VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/solaris/memobj-r0drv-solaris.c@ 41680

Last change on this file since 41680 was 41680, checked in by vboxsync, 13 years ago

Runtime/r0drv/solaris: cleanup.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 38.5 KB
Line 
1/* $Id: memobj-r0drv-solaris.c 41680 2012-06-13 11:19:56Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, Solaris.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Header Files *
30*******************************************************************************/
31#include "the-solaris-kernel.h"
32#include "internal/iprt.h"
33#include <iprt/memobj.h>
34
35#include <iprt/asm.h>
36#include <iprt/assert.h>
37#include <iprt/err.h>
38#include <iprt/log.h>
39#include <iprt/mem.h>
40#include <iprt/param.h>
41#include <iprt/process.h>
42#include "internal/memobj.h"
43#include "memobj-r0drv-solaris.h"
44
45/*******************************************************************************
46* Defined Constants And Macros *
47*******************************************************************************/
48#define SOL_IS_KRNL_ADDR(vx) ((uintptr_t)(vx) >= kernelbase)
49
50
51/*******************************************************************************
52* Structures and Typedefs *
53*******************************************************************************/
54/**
55 * The Solaris version of the memory object structure.
56 */
57typedef struct RTR0MEMOBJSOL
58{
59 /** The core structure. */
60 RTR0MEMOBJINTERNAL Core;
61 /** Pointer to kernel memory cookie. */
62 ddi_umem_cookie_t Cookie;
63 /** Shadow locked pages. */
64 void *pvHandle;
65 /** Access during locking. */
66 int fAccess;
67 /** Set if large pages are involved in an RTR0MEMOBJTYPE_PHYS
68 * allocation. */
69 bool fLargePage;
70 /** Whether we have individual pages or a kernel-mapped virtual memory block in
71 * an RTR0MEMOBJTYPE_PHYS_NC allocation. */
72 bool fIndivPages;
73} RTR0MEMOBJSOL, *PRTR0MEMOBJSOL;
74
75
76/*******************************************************************************
77* Global Variables *
78*******************************************************************************/
79static vnode_t g_PageVnode;
80static kmutex_t g_OffsetMtx;
81static u_offset_t g_offPage;
82
83static vnode_t g_LargePageVnode;
84static kmutex_t g_LargePageOffsetMtx;
85static u_offset_t g_offLargePage;
86
87
88/**
89 * Returns the physical address for a virtual address.
90 *
91 * @param pv The virtual address.
92 *
93 * @returns The physical address corresponding to @a pv.
94 */
95static uint64_t rtR0MemObjSolVirtToPhys(void *pv)
96{
97 struct hat *pHat = NULL;
98 pfn_t PageFrameNum = 0;
99 uintptr_t uVirtAddr = (uintptr_t)pv;
100
101 if (SOL_IS_KRNL_ADDR(pv))
102 pHat = kas.a_hat;
103 else
104 {
105 proc_t *pProcess = (proc_t *)RTR0ProcHandleSelf();
106 AssertRelease(pProcess);
107 pHat = pProcess->p_as->a_hat;
108 }
109
110 PageFrameNum = hat_getpfnum(pHat, (caddr_t)(uVirtAddr & PAGEMASK));
111 AssertReleaseMsg(PageFrameNum != PFN_INVALID, ("rtR0MemObjSolVirtToPhys failed. pv=%p\n", pv));
112 return (((uint64_t)PageFrameNum << PAGE_SHIFT) | (uVirtAddr & PAGE_OFFSET_MASK));
113}
114
115
116/**
117 * Returns the physical address for a page.
118 *
119 * @param pPage Pointer to the page.
120 *
121 * @returns The physical address for a page.
122 */
123static inline uint64_t rtR0MemObjSolPagePhys(page_t *pPage)
124{
125 AssertPtr(pPage);
126 pfn_t PageFrameNum = page_pptonum(pPage);
127 AssertReleaseMsg(PageFrameNum != PFN_INVALID, ("rtR0MemObjSolPagePhys failed pPage=%p\n"));
128 return (uint64_t)PageFrameNum << PAGE_SHIFT;
129}
130
131
132/**
133 * Allocates one page.
134 *
135 * @param virtAddr The virtual address to which this page maybe mapped in
136 * the future.
137 *
138 * @returns Pointer to the allocated page, NULL on failure.
139 */
140static page_t *rtR0MemObjSolPageAlloc(caddr_t virtAddr)
141{
142 u_offset_t offPage;
143 seg_t KernelSeg;
144
145 mutex_enter(&g_OffsetMtx);
146 AssertCompileSize(u_offset_t, sizeof(uint64_t)); NOREF(RTASSERTVAR);
147 g_offPage = RT_ALIGN_64(g_offPage, PAGE_SIZE) + PAGE_SIZE;
148 offPage = g_offPage;
149 mutex_exit(&g_OffsetMtx);
150
151 KernelSeg.s_as = &kas;
152 page_t *pPage = page_create_va(&g_PageVnode, offPage, PAGE_SIZE, PG_WAIT | PG_NORELOC, &KernelSeg, virtAddr);
153 if (RT_LIKELY(pPage))
154 {
155 /*
156 * Lock this page into memory "long term" to prevent this page from being paged out
157 * when we drop the page lock temporarily (during free).
158 */
159 page_pp_lock(pPage, 0 /* COW */, 1 /* Kernel */);
160 page_io_unlock(pPage);
161 page_downgrade(pPage);
162 Assert(PAGE_LOCKED_SE(pPage, SE_SHARED));
163 }
164
165 return pPage;
166}
167
168
169/**
170 * Allocates physical, non-contiguous memory of pages.
171 *
172 * @param puPhys Where to store the physical address of first page. Optional,
173 * can be NULL.
174 * @param cb The size of the allocation.
175 *
176 * @return Array of allocated pages, NULL on failure.
177 */
178static page_t **rtR0MemObjSolPagesAlloc(uint64_t *puPhys, size_t cb)
179{
180 /*
181 * VM1:
182 * The page freelist and cachelist both hold pages that are not mapped into any address space.
183 * The cachelist is not really free pages but when memory is exhausted they'll be moved to the
184 * free lists, it's the total of the free+cache list that we see on the 'free' column in vmstat.
185 *
186 * VM2:
187 * @todo Document what happens behind the scenes in VM2 regarding the free and cachelist.
188 */
189
190 /*
191 * Non-pageable memory reservation request for _4K pages, don't sleep.
192 */
193 size_t cPages = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT;
194 int rc = page_resv(cPages, KM_NOSLEEP);
195 if (rc)
196 {
197 size_t cbPages = cPages * sizeof(page_t *);
198 page_t **ppPages = kmem_zalloc(cbPages, KM_SLEEP);
199 if (RT_LIKELY(ppPages))
200 {
201 /*
202 * Get pages from kseg, the 'virtAddr' here is only for colouring but unfortunately
203 * we don't yet have the 'virtAddr' to which this memory may be mapped.
204 */
205 caddr_t virtAddr = 0;
206 for (size_t i = 0; i < cPages; i++, virtAddr += PAGE_SIZE)
207 {
208 /*
209 * Get a page from the free list locked exclusively. The page will be named (hashed in)
210 * and we rely on it during free. Downgrade the page to a shared lock to prevent the page
211 * from being relocated.
212 */
213 page_t *pPage = rtR0MemObjSolPageAlloc(virtAddr);
214 if (RT_UNLIKELY(!pPage))
215 {
216 /*
217 * No page found, release whatever pages we grabbed so far.
218 */
219 for (size_t k = 0; k < i; k++)
220 page_destroy(ppPages[k], 0 /* move it to the free list */);
221 kmem_free(ppPages, cbPages);
222 page_unresv(cPages);
223 return NULL;
224 }
225
226 ppPages[i] = pPage;
227 }
228
229 if (puPhys)
230 *puPhys = rtR0MemObjSolPagePhys(ppPages[0]);
231 return ppPages;
232 }
233
234 page_unresv(cPages);
235 }
236
237 return NULL;
238}
239
240
241/**
242 * Frees the allocates pages.
243 *
244 * @param ppPages Pointer to the page list.
245 * @param cbPages Size of the allocation.
246 */
247static void rtR0MemObjSolPagesFree(page_t **ppPages, size_t cb)
248{
249 size_t cPages = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT;
250 size_t cbPages = cPages * sizeof(page_t *);
251 for (size_t iPage = 0; iPage < cPages; iPage++)
252 {
253 /*
254 * We need to exclusive lock the pages before freeing them.
255 */
256 page_t *pPage = ppPages[iPage];
257 u_offset_t offPage = pPage->p_offset;
258
259 int rc = page_tryupgrade(ppPages[iPage]);
260 if (!rc)
261 {
262 page_unlock(pPage);
263 page_t *pFoundPage = page_lookup(&g_PageVnode, offPage, SE_EXCL);
264
265 /*
266 * Since we allocated the pages as PG_NORELOC we should only get back the exact page always.
267 */
268 AssertReleaseMsg(pFoundPage == pPage, ("Page lookup failed %p:%llx returned %p, expected %p\n",
269 &g_PageVnode, offPage, pFoundPage, pPage));
270 }
271 Assert(PAGE_LOCKED_SE(pPage, SE_EXCL));
272 page_pp_unlock(pPage, 0 /* COW */, 1 /* Kernel */);
273 page_destroy(pPage, 0 /* move it to the free list */);
274 }
275 kmem_free(ppPages, cbPages);
276 page_unresv(cPages);
277}
278
279
280/**
281 * Allocates one large page.
282 *
283 * @param puPhys Where to store the physical address of the allocated
284 * page. Optional, can be NULL.
285 * @param cbLargePage Size of the large page.
286 *
287 * @returns Pointer to a list of pages that cover the large page, NULL on
288 * failure.
289 */
290static page_t **rtR0MemObjSolLargePageAlloc(uint64_t *puPhys, size_t cbLargePage)
291{
292 /*
293 * Non-pageable memory reservation request for _4K pages, don't sleep.
294 */
295 size_t cPages = (cbLargePage + PAGE_SIZE - 1) >> PAGE_SHIFT;
296 size_t cbPages = cPages * sizeof(page_t *);
297 u_offset_t offPage = 0;
298 int rc = page_resv(cPages, KM_NOSLEEP);
299 if (rc)
300 {
301 page_t **ppPages = kmem_zalloc(cbPages, KM_SLEEP);
302 if (RT_LIKELY(ppPages))
303 {
304 mutex_enter(&g_LargePageOffsetMtx);
305 AssertCompileSize(u_offset_t, sizeof(uint64_t)); NOREF(RTASSERTVAR);
306 g_offLargePage = RT_ALIGN_64(g_offLargePage, cbLargePage) + cbLargePage;
307 offPage = g_offLargePage;
308 mutex_exit(&g_LargePageOffsetMtx);
309
310 seg_t KernelSeg;
311 KernelSeg.s_as = &kas;
312 page_t *pRootPage = page_create_va_large(&g_LargePageVnode, offPage, cbLargePage,
313 PG_EXCL, &KernelSeg, 0 /* vaddr */, NULL /* locality group */);
314 if (pRootPage)
315 {
316 /*
317 * Split it into sub-pages, downgrade each page to a shared lock to prevent page relocation.
318 */
319 page_t *pPageList = pRootPage;
320 for (size_t iPage = 0; iPage < cPages; iPage++)
321 {
322 page_t *pPage = pPageList;
323 AssertPtr(pPage);
324 AssertMsg(page_pptonum(pPage) == iPage + page_pptonum(pRootPage),
325 ("%p:%lx %lx+%lx\n", pPage, page_pptonum(pPage), iPage, page_pptonum(pRootPage)));
326 AssertMsg(pPage->p_szc == pRootPage->p_szc, ("Size code mismatch %p %d %d\n", pPage,
327 (int)pPage->p_szc, (int)pRootPage->p_szc));
328
329 /*
330 * Lock the page into memory "long term". This prevents callers of page_try_demote_pages() (such as the
331 * pageout scanner) from demoting the large page into smaller pages while we temporarily release the
332 * exclusive lock (during free). We pass "0, 1" since we've already accounted for availrmem during
333 * page_resv().
334 */
335 page_pp_lock(pPage, 0 /* COW */, 1 /* Kernel */);
336
337 page_sub(&pPageList, pPage);
338 page_io_unlock(pPage);
339 page_downgrade(pPage);
340 Assert(PAGE_LOCKED_SE(pPage, SE_SHARED));
341
342 ppPages[iPage] = pPage;
343 }
344 Assert(pPageList == NULL);
345 Assert(ppPages[0] == pRootPage);
346
347 uint64_t uPhys = rtR0MemObjSolPagePhys(pRootPage);
348 AssertMsg(!(uPhys & (cbLargePage - 1)), ("%llx %zx\n", uPhys, cbLargePage));
349 if (puPhys)
350 *puPhys = uPhys;
351 return ppPages;
352 }
353
354 /*
355 * Don't restore offPrev in case of failure (race condition), we have plenty of offset space.
356 * The offset must be unique (for the same vnode) or we'll encounter panics on page_create_va_large().
357 */
358 kmem_free(ppPages, cbPages);
359 }
360
361 page_unresv(cPages);
362 }
363 return NULL;
364}
365
366
367/**
368 * Frees the large page.
369 *
370 * @param ppPages Pointer to the list of small pages that cover the
371 * large page.
372 * @param cbLargePage Size of the allocation (i.e. size of the large
373 * page).
374 */
375static void rtR0MemObjSolLargePageFree(page_t **ppPages, size_t cbLargePage)
376{
377 Assert(ppPages);
378 Assert(cbLargePage > PAGE_SIZE);
379
380 bool fDemoted = false;
381 size_t cPages = (cbLargePage + PAGE_SIZE - 1) >> PAGE_SHIFT;
382 size_t cbPages = cPages * sizeof(page_t *);
383 page_t *pPageList = ppPages[0];
384
385 for (size_t iPage = 0; iPage < cPages; iPage++)
386 {
387 /*
388 * We need the pages exclusively locked, try upgrading the shared lock.
389 * If it fails, drop the shared page lock (cannot access any page_t members once this is done)
390 * and lookup the page from the page hash locking it exclusively.
391 */
392 page_t *pPage = ppPages[iPage];
393 u_offset_t offPage = pPage->p_offset;
394 int rc = page_tryupgrade(pPage);
395 if (!rc)
396 {
397 page_unlock(pPage);
398 page_t *pFoundPage = page_lookup(&g_LargePageVnode, offPage, SE_EXCL);
399 AssertRelease(pFoundPage);
400
401#if 0
402 /*
403 * This can only be guaranteed if PG_NORELOC is used while allocating the pages.
404 */
405 AssertReleaseMsg(pFoundPage == pPage,
406 ("lookup failed %p:%llu returned %p, expected %p\n", &g_LargePageVnode, offPage,
407 pFoundPage, pPage));
408#endif
409
410 /*
411 * Check for page demotion (regardless of relocation). Some places in Solaris (e.g. VM1 page_retire())
412 * could possibly demote the large page to _4K pages between our call to page_unlock() and page_lookup().
413 */
414 if (page_get_pagecnt(pFoundPage->p_szc) == 1) /* Base size of only _4K associated with this page. */
415 fDemoted = true;
416 pPage = pFoundPage;
417 ppPages[iPage] = pFoundPage;
418 }
419 Assert(PAGE_LOCKED_SE(pPage, SE_EXCL));
420 page_pp_unlock(pPage, 0 /* COW */, 1 /* Kernel */);
421 }
422
423 if (fDemoted)
424 {
425 for (size_t iPage = 0; iPage < cPages; iPage++)
426 {
427 Assert(page_get_pagecnt(ppPages[iPage]->p_szc) == 1);
428 page_destroy(ppPages[iPage], 0 /* move it to the free list */);
429 }
430 }
431 else
432 {
433 /*
434 * Although we shred the adjacent pages in the linked list, page_destroy_pages works on
435 * adjacent pages via array increments. So this does indeed free all the pages.
