub);
490 NOREF(fProt);
491 return VERR_NOT_SUPPORTED;
492}
493
494
495RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
496{
497 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
498
499 switch (pMemOs2->Core.enmType)
500 {
501 case RTR0MEMOBJTYPE_PAGE:
502 case RTR0MEMOBJTYPE_LOW:
503 case RTR0MEMOBJTYPE_LOCK:
504 case RTR0MEMOBJTYPE_PHYS_NC:
505 return pMemOs2->aPages[iPage].Addr;
506
507 case RTR0MEMOBJTYPE_CONT:
508 return pMemOs2->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
509
510 case RTR0MEMOBJTYPE_PHYS:
511 return pMemOs2->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
512
513 case RTR0MEMOBJTYPE_RES_VIRT:
514 case RTR0MEMOBJTYPE_MAPPING:
515 default:
516 return NIL_RTHCPHYS;
517 }
518}
519
520
521/**
522 * Expands the page list so we can index pages directly.
523 *
524 * @param paPages The page list array to fix.
525 * @param cPages The number of pages that's supposed to go into the list.
526 * @param cPagesRet The actual number of pages in the list.
527 */
528static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet)
529{
530 Assert(cPages >= cPagesRet);
531 if (cPages != cPagesRet)
532 {
533 ULONG iIn = cPagesRet;
534 ULONG iOut = cPages;
535 do
536 {
537 iIn--;
538 iOut--;
539 Assert(iIn <= iOut);
540
541 KernPageList_t Page = paPages[iIn];
542 Assert(!(Page.Addr & PAGE_OFFSET_MASK));
543 Assert(Page.Size == RT_ALIGN_Z(Page.Size, PAGE_SIZE));
544
545 if (Page.Size > PAGE_SIZE)
546 {
547 do
548 {
549 Page.Size -= PAGE_SIZE;
550 paPages[iOut].Addr = Page.Addr + Page.Size;
551 paPages[iOut].Size = PAGE_SIZE;
552 iOut--;
553 } while (Page.Size > PAGE_SIZE);
554 }
555
556 paPages[iOut].Addr = Page.Addr;
557 paPages[iOut].Size = PAGE_SIZE;
558 } while ( iIn != iOut
559 && iIn > 0);
560 }
561}
562
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette