/* $Id: alloc-r0drv-solaris.c 76553 2019-01-01 01:45:53Z vboxsync $ */ /** @file * IPRT - Memory Allocation, Ring-0 Driver, Solaris. */ /* * Copyright (C) 2006-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "the-solaris-kernel.h" #include "internal/iprt.h" #include #include #include #include #include #include #include "r0drv/alloc-r0drv.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ static ddi_dma_attr_t s_rtR0SolDmaAttr = { DMA_ATTR_V0, /* Version Number */ (uint64_t)0, /* Lower limit */ (uint64_t)0, /* High limit */ (uint64_t)0xffffffff, /* Counter limit */ (uint64_t)PAGESIZE, /* Alignment */ (uint64_t)PAGESIZE, /* Burst size */ (uint64_t)PAGESIZE, /* Effective DMA size */ (uint64_t)0xffffffff, /* Max DMA xfer size */ (uint64_t)0xffffffff, /* Segment boundary */ 1, /* Scatter-gather list length (1 for contiguous) */ 1, /* Device granularity */ 0 /* Bus-specific flags */ }; extern void *contig_alloc(size_t cb, ddi_dma_attr_t *pDmaAttr, size_t uAlign, int fCanSleep); /** * OS specific allocation function. */ DECLHIDDEN(int) rtR0MemAllocEx(size_t cb, uint32_t fFlags, PRTMEMHDR *ppHdr) { size_t cbAllocated = cb; PRTMEMHDR pHdr; #ifdef RT_ARCH_AMD64 if (fFlags & RTMEMHDR_FLAG_EXEC) { AssertReturn(!(fFlags & RTMEMHDR_FLAG_ANY_CTX), VERR_NOT_SUPPORTED); cbAllocated = RT_ALIGN_Z(cb + sizeof(*pHdr), PAGE_SIZE) - sizeof(*pHdr); pHdr = (PRTMEMHDR)segkmem_alloc(heaptext_arena, cbAllocated + sizeof(*pHdr), KM_SLEEP); } else #endif { unsigned fKmFlags = fFlags & RTMEMHDR_FLAG_ANY_CTX_ALLOC ? KM_NOSLEEP : KM_SLEEP; if (fFlags & RTMEMHDR_FLAG_ZEROED) pHdr = (PRTMEMHDR)kmem_zalloc(cb + sizeof(*pHdr), fKmFlags); else pHdr = (PRTMEMHDR)kmem_alloc(cb + sizeof(*pHdr), fKmFlags); } if (RT_UNLIKELY(!pHdr)) { LogRel(("rtMemAllocEx(%u, %#x) failed\n", (unsigned)cb + sizeof(*pHdr), fFlags)); return VERR_NO_MEMORY; } pHdr->u32Magic = RTMEMHDR_MAGIC; pHdr->fFlags = fFlags; pHdr->cb = cbAllocated; pHdr->cbReq = cb; *ppHdr = pHdr; return VINF_SUCCESS; } /** * OS specific free function. */ DECLHIDDEN(void) rtR0MemFree(PRTMEMHDR pHdr) { pHdr->u32Magic += 1; #ifdef RT_ARCH_AMD64 if (pHdr->fFlags & RTMEMHDR_FLAG_EXEC) segkmem_free(heaptext_arena, pHdr, pHdr->cb + sizeof(*pHdr)); else #endif kmem_free(pHdr, pHdr->cb + sizeof(*pHdr)); } /** * Allocates physical memory which satisfy the given constraints. * * @param uPhysHi The upper physical address limit (inclusive). * @param puPhys Where to store the physical address of the allocated * memory. Optional, can be NULL. * @param cb Size of allocation. * @param uAlignment Alignment. * @param fContig Whether the memory must be physically contiguous or * not. * * @returns Virtual address of allocated memory block or NULL if allocation * failed. */ DECLHIDDEN(void *) rtR0SolMemAlloc(uint64_t uPhysHi, uint64_t *puPhys, size_t cb, uint64_t uAlignment, bool fContig) { if ((cb & PAGEOFFSET) != 0) return NULL; size_t cPages = (cb + PAGESIZE - 1) >> PAGESHIFT; if (!cPages) return NULL; ddi_dma_attr_t DmaAttr = s_rtR0SolDmaAttr; DmaAttr.dma_attr_addr_hi = uPhysHi; DmaAttr.dma_attr_align = uAlignment; if (!fContig) DmaAttr.dma_attr_sgllen = cPages > INT_MAX ? INT_MAX - 1 : cPages; else AssertRelease(DmaAttr.dma_attr_sgllen == 1); void *pvMem = contig_alloc(cb, &DmaAttr, PAGESIZE, 1 /* can sleep */); if (!pvMem) { LogRel(("rtR0SolMemAlloc failed. cb=%u Align=%u fContig=%d\n", (unsigned)cb, (unsigned)uAlignment, fContig)); return NULL; } pfn_t PageFrameNum = hat_getpfnum(kas.a_hat, (caddr_t)pvMem); AssertRelease(PageFrameNum != PFN_INVALID); if (puPhys) *puPhys = (uint64_t)PageFrameNum << PAGESHIFT; return pvMem; } /** * Frees memory allocated using rtR0SolMemAlloc(). * * @param pv The memory to free. * @param cb Size of the memory block */ DECLHIDDEN(void) rtR0SolMemFree(void *pv, size_t cb) { if (RT_LIKELY(pv)) g_pfnrtR0Sol_contig_free(pv, cb); } RTR0DECL(void *) RTMemContAlloc(PRTCCPHYS pPhys, size_t cb) { AssertPtrReturn(pPhys, NULL); AssertReturn(cb > 0, NULL); RT_ASSERT_PREEMPTIBLE(); /* Allocate physically contiguous (< 4GB) page-aligned memory. */ uint64_t uPhys; void *pvMem = rtR0SolMemAlloc((uint64_t)_4G - 1, &uPhys, cb, PAGESIZE, true /* fContig */); if (RT_UNLIKELY(!pvMem)) { LogRel(("RTMemContAlloc failed to allocate %u bytes\n", cb)); return NULL; } Assert(uPhys < _4G); *pPhys = uPhys; return pvMem; } RTR0DECL(void) RTMemContFree(void *pv, size_t cb) { RT_ASSERT_PREEMPTIBLE(); rtR0SolMemFree(pv, cb); }