436 */
437 AssertPtr(pPageList);
438 page_destroy_pages(pPageList);
439 }
440 kmem_free(ppPages, cbPages);
441 page_unresv(cPages);
442}
443
444
445/**
446 * Unmaps kernel/user-space mapped memory.
447 *
448 * @param pv Pointer to the mapped memory block.
449 * @param cb Size of the memory block.
450 */
451static void rtR0MemObjSolUnmap(void *pv, size_t cb)
452{
453 if (SOL_IS_KRNL_ADDR(pv))
454 {
455 hat_unload(kas.a_hat, pv, cb, HAT_UNLOAD | HAT_UNLOAD_UNLOCK);
456 vmem_free(heap_arena, pv, cb);
457 }
458 else
459 {
460 struct as *pAddrSpace = ((proc_t *)RTR0ProcHandleSelf())->p_as;
461 AssertPtr(pAddrSpace);
462 as_rangelock(pAddrSpace);
463 as_unmap(pAddrSpace, pv, cb);
464 as_rangeunlock(pAddrSpace);
465 }
466}
467
468
469/**
470 * Lock down memory mappings for a virtual address.
471 *
472 * @param pv Pointer to the memory to lock down.
473 * @param cb Size of the memory block.
474 * @param fAccess Page access rights (S_READ, S_WRITE, S_EXEC)
475 *
476 * @returns IPRT status code.
477 */
478static int rtR0MemObjSolLock(void *pv, size_t cb, int fPageAccess)
479{
480 /*
481 * Kernel memory mappings on x86/amd64 are always locked, only handle user-space memory.
482 */
483 if (!SOL_IS_KRNL_ADDR(pv))
484 {
485 proc_t *pProc = (proc_t *)RTR0ProcHandleSelf();
486 AssertPtr(pProc);
487 faultcode_t rc = as_fault(pProc->p_as->a_hat, pProc->p_as, (caddr_t)pv, cb, F_SOFTLOCK, fPageAccess);
488 if (rc)
489 {
490 LogRel(("rtR0MemObjSolLock failed for pv=%pv cb=%lx fPageAccess=%d rc=%d\n", pv, cb, fPageAccess, rc));
491 return VERR_LOCK_FAILED;
492 }
493 }
494 return VINF_SUCCESS;
495}
496
497
498/**
499 * Unlock memory mappings for a virtual address.
500 *
501 * @param pv Pointer to the locked memory.
502 * @param cb Size of the memory block.
503 * @param fPageAccess Page access rights (S_READ, S_WRITE, S_EXEC).
504 */
505static void rtR0MemObjSolUnlock(void *pv, size_t cb, int fPageAccess)
506{
507 if (!SOL_IS_KRNL_ADDR(pv))
508 {
509 proc_t *pProcess = (proc_t *)RTR0ProcHandleSelf();
510 AssertPtr(pProcess);
511 as_fault(pProcess->p_as->a_hat, pProcess->p_as, (caddr_t)pv, cb, F_SOFTUNLOCK, fPageAccess);
512 }
513}
514
515
516/**
517 * Maps a list of physical pages into user address space.
518 *
519 * @param pVirtAddr Where to store the virtual address of the mapping.
520 * @param fPageAccess Page access rights (PROT_READ, PROT_WRITE,
521 * PROT_EXEC)
522 * @param paPhysAddrs Array of physical addresses to pages.
523 * @param cb Size of memory being mapped.
524 *
525 * @returns IPRT status code.
526 */
527static int rtR0MemObjSolUserMap(caddr_t *pVirtAddr, unsigned fPageAccess, uint64_t *paPhysAddrs, size_t cb, size_t cbPageSize)
528{
529 struct as *pAddrSpace = ((proc_t *)RTR0ProcHandleSelf())->p_as;
530 int rc = VERR_INTERNAL_ERROR;
531 SEGVBOX_CRARGS Args;
532
533 Args.paPhysAddrs = paPhysAddrs;
534 Args.fPageAccess = fPageAccess;
535 Args.cbPageSize = cbPageSize;
536
537 as_rangelock(pAddrSpace);
538 map_addr(pVirtAddr, cb, 0 /* offset */, 0 /* vacalign */, MAP_SHARED);
539 if (*pVirtAddr != NULL)
540 rc = as_map(pAddrSpace, *pVirtAddr, cb, rtR0SegVBoxSolCreate, &Args);
541 else
542 rc = ENOMEM;
543 as_rangeunlock(pAddrSpace);
544
545 return RTErrConvertFromErrno(rc);
546}
547
548
549DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
550{
551 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)pMem;
552
553 switch (pMemSolaris->Core.enmType)
554 {
555 case RTR0MEMOBJTYPE_LOW:
556 rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
557 break;
558
559 case RTR0MEMOBJTYPE_PHYS:
560 if (pMemSolaris->Core.u.Phys.fAllocated)
561 {
562 if (pMemSolaris->fLargePage)
563 rtR0MemObjSolLargePageFree(pMemSolaris->pvHandle, pMemSolaris->Core.cb);
564 else
565 rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
566 }
567 break;
568
569 case RTR0MEMOBJTYPE_PHYS_NC:
570 if (pMemSolaris->fIndivPages)
571 rtR0MemObjSolPagesFree(pMemSolaris->pvHandle, pMemSolaris->Core.cb);
572 else
573 rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
574 break;
575
576 case RTR0MEMOBJTYPE_PAGE:
577 ddi_umem_free(pMemSolaris->Cookie);
578 break;
579
580 case RTR0MEMOBJTYPE_LOCK:
581 rtR0MemObjSolUnlock(pMemSolaris->Core.pv, pMemSolaris->Core.cb, pMemSolaris->fAccess);
582 break;
583
584 case RTR0MEMOBJTYPE_MAPPING:
585 rtR0MemObjSolUnmap(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
586 break;
587
588 case RTR0MEMOBJTYPE_RES_VIRT:
589 {
590 if (pMemSolaris->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
591 vmem_xfree(heap_arena, pMemSolaris->Core.pv, pMemSolaris->Core.cb);
592 else
593 AssertFailed();
594 break;
595 }
596
597 case RTR0MEMOBJTYPE_CONT: /* we don't use this type here. */
598 default:
599 AssertMsgFailed(("enmType=%d\n", pMemSolaris->Core.enmType));
600 return VERR_INTERNAL_ERROR;
601 }
602
603 return VINF_SUCCESS;
604}
605
606
607DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
608{
609 /* Create the object. */
610 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PAGE, NULL, cb);
611 if (RT_UNLIKELY(!pMemSolaris))
612 return VERR_NO_MEMORY;
613
614 void *pvMem = ddi_umem_alloc(cb, DDI_UMEM_SLEEP, &pMemSolaris->Cookie);
615 if (RT_UNLIKELY(!pvMem))
616 {
617 rtR0MemObjDelete(&pMemSolaris->Core);
618 return VERR_NO_PAGE_MEMORY;
619 }
620
621 pMemSolaris->Core.pv = pvMem;
622 pMemSolaris->pvHandle = NULL;
623 *ppMem = &pMemSolaris->Core;
624 return VINF_SUCCESS;
625}
626
627
628DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
629{
630 NOREF(fExecutable);
631
632 /* Create the object */
633 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOW, NULL, cb);
634 if (!pMemSolaris)
635 return VERR_NO_MEMORY;
636
637 /* Allocate physically low page-aligned memory. */
638 uint64_t uPhysHi = _4G - 1;
639 void *pvMem = rtR0SolMemAlloc(uPhysHi, NULL /* puPhys */, cb, PAGE_SIZE, false /* fContig */);
640 if (RT_UNLIKELY(!pvMem))
641 {
642 rtR0MemObjDelete(&pMemSolaris->Core);
643 return VERR_NO_LOW_MEMORY;
644 }
645 pMemSolaris->Core.pv = pvMem;
646 pMemSolaris->pvHandle = NULL;
647 *ppMem = &pMemSolaris->Core;
648 return VINF_SUCCESS;
649}
650
651
652DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
653{
654 NOREF(fExecutable);
655 return rtR0MemObjNativeAllocPhys(ppMem, cb, _4G - 1, PAGE_SIZE /* alignment */);
656}
657
658
659DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
660{
661#if HC_ARCH_BITS == 64
662 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
663 if (RT_UNLIKELY(!pMemSolaris))
664 return VERR_NO_MEMORY;
665
666 if (PhysHighest == NIL_RTHCPHYS)
667 {
668 uint64_t PhysAddr = UINT64_MAX;
669 void *pvPages = rtR0MemObjSolPagesAlloc(&PhysAddr, cb);
670 if (!pvPages)
671 {
672 LogRel(("rtR0MemObjNativeAllocPhysNC: rtR0MemObjSolPagesAlloc failed for cb=%u.\n", cb));
673 rtR0MemObjDelete(&pMemSolaris->Core);
674 return VERR_NO_MEMORY;
675 }
676 Assert(PhysAddr != UINT64_MAX);
677 Assert(!(PhysAddr & PAGE_OFFSET_MASK));
678
679 pMemSolaris->Core.pv = NULL;
680 pMemSolaris->pvHandle = pvPages;
681 pMemSolaris->fIndivPages = true;
682 *ppMem = &pMemSolaris->Core;
683 return VINF_SUCCESS;
684 }
685 else
686 {
687 /*
688 * If we must satisfy an upper limit constraint, it isn't feasible to grab individual pages.
689 * We fall back to using contig_alloc().
690 */
691 uint64_t PhysAddr = UINT64_MAX;
692 void *pvMem = rtR0SolMemAlloc(PhysHighest, &PhysAddr, cb, PAGE_SIZE, false /* fContig */);
693 if (!pvMem)
694 {
695 LogRel(("rtR0MemObjNativeAllocPhysNC: rtR0SolMemAlloc failed for cb=%u PhysHighest=%RHp.\n", cb, PhysHighest));
696 rtR0MemObjDelete(&pMemSolaris->Core);
697 return VERR_NO_MEMORY;
698 }
699 Assert(PhysAddr != UINT64_MAX);
700 Assert(!(PhysAddr & PAGE_OFFSET_MASK));
701
702 pMemSolaris->Core.pv = pvMem;
703 pMemSolaris->pvHandle = NULL;
704 pMemSolaris->fIndivPages = false;
705 *ppMem = &pMemSolaris->Core;
706 return VINF_SUCCESS;
707 }
708
709#else /* 32 bit: */
710 return VERR_NOT_SUPPORTED; /* see the RTR0MemObjAllocPhysNC specs */
711#endif
712}
713
714
715DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
716{
717 AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_SUPPORTED);
718
719 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
720 if (RT_UNLIKELY(!pMemSolaris))
721 return VERR_NO_MEMORY;
722
723 /*
724 * Allocating one large page gets special treatment.
725 */
726 static uint32_t s_cbLargePage = UINT32_MAX;
727 if (s_cbLargePage == UINT32_MAX)
728 {
729 if (page_num_pagesizes() > 1)
730 ASMAtomicWriteU32(&s_cbLargePage, page_get_pagesize(1)); /* Page-size code 1 maps to _2M on Solaris x86/amd64. */
731 else
732 ASMAtomicWriteU32(&s_cbLargePage, 0);
733 }
734 uint64_t PhysAddr;
735 if ( cb == s_cbLargePage
736 && cb == uAlignment
737 && PhysHighest == NIL_RTHCPHYS)
738 {
739 /*
740 * Allocate one large page (backed by physically contiguous memory).
741 */
742 void *pvPages = rtR0MemObjSolLargePageAlloc(&PhysAddr, cb);
743 if (RT_LIKELY(pvPages))
744 {
745 AssertMsg(!(PhysAddr & (cb - 1)), ("%RHp\n", PhysAddr));
746 pMemSolaris->Core.pv = NULL;
747 pMemSolaris->Core.u.Phys.PhysBase = PhysAddr;
748 pMemSolaris->Core.u.Phys.fAllocated = true;
749 pMemSolaris->pvHandle = pvPages;
750 pMemSolaris->fLargePage = true;
751
752 *ppMem = &pMemSolaris->Core;
753 return VINF_SUCCESS;
754 }
755 }
756 else
757 {
758 /*
759 * Allocate physically contiguous memory aligned as specified.
760 * Note: contig_alloc() can be agonizingly slow for large (e.g. >= _2M) contiguous allocations.
761 * So we shouldn't ideally be in this path for large-page allocations. .
762 */
763 AssertCompile(NIL_RTHCPHYS == UINT64_MAX); NOREF(RTASSERTVAR);
764 PhysAddr = PhysHighest;
765 void *pvMem = rtR0SolMemAlloc(PhysHighest, &PhysAddr, cb, uAlignment, true /* fContig */);
766 if (RT_LIKELY(pvMem))
767 {
768 Assert(!(PhysAddr & PAGE_OFFSET_MASK));
769 Assert(PhysAddr < PhysHighest);
770 Assert(PhysAddr + cb <= PhysHighest);
771
772 pMemSolaris->Core.pv = pvMem;
773 pMemSolaris->Core.u.Phys.PhysBase = PhysAddr;
774 pMemSolaris->Core.u.Phys.fAllocated = true;
775 pMemSolaris->pvHandle = NULL;
776 pMemSolaris->fLargePage = false;
777
778 *ppMem = &pMemSolaris->Core;
779 return VINF_SUCCESS;
780 }
781 }
782 rtR0MemObjDelete(&pMemSolaris->Core);
783 return VERR_NO_CONT_MEMORY;
784}
785
786
787DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
788{
789 AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
790
791 /* Create the object. */
792 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
793 if (!pMemSolaris)
794 return VERR_NO_MEMORY;
795
796 /* There is no allocation here, it needs to be mapped somewhere first. */
797 pMemSolaris->Core.u.Phys.fAllocated = false;
798 pMemSolaris->Core.u.Phys.PhysBase = Phys;
799 pMemSolaris->Core.u.Phys.uCachePolicy = uCachePolicy;
800 *ppMem = &pMemSolaris->Core;
801 return VINF_SUCCESS;
802}
803
804
805DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess,
806 RTR0PROCESS R0Process)
807{
808 AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_INVALID_PARAMETER);
809 NOREF(fAccess);
810
811 /* Create the locking object */
812 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
813 if (!pMemSolaris)
814 return VERR_NO_MEMORY;
815
816 /* Lock down user pages. */
817 int fPageAccess = S_READ;
818 if (fAccess & RTMEM_PROT_WRITE)
819 fPageAccess = S_WRITE;
820 if (fAccess & RTMEM_PROT_EXEC)
821 fPageAccess = S_EXEC;
822 int rc = rtR0MemObjSolLock((void *)R3Ptr, cb, fPageAccess);
823 if (RT_FAILURE(rc))
824 {
825 LogRel(("rtR0MemObjNativeLockUser: rtR0MemObjSolLock failed rc=%d\n", rc));
826 rtR0MemObjDelete(&pMemSolaris->Core);
827 return rc;
828 }
829
830 /* Fill in the object attributes and return successfully. */
831 pMemSolaris->Core.u.Lock.R0Process = R0Process;
832 pMemSolaris->pvHandle = NULL;
833 pMemSolaris->fAccess = fPageAccess;
834 *ppMem = &pMemSolaris->Core;
835 return VINF_SUCCESS;
836}
837
838
839DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
840{
841 NOREF(fAccess);
842
843 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, pv, cb);
844 if (!pMemSolaris)
845 return VERR_NO_MEMORY;
846
847 /* Lock down kernel pages. */
848 int fPageAccess = S_READ;
849 if (fAccess & RTMEM_PROT_WRITE)
850 fPageAccess = S_WRITE;
851 if (fAccess & RTMEM_PROT_EXEC)
852 fPageAccess = S_EXEC;
853 int rc = rtR0MemObjSolLock(pv, cb, fPageAccess);
854 if (RT_FAILURE(rc))
855 {
856 LogRel(("rtR0MemObjNativeLockKernel: rtR0MemObjSolLock failed rc=%d\n", rc));
857 rtR0MemObjDelete(&pMemSolaris->Core);
858 return rc;
859 }
860
861 /* Fill in the object attributes and return successfully. */
862 pMemSolaris->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
863 pMemSolaris->pvHandle = NULL;
864 pMemSolaris->fAccess = fPageAccess;
865 *ppMem = &pMemSolaris->Core;
866 return VINF_SUCCESS;
867}
868
869
870DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
871{
872 PRTR0MEMOBJSOL pMemSolaris;
873
874 /*
875 * Use xalloc.
876 */
877 void *pv = vmem_xalloc(heap_arena, cb, uAlignment, 0 /* phase */, 0 /* nocross */,
878 NULL /* minaddr */, NULL /* maxaddr */, VM_SLEEP);
879 if (RT_UNLIKELY(!pv))
880 return VERR_NO_MEMORY;
881
882 /* Create the object. */
883 pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
884 if (!pMemSolaris)
885 {
886 LogRel(("rtR0MemObjNativeReserveKernel failed to alloc memory object.\n"));
887 vmem_xfree(heap_arena, pv, cb);
888 return VERR_NO_MEMORY;
889 }
890
891 pMemSolaris->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
892 *ppMem = &pMemSolaris->Core;
893 return VINF_SUCCESS;
894}
895
896
897DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
898 RTR0PROCESS R0Process)
899{
900 return VERR_NOT_SUPPORTED;
901}
902
903
904DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
905 unsigned fProt, size_t offSub, size_t cbSub)
906{
907 /* Fail if requested to do something we can't. */
908 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
909 if (uAlignment > PAGE_SIZE)
910 return VERR_NOT_SUPPORTED;
911
912 /*
913 * Use xalloc to get address space.
914 */
915 if (!cbSub)
916 cbSub = pMemToMap->cb;
917 void *pv = vmem_xalloc(heap_arena, cbSub, uAlignment, 0 /* phase */, 0 /* nocross */,
918 NULL /* minaddr */, NULL /* maxaddr */, VM_SLEEP);
919 if (RT_UNLIKELY(!pv))
920 return VERR_MAP_FAILED;
921
922 /*
923 * Load the pages from the other object into it.
924 */
925 uint32_t fAttr = HAT_UNORDERED_OK | HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
926 if (fProt & RTMEM_PROT_READ)
927 fAttr |= PROT_READ;
928 if (fProt & RTMEM_PROT_EXEC)
929 fAttr |= PROT_EXEC;
930 if (fProt & RTMEM_PROT_WRITE)
931 fAttr |= PROT_WRITE;
932 fAttr |= HAT_NOSYNC;
933
934 int rc = VINF_SUCCESS;
935 size_t off = 0;
936 while (off < cbSub)
937 {
938 RTHCPHYS HCPhys = rtR0MemObjNativeGetPagePhysAddr(pMemToMap, (offSub + offSub) >> PAGE_SHIFT);
939 AssertBreakStmt(HCPhys != NIL_RTHCPHYS, rc = VERR_INTERNAL_ERROR_2);
940 pfn_t pfn = HCPhys >> PAGE_SHIFT;
941 AssertBreakStmt(((RTHCPHYS)pfn << PAGE_SHIFT) == HCPhys, rc = VERR_INTERNAL_ERROR_3);
942
943 hat_devload(kas.a_hat, (uint8_t *)pv + off, PAGE_SIZE, pfn, fAttr, HAT_LOAD_LOCK);
944
945 /* Advance. */
946 off += PAGE_SIZE;
947 }
948 if (RT_SUCCESS(rc))
949 {
950 /*
951 * Create a memory object for the mapping.
952 */
953 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, cbSub);
954 if (pMemSolaris)
955 {
956 pMemSolaris->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
957 *ppMem = &pMemSolaris->Core;
958 return VINF_SUCCESS;
959 }
960
961 LogRel(("rtR0MemObjNativeMapKernel failed to alloc memory object.\n"));
962 rc = VERR_NO_MEMORY;
963 }
964
965 if (off)
966 hat_unload(kas.a_hat, pv, off, HAT_UNLOAD | HAT_UNLOAD_UNLOCK);
967 vmem_xfree(heap_arena, pv, cbSub);
968 return rc;
969}
970
971
972DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, PRTR0MEMOBJINTERNAL pMemToMap, RTR3PTR R3PtrFixed,
973 size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
974{
975 /*
976 * Fend off things we cannot do.
977 */
978 AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
979 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
980 if (uAlignment != PAGE_SIZE)
981 return VERR_NOT_SUPPORTED;
982
983 /*
984 * Get parameters from the source object.
