VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/os2/memobj-r0drv-os2.cpp@ 33995

Last change on this file since 33995 was 32348, checked in by vboxsync, 14 years ago

RTR0MemObj*: Return VERR_NOT_SUPPORTED instead of VERR_NOT_IMPLEMENTED in a bunch of situations where the former is documented.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 18.3 KB
Line 
1/* $Id: memobj-r0drv-os2.cpp 32348 2010-09-09 12:28:05Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, OS/2.
4 */
5
6/*
7 * Copyright (c) 2007 knut st. osmundsen <[email protected]>
8 *
9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without
12 * restriction, including without limitation the rights to use,
13 * copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the
15 * Software is furnished to do so, subject to the following
16 * conditions:
17 *
18 * The above copyright notice and this permission notice shall be
19 * included in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
23 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
25 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
26 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
28 * OTHER DEALINGS IN THE SOFTWARE.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-os2-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/mem.h>
39#include <iprt/err.h>
40#include <iprt/assert.h>
41#include <iprt/log.h>
42#include <iprt/param.h>
43#include <iprt/process.h>
44#include "internal/memobj.h"
45
46
47/*******************************************************************************
48* Structures and Typedefs *
49*******************************************************************************/
50/**
51 * The OS/2 version of the memory object structure.
52 */
53typedef struct RTR0MEMOBJDARWIN
54{
55 /** The core structure. */
56 RTR0MEMOBJINTERNAL Core;
57 /** Lock for the ring-3 / ring-0 pinned objectes.
58 * This member might not be allocated for some object types. */
59 KernVMLock_t Lock;
60 /** Array of physical pages.
61 * This array can be 0 in length for some object types. */
62 KernPageList_t aPages[1];
63} RTR0MEMOBJOS2, *PRTR0MEMOBJOS2;
64
65
66/*******************************************************************************
67* Internal Functions *
68*******************************************************************************/
69static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet);
70
71
72int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
73{
74 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
75 int rc;
76
77 switch (pMemOs2->Core.enmType)
78 {
79 case RTR0MEMOBJTYPE_PHYS_NC:
80 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
81 return VERR_INTERNAL_ERROR;
82 break;
83
84 case RTR0MEMOBJTYPE_PHYS:
85 if (!pMemOs2->Core.pv)
86 break;
87
88 case RTR0MEMOBJTYPE_MAPPING:
89 if (pMemOs2->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
90 break;
91
92 /* fall thru */
93 case RTR0MEMOBJTYPE_PAGE:
94 case RTR0MEMOBJTYPE_LOW:
95 case RTR0MEMOBJTYPE_CONT:
96 rc = KernVMFree(pMemOs2->Core.pv);
97 AssertMsg(!rc, ("rc=%d type=%d pv=%p cb=%#zx\n", rc, pMemOs2->Core.enmType, pMemOs2->Core.pv, pMemOs2->Core.cb));
98 break;
99
100 case RTR0MEMOBJTYPE_LOCK:
101 rc = KernVMUnlock(&pMemOs2->Lock);
102 AssertMsg(!rc, ("rc=%d\n", rc));
103 break;
104
105 case RTR0MEMOBJTYPE_RES_VIRT:
106 default:
107 AssertMsgFailed(("enmType=%d\n", pMemOs2->Core.enmType));
108 return VERR_INTERNAL_ERROR;
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
116{
117 NOREF(fExecutable);
118
119 /* create the object. */
120 const ULONG cPages = cb >> PAGE_SHIFT;
121 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_PAGE, NULL, cb);
122 if (!pMemOs2)
123 return VERR_NO_MEMORY;
124
125 /* do the allocation. */
126 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
127 if (!rc)
128 {
129 ULONG cPagesRet = cPages;
130 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
131 if (!rc)
132 {
133 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
134 *ppMem = &pMemOs2->Core;
135 return VINF_SUCCESS;
136 }
137 KernVMFree(pMemOs2->Core.pv);
138 }
139 rtR0MemObjDelete(&pMemOs2->Core);
140 return RTErrConvertFromOS2(rc);
141}
142
143
144int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
145{
146 NOREF(fExecutable);
147
148 /* create the object. */
149 const ULONG cPages = cb >> PAGE_SHIFT;
150 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOW, NULL, cb);
151 if (!pMemOs2)
152 return VERR_NO_MEMORY;
153
154 /* do the allocation. */
155 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
156 if (!rc)
157 {
158 ULONG cPagesRet = cPages;
159 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
160 if (!rc)
161 {
162 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
163 *ppMem = &pMemOs2->Core;
164 return VINF_SUCCESS;
165 }
166 KernVMFree(pMemOs2->Core.pv);
167 }
168 rtR0MemObjDelete(&pMemOs2->Core);
169 return RTErrConvertFromOS2(rc);
170}
171
172
173int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
174{
175 NOREF(fExecutable);
176
177 /* create the object. */
178 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_CONT, NULL, cb);
179 if (!pMemOs2)
180 return VERR_NO_MEMORY;
181
182 /* do the allocation. */
183 ULONG ulPhys = ~0UL;
184 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG, &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
185 if (!rc)
186 {
187 Assert(ulPhys != ~0UL);
188 pMemOs2->Core.u.Cont.Phys = ulPhys;
189 *ppMem = &pMemOs2->Core;
190 return VINF_SUCCESS;
191 }
192 rtR0MemObjDelete(&pMemOs2->Core);
193 return RTErrConvertFromOS2(rc);
194}
195
196
197int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
198{
199 AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_SUPPORTED);
200
201 /** @todo alignment */
202 if (uAlignment != PAGE_SIZE)
203 return VERR_NOT_SUPPORTED;
204
205 /* create the object. */
206 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
207 if (!pMemOs2)
208 return VERR_NO_MEMORY;
209
210 /* do the allocation. */
211 ULONG ulPhys = ~0UL;
212 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG | (PhysHighest < _4G ? VMDHA_16M : 0), &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
213 if (!rc)
214 {
215 Assert(ulPhys != ~0UL);
216 pMemOs2->Core.u.Phys.fAllocated = true;
217 pMemOs2->Core.u.Phys.PhysBase = ulPhys;
218 *ppMem = &pMemOs2->Core;
219 return VINF_SUCCESS;
220 }
221 rtR0MemObjDelete(&pMemOs2->Core);
222 return RTErrConvertFromOS2(rc);
223}
224
225
226int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
227{
228 /** @todo rtR0MemObjNativeAllocPhys / darwin. */
229 return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest, PAGE_SIZE);
230}
231
232
233int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
234{
235 AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
236
237 /* create the object. */
238 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
239 if (!pMemOs2)
240 return VERR_NO_MEMORY;
241
242 /* there is no allocation here, right? it needs to be mapped somewhere first. */
243 pMemOs2->Core.u.Phys.fAllocated = false;
244 pMemOs2->Core.u.Phys.PhysBase = Phys;
245 pMemOs2->Core.u.Phys.uCachePolicy = uCachePolicy;
246 *ppMem = &pMemOs2->Core;
247 return VINF_SUCCESS;
248}
249
250
251int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
252{
253 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
254
255 /* create the object. */
256 const ULONG cPages = cb >> PAGE_SHIFT;
257 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
258 if (!pMemOs2)
259 return VERR_NO_MEMORY;
260
261 /* lock it. */
262 ULONG cPagesRet = cPages;
263 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
264 (void *)R3Ptr, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
265 if (!rc)
266 {
267 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
268 Assert(cb == pMemOs2->Core.cb);
269 Assert(R3Ptr == (RTR3PTR)pMemOs2->Core.pv);
270 pMemOs2->Core.u.Lock.R0Process = R0Process;
271 *ppMem = &pMemOs2->Core;
272 return VINF_SUCCESS;
273 }
274 rtR0MemObjDelete(&pMemOs2->Core);
275 return RTErrConvertFromOS2(rc);
276}
277
278
279int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
280{
281 /* create the object. */
282 const ULONG cPages = cb >> PAGE_SHIFT;
283 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
284 if (!pMemOs2)
285 return VERR_NO_MEMORY;
286
287 /* lock it. */
288 ULONG cPagesRet = cPages;
289 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
290 pv, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
291 if (!rc)
292 {
293 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
294 pMemOs2->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
295 *ppMem = &pMemOs2->Core;
296 return VINF_SUCCESS;
297 }
298 rtR0MemObjDelete(&pMemOs2->Core);
299 return RTErrConvertFromOS2(rc);
300}
301
302
303int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
304{
305 return VERR_NOT_SUPPORTED;
306}
307
308
309int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
310{
311 return VERR_NOT_SUPPORTED;
312}
313
314
315int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
316 unsigned fProt, size_t offSub, size_t cbSub)
317{
318 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
319 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
320
321 /*
322 * Check that the specified alignment is supported.
323 */
324 if (uAlignment > PAGE_SIZE)
325 return VERR_NOT_SUPPORTED;
326
327
328/** @todo finish the implementation. */
329
330 int rc;
331 void *pvR0 = NULL;
332 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
333 switch (pMemToMapOs2->Core.enmType)
334 {
335 /*
336 * These has kernel mappings.
337 */
338 case RTR0MEMOBJTYPE_PAGE:
339 case RTR0MEMOBJTYPE_LOW:
340 case RTR0MEMOBJTYPE_CONT:
341 pvR0 = pMemToMapOs2->Core.pv;
342 break;
343
344 case RTR0MEMOBJTYPE_PHYS:
345 pvR0 = pMemToMapOs2->Core.pv;
346 if (!pvR0)
347 {
348 /* no ring-0 mapping, so allocate a mapping in the process. */
349 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
350 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
351 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
352 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS, &pvR0, (PPVOID)&ulPhys, NULL);
353 if (rc)
354 return RTErrConvertFromOS2(rc);
355 pMemToMapOs2->Core.pv = pvR0;
356 }
357 break;
358
359 case RTR0MEMOBJTYPE_PHYS_NC:
360 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
361 return VERR_INTERNAL_ERROR_3;
362 break;
363
364 case RTR0MEMOBJTYPE_LOCK:
365 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
366 return VERR_NOT_SUPPORTED; /** @todo implement this... */
367 pvR0 = pMemToMapOs2->Core.pv;
368 break;
369
370 case RTR0MEMOBJTYPE_RES_VIRT:
371 case RTR0MEMOBJTYPE_MAPPING:
372 default:
373 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
374 return VERR_INTERNAL_ERROR;
375 }
376
377 /*
378 * Create a dummy mapping object for it.
379 *
380 * All mappings are read/write/execute in OS/2 and there isn't
381 * any cache options, so sharing is ok. And the main memory object
382 * isn't actually freed until all the mappings have been freed up
383 * (reference counting).
384 */
385 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR0, pMemToMapOs2->Core.cb);
386 if (pMemOs2)
387 {
388 pMemOs2->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
389 *ppMem = &pMemOs2->Core;
390 return VINF_SUCCESS;
391 }
392 return VERR_NO_MEMORY;
393}
394
395
396int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
397{
398 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
399 AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
400 if (uAlignment > PAGE_SIZE)
401 return VERR_NOT_SUPPORTED;
402
403 int rc;
404 void *pvR0;
405 void *pvR3 = NULL;
406 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
407 switch (pMemToMapOs2->Core.enmType)
408 {
409 /*
410 * These has kernel mappings.
411 */
412 case RTR0MEMOBJTYPE_PAGE:
413 case RTR0MEMOBJTYPE_LOW:
414 case RTR0MEMOBJTYPE_CONT:
415 pvR0 = pMemToMapOs2->Core.pv;
416 break;
417
418 case RTR0MEMOBJTYPE_PHYS:
419 pvR0 = pMemToMapOs2->Core.pv;
420#if 0/* this is wrong. */
421 if (!pvR0)
422 {
423 /* no ring-0 mapping, so allocate a mapping in the process. */
424 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
425 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
426 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
427 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS | VMDHA_PROCESS, &pvR3, (PPVOID)&ulPhys, NULL);
428 if (rc)
429 return RTErrConvertFromOS2(rc);
430 }
431 break;
432#endif
433 return VERR_NOT_SUPPORTED;
434
435 case RTR0MEMOBJTYPE_PHYS_NC:
436 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
437 return VERR_INTERNAL_ERROR_5;
438 break;
439
440 case RTR0MEMOBJTYPE_LOCK:
441 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
442 return VERR_NOT_SUPPORTED; /** @todo implement this... */
443 pvR0 = pMemToMapOs2->Core.pv;
444 break;
445
446 case RTR0MEMOBJTYPE_RES_VIRT:
447 case RTR0MEMOBJTYPE_MAPPING:
448 default:
449 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
450 return VERR_INTERNAL_ERROR;
451 }
452
453 /*
454 * Map the ring-0 memory into the current process.
455 */
456 if (!pvR3)
457 {
458 Assert(pvR0);
459 ULONG flFlags = 0;
460 if (uAlignment == PAGE_SIZE)
461 flFlags |= VMDHGP_4MB;
462 if (fProt & RTMEM_PROT_WRITE)
463 flFlags |= VMDHGP_WRITE;
464 rc = RTR0Os2DHVMGlobalToProcess(flFlags, pvR0, pMemToMapOs2->Core.cb, &pvR3);
465 if (rc)
466 return RTErrConvertFromOS2(rc);
467 }
468 Assert(pvR3);
469
470 /*
471 * Create a mapping object for it.
472 */
473 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR3, pMemToMapOs2->Core.cb);
474 if (pMemOs2)
475 {
476 Assert(pMemOs2->Core.pv == pvR3);
477 pMemOs2->Core.u.Mapping.R0Process = R0Process;
478 *ppMem = &pMemOs2->Core;
479 return VINF_SUCCESS;
480 }
481 KernVMFree(pvR3);
482 return VERR_NO_MEMORY;
483}
484
485
486int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
487{
488 NOREF(pMem);
489 NOREF(offSub);
490 NOREF(cbSub);
491 NOREF(fProt);
492 return VERR_NOT_SUPPORTED;
493}
494
495
496RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
497{
498 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
499
500 switch (pMemOs2->Core.enmType)
501 {
502 case RTR0MEMOBJTYPE_PAGE:
503 case RTR0MEMOBJTYPE_LOW:
504 case RTR0MEMOBJTYPE_LOCK:
505 case RTR0MEMOBJTYPE_PHYS_NC:
506 return pMemOs2->aPages[iPage].Addr;
507
508 case RTR0MEMOBJTYPE_CONT:
509 return pMemOs2->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
510
511 case RTR0MEMOBJTYPE_PHYS:
512 return pMemOs2->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
513
514 case RTR0MEMOBJTYPE_RES_VIRT:
515 case RTR0MEMOBJTYPE_MAPPING:
516 default:
517 return NIL_RTHCPHYS;
518 }
519}
520
521
522/**
523 * Expands the page list so we can index pages directly.
524 *
525 * @param paPages The page list array to fix.
526 * @param cPages The number of pages that's supposed to go into the list.
527 * @param cPagesRet The actual number of pages in the list.
528 */
529static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet)
530{
531 Assert(cPages >= cPagesRet);
532 if (cPages != cPagesRet)
533 {
534 ULONG iIn = cPagesRet;
535 ULONG iOut = cPages;
536 do
537 {
538 iIn--;
539 iOut--;
540 Assert(iIn <= iOut);
541
542 KernPageList_t Page = paPages[iIn];
543 Assert(!(Page.Addr & PAGE_OFFSET_MASK));
544 Assert(Page.Size == RT_ALIGN_Z(Page.Size, PAGE_SIZE));
545
546 if (Page.Size > PAGE_SIZE)
547 {
548 do
549 {
550 Page.Size -= PAGE_SIZE;
551 paPages[iOut].Addr = Page.Addr + Page.Size;
552 paPages[iOut].Size = PAGE_SIZE;
553 iOut--;
554 } while (Page.Size > PAGE_SIZE);
555 }
556
557 paPages[iOut].Addr = Page.Addr;
558 paPages[iOut].Size = PAGE_SIZE;
559 } while ( iIn != iOut
560 && iIn > 0);
561 }
562}
563
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette