/* $Id: memobj-r0drv-solaris.c 44677 2013-02-13 22:50:00Z vboxsync $ */ /** @file * IPRT - Ring-0 Memory Objects, Solaris. */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "the-solaris-kernel.h" #include "internal/iprt.h" #include #include #include #include #include #include #include #include #include "internal/memobj.h" #include "memobj-r0drv-solaris.h" /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ #define SOL_IS_KRNL_ADDR(vx) ((uintptr_t)(vx) >= kernelbase) /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * The Solaris version of the memory object structure. */ typedef struct RTR0MEMOBJSOL { /** The core structure. */ RTR0MEMOBJINTERNAL Core; /** Pointer to kernel memory cookie. */ ddi_umem_cookie_t Cookie; /** Shadow locked pages. */ void *pvHandle; /** Access during locking. */ int fAccess; /** Set if large pages are involved in an RTR0MEMOBJTYPE_PHYS * allocation. */ bool fLargePage; /** Whether we have individual pages or a kernel-mapped virtual memory block in * an RTR0MEMOBJTYPE_PHYS_NC allocation. */ bool fIndivPages; } RTR0MEMOBJSOL, *PRTR0MEMOBJSOL; /******************************************************************************* * Global Variables * *******************************************************************************/ static vnode_t g_PageVnode; static kmutex_t g_OffsetMtx; static u_offset_t g_offPage; static vnode_t g_LargePageVnode; static kmutex_t g_LargePageOffsetMtx; static u_offset_t g_offLargePage; static bool g_fLargePageNoReloc; /** * Returns the physical address for a virtual address. * * @param pv The virtual address. * * @returns The physical address corresponding to @a pv. */ static uint64_t rtR0MemObjSolVirtToPhys(void *pv) { struct hat *pHat = NULL; pfn_t PageFrameNum = 0; uintptr_t uVirtAddr = (uintptr_t)pv; if (SOL_IS_KRNL_ADDR(pv)) pHat = kas.a_hat; else { proc_t *pProcess = (proc_t *)RTR0ProcHandleSelf(); AssertRelease(pProcess); pHat = pProcess->p_as->a_hat; } PageFrameNum = hat_getpfnum(pHat, (caddr_t)(uVirtAddr & PAGEMASK)); AssertReleaseMsg(PageFrameNum != PFN_INVALID, ("rtR0MemObjSolVirtToPhys failed. pv=%p\n", pv)); return (((uint64_t)PageFrameNum << PAGE_SHIFT) | (uVirtAddr & PAGE_OFFSET_MASK)); } /** * Returns the physical address for a page. * * @param pPage Pointer to the page. * * @returns The physical address for a page. */ static inline uint64_t rtR0MemObjSolPagePhys(page_t *pPage) { AssertPtr(pPage); pfn_t PageFrameNum = page_pptonum(pPage); AssertReleaseMsg(PageFrameNum != PFN_INVALID, ("rtR0MemObjSolPagePhys failed pPage=%p\n")); return (uint64_t)PageFrameNum << PAGE_SHIFT; } /** * Allocates one page. * * @param virtAddr The virtual address to which this page maybe mapped in * the future. * * @returns Pointer to the allocated page, NULL on failure. */ static page_t *rtR0MemObjSolPageAlloc(caddr_t virtAddr) { u_offset_t offPage; seg_t KernelSeg; /* * 16777215 terabytes of total memory for all VMs or * restart 8000 1GB VMs 2147483 times until wraparound! */ mutex_enter(&g_OffsetMtx); AssertCompileSize(u_offset_t, sizeof(uint64_t)); NOREF(RTASSERTVAR); g_offPage = RT_ALIGN_64(g_offPage, PAGE_SIZE) + PAGE_SIZE; offPage = g_offPage; mutex_exit(&g_OffsetMtx); KernelSeg.s_as = &kas; page_t *pPage = page_create_va(&g_PageVnode, offPage, PAGE_SIZE, PG_WAIT | PG_NORELOC, &KernelSeg, virtAddr); if (RT_LIKELY(pPage)) { /* * Lock this page into memory "long term" to prevent this page from being paged out * when we drop the page lock temporarily (during free). Downgrade to a shared lock * to prevent page relocation. */ page_pp_lock(pPage, 0 /* COW */, 1 /* Kernel */); page_io_unlock(pPage); page_downgrade(pPage); Assert(PAGE_LOCKED_SE(pPage, SE_SHARED)); } return pPage; } /** * Destroys an allocated page. * * @param pPage Pointer to the page to be destroyed. * @remarks This function expects page in @c pPage to be shared locked. */ static void rtR0MemObjSolPageDestroy(page_t *pPage) { /* * We need to exclusive lock the pages before freeing them, if upgrading the shared lock to exclusive fails, * drop the page lock and look it up from the hash. Record the page offset before we drop the page lock as * we cannot touch any page_t members once the lock is dropped. */ AssertPtr(pPage); Assert(PAGE_LOCKED_SE(pPage, SE_SHARED)); u_offset_t offPage = pPage->p_offset; int rc = page_tryupgrade(pPage); if (!rc) { page_unlock(pPage); page_t *pFoundPage = page_lookup(&g_PageVnode, offPage, SE_EXCL); /* * Since we allocated the pages as PG_NORELOC we should only get back the exact page always. */ AssertReleaseMsg(pFoundPage == pPage, ("Page lookup failed %p:%llx returned %p, expected %p\n", &g_PageVnode, offPage, pFoundPage, pPage)); } Assert(PAGE_LOCKED_SE(pPage, SE_EXCL)); page_pp_unlock(pPage, 0 /* COW */, 1 /* Kernel */); page_destroy(pPage, 0 /* move it to the free list */); } /** * Allocates physical, non-contiguous memory of pages. * * @param puPhys Where to store the physical address of first page. Optional, * can be NULL. * @param cb The size of the allocation. * * @return Array of allocated pages, NULL on failure. */ static page_t **rtR0MemObjSolPagesAlloc(uint64_t *puPhys, size_t cb) { /* * VM1: * The page freelist and cachelist both hold pages that are not mapped into any address space. * The cachelist is not really free pages but when memory is exhausted they'll be moved to the * free lists, it's the total of the free+cache list that we see on the 'free' column in vmstat. * * VM2: * @todo Document what happens behind the scenes in VM2 regarding the free and cachelist. */ /* * Non-pageable memory reservation request for _4K pages, don't sleep. */ size_t cPages = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT; int rc = page_resv(cPages, KM_NOSLEEP); if (rc) { size_t cbPages = cPages * sizeof(page_t *); page_t **ppPages = kmem_zalloc(cbPages, KM_SLEEP); if (RT_LIKELY(ppPages)) { /* * Get pages from kseg, the 'virtAddr' here is only for colouring but unfortunately * we don't yet have the 'virtAddr' to which this memory may be mapped. */ caddr_t virtAddr = 0; for (size_t i = 0; i < cPages; i++, virtAddr += PAGE_SIZE) { /* * Get a page from the free list locked exclusively. The page will be named (hashed in) * and we rely on it during free. The page we get will be shared locked to prevent the page * from being relocated. */ page_t *pPage = rtR0MemObjSolPageAlloc(virtAddr); if (RT_UNLIKELY(!pPage)) { /* * No page found, release whatever pages we grabbed so far. */ for (size_t k = 0; k < i; k++) rtR0MemObjSolPageDestroy(ppPages[k]); kmem_free(ppPages, cbPages); page_unresv(cPages); return NULL; } ppPages[i] = pPage; } if (puPhys) *puPhys = rtR0MemObjSolPagePhys(ppPages[0]); return ppPages; } page_unresv(cPages); } return NULL; } /** * Frees the allocates pages. * * @param ppPages Pointer to the page list. * @param cbPages Size of the allocation. */ static void rtR0MemObjSolPagesFree(page_t **ppPages, size_t cb) { size_t cPages = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT; size_t cbPages = cPages * sizeof(page_t *); for (size_t iPage = 0; iPage < cPages; iPage++) rtR0MemObjSolPageDestroy(ppPages[iPage]); kmem_free(ppPages, cbPages); page_unresv(cPages); } /** * Allocates one large page. * * @param puPhys Where to store the physical address of the allocated * page. Optional, can be NULL. * @param cbLargePage Size of the large page. * * @returns Pointer to a list of pages that cover the large page, NULL on * failure. */ static page_t **rtR0MemObjSolLargePageAlloc(uint64_t *puPhys, size_t cbLargePage) { /* * Check PG_NORELOC support for large pages. Using this helps prevent _1G page * fragementation on systems that support it. */ static bool fPageNoRelocChecked = false; if (fPageNoRelocChecked == false) { fPageNoRelocChecked = true; g_fLargePageNoReloc = false; if ( g_pfnrtR0Sol_page_noreloc_supported && g_pfnrtR0Sol_page_noreloc_supported(cbLargePage)) { g_fLargePageNoReloc = true; } } /* * Non-pageable memory reservation request for _4K pages, don't sleep. */ size_t cPages = (cbLargePage + PAGE_SIZE - 1) >> PAGE_SHIFT; size_t cbPages = cPages * sizeof(page_t *); u_offset_t offPage = 0; int rc = page_resv(cPages, KM_NOSLEEP); if (rc) { page_t **ppPages = kmem_zalloc(cbPages, KM_SLEEP); if (RT_LIKELY(ppPages)) { mutex_enter(&g_LargePageOffsetMtx); AssertCompileSize(u_offset_t, sizeof(uint64_t)); NOREF(RTASSERTVAR); g_offLargePage = RT_ALIGN_64(g_offLargePage, cbLargePage) + cbLargePage; offPage = g_offLargePage; mutex_exit(&g_LargePageOffsetMtx); seg_t KernelSeg; KernelSeg.s_as = &kas; page_t *pRootPage = page_create_va_large(&g_LargePageVnode, offPage, cbLargePage, PG_EXCL | (g_fLargePageNoReloc ? PG_NORELOC : 0), &KernelSeg, 0 /* vaddr */,NULL /* locality group */); if (pRootPage) { /* * Split it into sub-pages, downgrade each page to a shared lock to prevent page relocation. */ page_t *pPageList = pRootPage; for (size_t iPage = 0; iPage < cPages; iPage++) { page_t *pPage = pPageList; AssertPtr(pPage); AssertMsg(page_pptonum(pPage) == iPage + page_pptonum(pRootPage), ("%p:%lx %lx+%lx\n", pPage, page_pptonum(pPage), iPage, page_pptonum(pRootPage))); AssertMsg(pPage->p_szc == pRootPage->p_szc, ("Size code mismatch %p %d %d\n", pPage, (int)pPage->p_szc, (int)pRootPage->p_szc)); /* * Lock the page into memory "long term". This prevents callers of page_try_demote_pages() (such as the * pageout scanner) from demoting the large page into smaller pages while we temporarily release the * exclusive lock (during free). We pass "0, 1" since we've already accounted for availrmem during * page_resv(). */ page_pp_lock(pPage, 0 /* COW */, 1 /* Kernel */); page_sub(&pPageList, pPage); page_io_unlock(pPage); page_downgrade(pPage); Assert(PAGE_LOCKED_SE(pPage, SE_SHARED)); ppPages[iPage] = pPage; } Assert(pPageList == NULL); Assert(ppPages[0] == pRootPage); uint64_t uPhys = rtR0MemObjSolPagePhys(pRootPage); AssertMsg(!(uPhys & (cbLargePage - 1)), ("%llx %zx\n", uPhys, cbLargePage)); if (puPhys) *puPhys = uPhys; return ppPages; } /* * Don't restore offPrev in case of failure (race condition), we have plenty of offset space. * The offset must be unique (for the same vnode) or we'll encounter panics on page_create_va_large(). */ kmem_free(ppPages, cbPages); } page_unresv(cPages); } return NULL; } /** * Frees the large page. * * @param ppPages Pointer to the list of small pages that cover the * large page. * @param cbLargePage Size of the allocation (i.e. size of the large * page). */ static void rtR0MemObjSolLargePageFree(page_t **ppPages, size_t cbLargePage) { Assert(ppPages); Assert(cbLargePage > PAGE_SIZE); bool fDemoted = false; size_t cPages = (cbLargePage + PAGE_SIZE - 1) >> PAGE_SHIFT; size_t cbPages = cPages * sizeof(page_t *); page_t *pPageList = ppPages[0]; for (size_t iPage = 0; iPage < cPages; iPage++) { /* * We need the pages exclusively locked, try upgrading the shared lock. * If it fails, drop the shared page lock (cannot access any page_t members once this is done) * and lookup the page from the page hash locking it exclusively. */ page_t *pPage = ppPages[iPage]; u_offset_t offPage = pPage->p_offset; int rc = page_tryupgrade(pPage); if (!rc) { page_unlock(pPage); page_t *pFoundPage = page_lookup(&g_LargePageVnode, offPage, SE_EXCL); AssertRelease(pFoundPage); if (g_fLargePageNoReloc) { /* * This can only be guaranteed if PG_NORELOC is used while allocating the pages. */ AssertReleaseMsg(pFoundPage == pPage, ("lookup failed %p:%llu returned %p, expected %p\n", &g_LargePageVnode, offPage, pFoundPage, pPage)); } /* * Check for page demotion (regardless of relocation). Some places in Solaris (e.g. VM1 page_retire()) * could possibly demote the large page to _4K pages between our call to page_unlock() and page_lookup(). */ if (page_get_pagecnt(pFoundPage->p_szc) == 1) /* Base size of only _4K associated with this page. */ fDemoted = true; pPage = pFoundPage; ppPages[iPage] = pFoundPage; } Assert(PAGE_LOCKED_SE(pPage, SE_EXCL)); page_pp_unlock(pPage, 0 /* COW */, 1 /* Kernel */); } if (fDemoted) { for (size_t iPage = 0; iPage < cPages; iPage++) { Assert(page_get_pagecnt(ppPages[iPage]->p_szc) == 1); page_destroy(ppPages[iPage], 0 /* move it to the free list */); } } else { /* * Although we shred the adjacent pages in the linked list, page_destroy_pages works on * adjacent pages via array increments. So this does indeed free all the pages. */ AssertPtr(pPageList); page_destroy_pages(pPageList); } kmem_free(ppPages, cbPages); page_unresv(cPages); } /** * Unmaps kernel/user-space mapped memory. * * @param pv Pointer to the mapped memory block. * @param cb Size of the memory block. */ static void rtR0MemObjSolUnmap(void *pv, size_t cb) { if (SOL_IS_KRNL_ADDR(pv)) { hat_unload(kas.a_hat, pv, cb, HAT_UNLOAD | HAT_UNLOAD_UNLOCK); vmem_free(heap_arena, pv, cb); } else { struct as *pAddrSpace = ((proc_t *)RTR0ProcHandleSelf())->p_as; AssertPtr(pAddrSpace); as_rangelock(pAddrSpace); as_unmap(pAddrSpace, pv, cb); as_rangeunlock(pAddrSpace); } } /** * Lock down memory mappings for a virtual address. * * @param pv Pointer to the memory to lock down. * @param cb Size of the memory block. * @param fAccess Page access rights (S_READ, S_WRITE, S_EXEC) * * @returns IPRT status code. */ static int rtR0MemObjSolLock(void *pv, size_t cb, int fPageAccess) { /* * Kernel memory mappings on x86/amd64 are always locked, only handle user-space memory. */ if (!SOL_IS_KRNL_ADDR(pv)) { proc_t *pProc = (proc_t *)RTR0ProcHandleSelf(); AssertPtr(pProc); faultcode_t rc = as_fault(pProc->p_as->a_hat, pProc->p_as, (caddr_t)pv, cb, F_SOFTLOCK, fPageAccess); if (rc) { LogRel(("rtR0MemObjSolLock failed for pv=%pv cb=%lx fPageAccess=%d rc=%d\n", pv, cb, fPageAccess, rc)); return VERR_LOCK_FAILED; } } return VINF_SUCCESS; } /** * Unlock memory mappings for a virtual address. * * @param pv Pointer to the locked memory. * @param cb Size of the memory block. * @param fPageAccess Page access rights (S_READ, S_WRITE, S_EXEC). */ static void rtR0MemObjSolUnlock(void *pv, size_t cb, int fPageAccess) { if (!SOL_IS_KRNL_ADDR(pv)) { proc_t *pProcess = (proc_t *)RTR0ProcHandleSelf(); AssertPtr(pProcess); as_fault(pProcess->p_as->a_hat, pProcess->p_as, (caddr_t)pv, cb, F_SOFTUNLOCK, fPageAccess); } } /** * Maps a list of physical pages into user address space. * * @param pVirtAddr Where to store the virtual address of the mapping. * @param fPageAccess Page access rights (PROT_READ, PROT_WRITE, * PROT_EXEC) * @param paPhysAddrs Array of physical addresses to pages. * @param cb Size of memory being mapped. * * @returns IPRT status code. */ static int rtR0MemObjSolUserMap(caddr_t *pVirtAddr, unsigned fPageAccess, uint64_t *paPhysAddrs, size_t cb, size_t cbPageSize) { struct as *pAddrSpace = ((proc_t *)RTR0ProcHandleSelf())->p_as; int rc = VERR_INTERNAL_ERROR; SEGVBOX_CRARGS Args; Args.paPhysAddrs = paPhysAddrs; Args.fPageAccess = fPageAccess; Args.cbPageSize = cbPageSize; as_rangelock(pAddrSpace); map_addr(pVirtAddr, cb, 0 /* offset */, 0 /* vacalign */, MAP_SHARED); if (*pVirtAddr != NULL) rc = as_map(pAddrSpace, *pVirtAddr, cb, rtR0SegVBoxSolCreate, &Args); else rc = ENOMEM; as_rangeunlock(pAddrSpace); return RTErrConvertFromErrno(rc); } DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem) { PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)pMem; switch (pMemSolaris->Core.enmType) { case RTR0MEMOBJTYPE_LOW: rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb); break; case RTR0MEMOBJTYPE_PHYS: if (pMemSolaris->Core.u.Phys.fAllocated) { if (pMemSolaris->fLargePage) rtR0MemObjSolLargePageFree(pMemSolaris->pvHandle, pMemSolaris->Core.cb); else rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb); } break; case RTR0MEMOBJTYPE_PHYS_NC: if (pMemSolaris->fIndivPages) rtR0MemObjSolPagesFree(pMemSolaris->pvHandle, pMemSolaris->Core.cb); else rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb); break; case RTR0MEMOBJTYPE_PAGE: ddi_umem_free(pMemSolaris->Cookie); break; case RTR0MEMOBJTYPE_LOCK: rtR0MemObjSolUnlock(pMemSolaris->Core.pv, pMemSolaris->Core.cb, pMemSolaris->fAccess); break; case RTR0MEMOBJTYPE_MAPPING: rtR0MemObjSolUnmap(pMemSolaris->Core.pv, pMemSolaris->Core.cb); break; case RTR0MEMOBJTYPE_RES_VIRT: { if (pMemSolaris->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS) vmem_xfree(heap_arena, pMemSolaris->Core.pv, pMemSolaris->Core.cb); else AssertFailed(); break; } case RTR0MEMOBJTYPE_CONT: /* we don't use this type here. */ default: AssertMsgFailed(("enmType=%d\n", pMemSolaris->Core.enmType)); return VERR_INTERNAL_ERROR; } return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { /* Create the object. */ PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PAGE, NULL, cb); if (RT_UNLIKELY(!pMemSolaris)) return VERR_NO_MEMORY; void *pvMem = ddi_umem_alloc(cb, DDI_UMEM_SLEEP, &pMemSolaris->Cookie); if (RT_UNLIKELY(!pvMem)) { rtR0MemObjDelete(&pMemSolaris->Core); return VERR_NO_PAGE_MEMORY; } pMemSolaris->Core.pv = pvMem; pMemSolaris->pvHandle = NULL; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { NOREF(fExecutable); /* Create the object */ PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOW, NULL, cb); if (!pMemSolaris) return VERR_NO_MEMORY; /* Allocate physically low page-aligned memory. */ uint64_t uPhysHi = _4G - 1; void *pvMem = rtR0SolMemAlloc(uPhysHi, NULL /* puPhys */, cb, PAGE_SIZE, false /* fContig */); if (RT_UNLIKELY(!pvMem)) { rtR0MemObjDelete(&pMemSolaris->Core); return VERR_NO_LOW_MEMORY; } pMemSolaris->Core.pv = pvMem; pMemSolaris->pvHandle = NULL; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { NOREF(fExecutable); return rtR0MemObjNativeAllocPhys(ppMem, cb, _4G - 1, PAGE_SIZE /* alignment */); } DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest) { #if HC_ARCH_BITS == 64 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb); if (RT_UNLIKELY(!pMemSolaris)) return VERR_NO_MEMORY; if (PhysHighest == NIL_RTHCPHYS) { uint64_t PhysAddr = UINT64_MAX; void *pvPages = rtR0MemObjSolPagesAlloc(&PhysAddr, cb); if (!pvPages) { LogRel(("rtR0MemObjNativeAllocPhysNC: rtR0MemObjSolPagesAlloc failed for cb=%u.\n", cb)); rtR0MemObjDelete(&pMemSolaris->Core); return VERR_NO_MEMORY; } Assert(PhysAddr != UINT64_MAX); Assert(!(PhysAddr & PAGE_OFFSET_MASK)); pMemSolaris->Core.pv = NULL; pMemSolaris->pvHandle = pvPages; pMemSolaris->fIndivPages = true; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } else { /* * If we must satisfy an upper limit constraint, it isn't feasible to grab individual pages. * We fall back to using contig_alloc(). */ uint64_t PhysAddr = UINT64_MAX; void *pvMem = rtR0SolMemAlloc(PhysHighest, &PhysAddr, cb, PAGE_SIZE, false /* fContig */); if (!pvMem) { LogRel(("rtR0MemObjNativeAllocPhysNC: rtR0SolMemAlloc failed for cb=%u PhysHighest=%RHp.\n", cb, PhysHighest)); rtR0MemObjDelete(&pMemSolaris->Core); return VERR_NO_MEMORY; } Assert(PhysAddr != UINT64_MAX); Assert(!(PhysAddr & PAGE_OFFSET_MASK)); pMemSolaris->Core.pv = pvMem; pMemSolaris->pvHandle = NULL; pMemSolaris->fIndivPages = false; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } #else /* 32 bit: */ return VERR_NOT_SUPPORTED; /* see the RTR0MemObjAllocPhysNC specs */ #endif } DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment) { AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_SUPPORTED); PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb); if (RT_UNLIKELY(!pMemSolaris)) return VERR_NO_MEMORY; /* * Allocating one large page gets special treatment. */ static uint32_t s_cbLargePage = UINT32_MAX; if (s_cbLargePage == UINT32_MAX) { if (page_num_pagesizes() > 1) ASMAtomicWriteU32(&s_cbLargePage, page_get_pagesize(1)); /* Page-size code 1 maps to _2M on Solaris x86/amd64. */ else ASMAtomicWriteU32(&s_cbLargePage, 0); } uint64_t PhysAddr; if ( cb == s_cbLargePage && cb == uAlignment && PhysHighest == NIL_RTHCPHYS) { /* * Allocate one large page (backed by physically contiguous memory). */ void *pvPages = rtR0MemObjSolLargePageAlloc(&PhysAddr, cb); if (RT_LIKELY(pvPages)) { AssertMsg(!(PhysAddr & (cb - 1)), ("%RHp\n", PhysAddr)); pMemSolaris->Core.pv = NULL; pMemSolaris->Core.u.Phys.PhysBase = PhysAddr; pMemSolaris->Core.u.Phys.fAllocated = true; pMemSolaris->pvHandle = pvPages; pMemSolaris->fLargePage = true; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } } else { /* * Allocate physically contiguous memory aligned as specified. */ AssertCompile(NIL_RTHCPHYS == UINT64_MAX); NOREF(RTASSERTVAR); PhysAddr = PhysHighest; void *pvMem = rtR0SolMemAlloc(PhysHighest, &PhysAddr, cb, uAlignment, true /* fContig */); if (RT_LIKELY(pvMem)) { Assert(!(PhysAddr & PAGE_OFFSET_MASK)); Assert(PhysAddr < PhysHighest); Assert(PhysAddr + cb <= PhysHighest); pMemSolaris->Core.pv = pvMem; pMemSolaris->Core.u.Phys.PhysBase = PhysAddr; pMemSolaris->Core.u.Phys.fAllocated = true; pMemSolaris->pvHandle = NULL; pMemSolaris->fLargePage = false; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } } rtR0MemObjDelete(&pMemSolaris->Core); return VERR_NO_CONT_MEMORY; } DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy) { AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED); /* Create the object. */ PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb); if (!pMemSolaris) return VERR_NO_MEMORY; /* There is no allocation here, it needs to be mapped somewhere first. */ pMemSolaris->Core.u.Phys.fAllocated = false; pMemSolaris->Core.u.Phys.PhysBase = Phys; pMemSolaris->Core.u.Phys.uCachePolicy = uCachePolicy; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process) { AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_INVALID_PARAMETER); NOREF(fAccess); /* Create the locking object */ PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb); if (!pMemSolaris) return VERR_NO_MEMORY; /* Lock down user pages. */ int fPageAccess = S_READ; if (fAccess & RTMEM_PROT_WRITE) fPageAccess = S_WRITE; if (fAccess & RTMEM_PROT_EXEC) fPageAccess = S_EXEC; int rc = rtR0MemObjSolLock((void *)R3Ptr, cb, fPageAccess); if (RT_FAILURE(rc)) { LogRel(("rtR0MemObjNativeLockUser: rtR0MemObjSolLock failed rc=%d\n", rc)); rtR0MemObjDelete(&pMemSolaris->Core); return rc; } /* Fill in the object attributes and return successfully. */ pMemSolaris->Core.u.Lock.R0Process = R0Process; pMemSolaris->pvHandle = NULL; pMemSolaris->fAccess = fPageAccess; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess) { NOREF(fAccess); PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, pv, cb); if (!pMemSolaris) return VERR_NO_MEMORY; /* Lock down kernel pages. */ int fPageAccess = S_READ; if (fAccess & RTMEM_PROT_WRITE) fPageAccess = S_WRITE; if (fAccess & RTMEM_PROT_EXEC) fPageAccess = S_EXEC; int rc = rtR0MemObjSolLock(pv, cb, fPageAccess); if (RT_FAILURE(rc)) { LogRel(("rtR0MemObjNativeLockKernel: rtR0MemObjSolLock failed rc=%d\n", rc)); rtR0MemObjDelete(&pMemSolaris->Core); return rc; } /* Fill in the object attributes and return successfully. */ pMemSolaris->Core.u.Lock.R0Process = NIL_RTR0PROCESS; pMemSolaris->pvHandle = NULL; pMemSolaris->fAccess = fPageAccess; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment) { PRTR0MEMOBJSOL pMemSolaris; /* * Use xalloc. */ void *pv = vmem_xalloc(heap_arena, cb, uAlignment, 0 /* phase */, 0 /* nocross */, NULL /* minaddr */, NULL /* maxaddr */, VM_SLEEP); if (RT_UNLIKELY(!pv)) return VERR_NO_MEMORY; /* Create the object. */ pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_RES_VIRT, pv, cb); if (!pMemSolaris) { LogRel(("rtR0MemObjNativeReserveKernel failed to alloc memory object.\n")); vmem_xfree(heap_arena, pv, cb); return VERR_NO_MEMORY; } pMemSolaris->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process) { return VERR_NOT_SUPPORTED; } DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt, size_t offSub, size_t cbSub) { /* Fail if requested to do something we can't. */ AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED); if (uAlignment > PAGE_SIZE) return VERR_NOT_SUPPORTED; /* * Use xalloc to get address space. */ if (!cbSub) cbSub = pMemToMap->cb; void *pv = vmem_xalloc(heap_arena, cbSub, uAlignment, 0 /* phase */, 0 /* nocross */, NULL /* minaddr */, NULL /* maxaddr */, VM_SLEEP); if (RT_UNLIKELY(!pv)) return VERR_MAP_FAILED; /* * Load the pages from the other object into it. */ uint32_t fAttr = HAT_UNORDERED_OK | HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; if (fProt & RTMEM_PROT_READ) fAttr |= PROT_READ; if (fProt & RTMEM_PROT_EXEC) fAttr |= PROT_EXEC; if (fProt & RTMEM_PROT_WRITE) fAttr |= PROT_WRITE; fAttr |= HAT_NOSYNC; int rc = VINF_SUCCESS; size_t off = 0; while (off < cbSub) { RTHCPHYS HCPhys = RTR0MemObjGetPagePhysAddr(pMemToMap, (offSub + offSub) >> PAGE_SHIFT); AssertBreakStmt(HCPhys != NIL_RTHCPHYS, rc = VERR_INTERNAL_ERROR_2); pfn_t pfn = HCPhys >> PAGE_SHIFT; AssertBreakStmt(((RTHCPHYS)pfn << PAGE_SHIFT) == HCPhys, rc = VERR_INTERNAL_ERROR_3); hat_devload(kas.a_hat, (uint8_t *)pv + off, PAGE_SIZE, pfn, fAttr, HAT_LOAD_LOCK); /* Advance. */ off += PAGE_SIZE; } if (RT_SUCCESS(rc)) { /* * Create a memory object for the mapping. */ PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, cbSub); if (pMemSolaris) { pMemSolaris->Core.u.Mapping.R0Process = NIL_RTR0PROCESS; *ppMem = &pMemSolaris->Core; return VINF_SUCCESS; } LogRel(("rtR0MemObjNativeMapKernel failed to alloc memory object.\n")); rc = VERR_NO_MEMORY; } if (off) hat_unload(kas.a_hat, pv, off, HAT_UNLOAD | HAT_UNLOAD_UNLOCK); vmem_xfree(heap_arena, pv, cbSub); return rc; } DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, PRTR0MEMOBJINTERNAL pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process) { /* * Fend off things we cannot do. */ AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED); AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED); if (uAlignment != PAGE_SIZE) return VERR_NOT_SUPPORTED; /* * Get parameters from the source object. */ PRTR0MEMOBJSOL pMemToMapSolaris = (PRTR0MEMOBJSOL)pMemToMap; void *pv = pMemToMapSolaris->Core.pv; size_t cb = pMemToMapSolaris->Core.cb; size_t cPages = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT; /* * Create the mapping object */ PRTR0MEMOBJSOL pMemSolaris; pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, cb); if (RT_UNLIKELY(!pMemSolaris)) return VERR_NO_MEMORY; int rc = VINF_SUCCESS; uint64_t *paPhysAddrs = kmem_zalloc(sizeof(uint64_t) * cPages, KM_SLEEP); if (RT_LIKELY(paPhysAddrs)) { /* * Prepare the pages for mapping according to type. */ if ( pMemToMapSolaris->Core.enmType == RTR0MEMOBJTYPE_PHYS_NC && pMemToMapSolaris->fIndivPages) { page_t **ppPages = pMemToMapSolaris->pvHandle; AssertPtr(ppPages); for (size_t iPage = 0; iPage < cPages; iPage++) paPhysAddrs[iPage] = rtR0MemObjSolPagePhys(ppPages[iPage]); } else if ( pMemToMapSolaris->Core.enmType == RTR0MEMOBJTYPE_PHYS && pMemToMapSolaris->fLargePage) { RTHCPHYS Phys = pMemToMapSolaris->Core.u.Phys.PhysBase; for (size_t iPage = 0; iPage < cPages; iPage++, Phys += PAGE_SIZE) paPhysAddrs[iPage] = Phys; } else { /* * Have kernel mapping, just translate virtual to physical. */ AssertPtr(pv); rc = VINF_SUCCESS; for (size_t iPage = 0; iPage < cPages; iPage++) { paPhysAddrs[iPage] = rtR0MemObjSolVirtToPhys(pv); if (RT_UNLIKELY(paPhysAddrs[iPage] == -(uint64_t)1)) { LogRel(("rtR0MemObjNativeMapUser: no page to map.\n")); rc = VERR_MAP_FAILED; break; } pv = (void *)((uintptr_t)pv + PAGE_SIZE); } } if (RT_SUCCESS(rc)) { unsigned fPageAccess = PROT_READ; if (fProt & RTMEM_PROT_WRITE) fPageAccess |= PROT_WRITE; if (fProt & RTMEM_PROT_EXEC) fPageAccess |= PROT_EXEC; /* * Perform the actual mapping. */ caddr_t UserAddr = NULL; rc = rtR0MemObjSolUserMap(&UserAddr, fPageAccess, paPhysAddrs, cb, PAGE_SIZE); if (RT_SUCCESS(rc)) { pMemSolaris->Core.u.Mapping.R0Process = R0Process; pMemSolaris->Core.pv = UserAddr; *ppMem = &pMemSolaris->Core; kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages); return VINF_SUCCESS; } LogRel(("rtR0MemObjNativeMapUser: rtR0MemObjSolUserMap failed rc=%d.\n", rc)); } rc = VERR_MAP_FAILED; kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages); } else rc = VERR_NO_MEMORY; rtR0MemObjDelete(&pMemSolaris->Core); return rc; } DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt) { NOREF(pMem); NOREF(offSub); NOREF(cbSub); NOREF(fProt); return VERR_NOT_SUPPORTED; } DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage) { PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)pMem; switch (pMemSolaris->Core.enmType) { case RTR0MEMOBJTYPE_PHYS_NC: if ( pMemSolaris->Core.u.Phys.fAllocated || !pMemSolaris->fIndivPages) { uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT); return rtR0MemObjSolVirtToPhys(pb); } page_t **ppPages = pMemSolaris->pvHandle; return rtR0MemObjSolPagePhys(ppPages[iPage]); case RTR0MEMOBJTYPE_PAGE: case RTR0MEMOBJTYPE_LOW: case RTR0MEMOBJTYPE_LOCK: { uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT); return rtR0MemObjSolVirtToPhys(pb); } /* * Although mapping can be handled by rtR0MemObjSolVirtToPhys(offset) like the above case, * request it from the parent so that we have a clear distinction between CONT/PHYS_NC. */ case RTR0MEMOBJTYPE_MAPPING: return rtR0MemObjNativeGetPagePhysAddr(pMemSolaris->Core.uRel.Child.pParent, iPage); case RTR0MEMOBJTYPE_CONT: case RTR0MEMOBJTYPE_PHYS: AssertFailed(); /* handled by the caller */ case RTR0MEMOBJTYPE_RES_VIRT: default: return NIL_RTHCPHYS; } }