985 */
986 PRTR0MEMOBJSOL pMemToMapSolaris = (PRTR0MEMOBJSOL)pMemToMap;
987 void *pv = pMemToMapSolaris->Core.pv;
988 size_t cb = pMemToMapSolaris->Core.cb;
989 size_t cPages = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT;
990
991 /*
992 * Create the mapping object
993 */
994 PRTR0MEMOBJSOL pMemSolaris;
995 pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, cb);
996 if (RT_UNLIKELY(!pMemSolaris))
997 return VERR_NO_MEMORY;
998
999 int rc = VINF_SUCCESS;
1000 uint64_t *paPhysAddrs = kmem_zalloc(sizeof(uint64_t) * cPages, KM_SLEEP);
1001 if (RT_LIKELY(paPhysAddrs))
1002 {
1003 /*
1004 * Prepare the pages for mapping according to type.
1005 */
1006 if ( pMemToMapSolaris->Core.enmType == RTR0MEMOBJTYPE_PHYS_NC
1007 && pMemToMapSolaris->fIndivPages)
1008 {
1009 page_t **ppPages = pMemToMapSolaris->pvHandle;
1010 AssertPtr(ppPages);
1011 for (size_t iPage = 0; iPage < cPages; iPage++)
1012 paPhysAddrs[iPage] = rtR0MemObjSolPagePhys(ppPages[iPage]);
1013 }
1014 else if ( pMemToMapSolaris->Core.enmType == RTR0MEMOBJTYPE_PHYS
1015 && pMemToMapSolaris->fLargePage)
1016 {
1017 RTHCPHYS Phys = pMemToMapSolaris->Core.u.Phys.PhysBase;
1018 for (size_t iPage = 0; iPage < cPages; iPage++, Phys += PAGE_SIZE)
1019 paPhysAddrs[iPage] = Phys;
1020 }
1021 else
1022 {
1023 /*
1024 * Have kernel mapping, just translate virtual to physical.
1025 */
1026 AssertPtr(pv);
1027 rc = VINF_SUCCESS;
1028 for (size_t iPage = 0; iPage < cPages; iPage++)
1029 {
1030 paPhysAddrs[iPage] = rtR0MemObjSolVirtToPhys(pv);
1031 if (RT_UNLIKELY(paPhysAddrs[iPage] == -(uint64_t)1))
1032 {
1033 LogRel(("rtR0MemObjNativeMapUser: no page to map.\n"));
1034 rc = VERR_MAP_FAILED;
1035 break;
1036 }
1037 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
1038 }
1039 }
1040 if (RT_SUCCESS(rc))
1041 {
1042 unsigned fPageAccess = PROT_READ;
1043 if (fProt & RTMEM_PROT_WRITE)
1044 fPageAccess |= PROT_WRITE;
1045 if (fProt & RTMEM_PROT_EXEC)
1046 fPageAccess |= PROT_EXEC;
1047
1048 /*
1049 * Perform the actual mapping.
1050 */
1051 caddr_t UserAddr = NULL;
1052 rc = rtR0MemObjSolUserMap(&UserAddr, fPageAccess, paPhysAddrs, cb, PAGE_SIZE);
1053 if (RT_SUCCESS(rc))
1054 {
1055 pMemSolaris->Core.u.Mapping.R0Process = R0Process;
1056 pMemSolaris->Core.pv = UserAddr;
1057
1058 *ppMem = &pMemSolaris->Core;
1059 kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
1060 return VINF_SUCCESS;
1061 }
1062
1063 LogRel(("rtR0MemObjNativeMapUser: rtR0MemObjSolUserMap failed rc=%d.\n", rc));
1064 }
1065
1066 rc = VERR_MAP_FAILED;
1067 kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
1068 }
1069 else
1070 rc = VERR_NO_MEMORY;
1071 rtR0MemObjDelete(&pMemSolaris->Core);
1072 return rc;
1073}
1074
1075
1076DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1077{
1078 NOREF(pMem);
1079 NOREF(offSub);
1080 NOREF(cbSub);
1081 NOREF(fProt);
1082 return VERR_NOT_SUPPORTED;
1083}
1084
1085
1086DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1087{
1088 PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)pMem;
1089
1090 switch (pMemSolaris->Core.enmType)
1091 {
1092 case RTR0MEMOBJTYPE_PHYS_NC:
1093 if ( pMemSolaris->Core.u.Phys.fAllocated
1094 || !pMemSolaris->fIndivPages)
1095 {
1096 uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
1097 return rtR0MemObjSolVirtToPhys(pb);
1098 }
1099 page_t **ppPages = pMemSolaris->pvHandle;
1100 return rtR0MemObjSolPagePhys(ppPages[iPage]);
1101
1102 case RTR0MEMOBJTYPE_PAGE:
1103 case RTR0MEMOBJTYPE_LOW:
1104 case RTR0MEMOBJTYPE_LOCK:
1105 {
1106 uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
1107 return rtR0MemObjSolVirtToPhys(pb);
1108 }
1109
1110 /*
1111 * Although mapping can be handled by rtR0MemObjSolVirtToPhys(offset) like the above case,
1112 * request it from the parent so that we have a clear distinction between CONT/PHYS_NC.
1113 */
1114 case RTR0MEMOBJTYPE_MAPPING:
1115 return rtR0MemObjNativeGetPagePhysAddr(pMemSolaris->Core.uRel.Child.pParent, iPage);
1116
1117 case RTR0MEMOBJTYPE_CONT:
1118 case RTR0MEMOBJTYPE_PHYS:
1119 AssertFailed(); /* handled by the caller */
1120 case RTR0MEMOBJTYPE_RES_VIRT:
1121 default:
1122 return NIL_RTHCPHYS;
1123 }
1124}
1125
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette