1 | /* $Id: timer-r0drv-solaris.c 53347 2014-11-18 16:09:52Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Timer, Ring-0 Driver, Solaris.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2014 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*******************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *******************************************************************************/
|
---|
31 | #include "the-solaris-kernel.h"
|
---|
32 | #include "internal/iprt.h"
|
---|
33 | #include <iprt/timer.h>
|
---|
34 |
|
---|
35 | #include <iprt/asm.h>
|
---|
36 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
37 | # include <iprt/asm-amd64-x86.h>
|
---|
38 | #endif
|
---|
39 | #include <iprt/assert.h>
|
---|
40 | #include <iprt/err.h>
|
---|
41 | #include <iprt/mem.h>
|
---|
42 | #include <iprt/mp.h>
|
---|
43 | #include <iprt/spinlock.h>
|
---|
44 | #include <iprt/time.h>
|
---|
45 | #include <iprt/thread.h>
|
---|
46 | #include "internal/magics.h"
|
---|
47 |
|
---|
48 | #define SOL_TIMER_ANY_CPU (-1)
|
---|
49 |
|
---|
50 | /*******************************************************************************
|
---|
51 | * Structures and Typedefs *
|
---|
52 | *******************************************************************************/
|
---|
53 | /**
|
---|
54 | * Single-CPU timer handle.
|
---|
55 | */
|
---|
56 | typedef struct RTR0SINGLETIMERSOL
|
---|
57 | {
|
---|
58 | /** Cyclic handler. */
|
---|
59 | cyc_handler_t hHandler;
|
---|
60 | /** Cyclic time and interval representation. */
|
---|
61 | cyc_time_t hFireTime;
|
---|
62 | /** Timer ticks. */
|
---|
63 | uint64_t u64Tick;
|
---|
64 | } RTR0SINGLETIMERSOL;
|
---|
65 | typedef RTR0SINGLETIMERSOL *PRTR0SINGLETIMERSOL;
|
---|
66 |
|
---|
67 | /**
|
---|
68 | * Omni-CPU timer handle.
|
---|
69 | */
|
---|
70 | typedef struct RTR0OMNITIMERSOL
|
---|
71 | {
|
---|
72 | /** Absolute timestamp of when the timer should fire next. */
|
---|
73 | uint64_t u64When;
|
---|
74 | /** Array of timer ticks per CPU. Reinitialized when a CPU is online'd. */
|
---|
75 | uint64_t *au64Ticks;
|
---|
76 | } RTR0OMNITIMERSOL;
|
---|
77 | typedef RTR0OMNITIMERSOL *PRTR0OMNITIMERSOL;
|
---|
78 |
|
---|
79 | /**
|
---|
80 | * The internal representation of a Solaris timer handle.
|
---|
81 | */
|
---|
82 | typedef struct RTTIMER
|
---|
83 | {
|
---|
84 | /** Magic.
|
---|
85 | * This is RTTIMER_MAGIC, but changes to something else before the timer
|
---|
86 | * is destroyed to indicate clearly that thread should exit. */
|
---|
87 | uint32_t volatile u32Magic;
|
---|
88 | /** Flag indicating that the timer is suspended. */
|
---|
89 | uint8_t volatile fSuspended;
|
---|
90 | /** Whether the timer must run on all CPUs or not. */
|
---|
91 | uint8_t fAllCpu;
|
---|
92 | /** Whether the timer must run on a specific CPU or not. */
|
---|
93 | uint8_t fSpecificCpu;
|
---|
94 | /** The CPU it must run on if fSpecificCpu is set. */
|
---|
95 | uint8_t iCpu;
|
---|
96 | /** The nano second interval for repeating timers. */
|
---|
97 | uint64_t interval;
|
---|
98 | /** Cyclic timer Id. */
|
---|
99 | cyclic_id_t hCyclicId;
|
---|
100 | /** @todo Make this a union unless we intend to support omni<=>single timers
|
---|
101 | * conversions. */
|
---|
102 | /** Single-CPU timer handle. */
|
---|
103 | PRTR0SINGLETIMERSOL pSingleTimer;
|
---|
104 | /** Omni-CPU timer handle. */
|
---|
105 | PRTR0OMNITIMERSOL pOmniTimer;
|
---|
106 | /** The user callback. */
|
---|
107 | PFNRTTIMER pfnTimer;
|
---|
108 | /** The argument for the user callback. */
|
---|
109 | void *pvUser;
|
---|
110 | } RTTIMER;
|
---|
111 |
|
---|
112 |
|
---|
113 | /*******************************************************************************
|
---|
114 | * Defined Constants And Macros *
|
---|
115 | *******************************************************************************/
|
---|
116 | /** Validates that the timer is valid. */
|
---|
117 | #define RTTIMER_ASSERT_VALID_RET(pTimer) \
|
---|
118 | do \
|
---|
119 | { \
|
---|
120 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE); \
|
---|
121 | AssertMsgReturn((pTimer)->u32Magic == RTTIMER_MAGIC, ("pTimer=%p u32Magic=%x expected %x\n", (pTimer), (pTimer)->u32Magic, RTTIMER_MAGIC), \
|
---|
122 | VERR_INVALID_HANDLE); \
|
---|
123 | } while (0)
|
---|
124 |
|
---|
125 |
|
---|
126 | /**
|
---|
127 | * Callback wrapper for specific timers if they happened to have been fired on
|
---|
128 | * the wrong CPU. See rtTimerSolCallbackWrapper().
|
---|
129 | *
|
---|
130 | * @param idCpu The CPU this is fired on.
|
---|
131 | * @param pvUser1 Opaque pointer to the timer.
|
---|
132 | * @param pvUser2 Not used, NULL.
|
---|
133 | */
|
---|
134 | static void rtTimerSolMpCallbackWrapper(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
135 | {
|
---|
136 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
137 | AssertPtrReturnVoid(pTimer);
|
---|
138 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
139 | Assert(pTimer->iCpu == RTMpCpuId()); /* ASSUMES: index == cpuid */
|
---|
140 | Assert(pTimer->pSingleTimer);
|
---|
141 | NOREF(pvUser2);
|
---|
142 |
|
---|
143 | /* Make sure one-shots do not fire another time. */
|
---|
144 | Assert( !pTimer->fSuspended
|
---|
145 | || pTimer->interval != 0);
|
---|
146 |
|
---|
147 | /* For one-shot specific timers, allow RTTimer to restart them. */
|
---|
148 | if (pTimer->interval == 0)
|
---|
149 | pTimer->fSuspended = true;
|
---|
150 |
|
---|
151 | uint64_t u64Tick = ++pTimer->pSingleTimer->u64Tick;
|
---|
152 | pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);
|
---|
153 | }
|
---|
154 |
|
---|
155 |
|
---|
156 | /**
|
---|
157 | * Callback wrapper for Omni-CPU and single-CPU timers.
|
---|
158 | *
|
---|
159 | * @param pvArg Opaque pointer to the timer.
|
---|
160 | *
|
---|
161 | * @remarks This will be executed in interrupt context but only at the specified
|
---|
162 | * level i.e. CY_LOCK_LEVEL in our case. We -CANNOT- call into the
|
---|
163 | * cyclic subsystem here, neither should pfnTimer().
|
---|
164 | */
|
---|
165 | static void rtTimerSolCallbackWrapper(void *pvArg)
|
---|
166 | {
|
---|
167 | PRTTIMER pTimer = (PRTTIMER)pvArg;
|
---|
168 | AssertPtrReturnVoid(pTimer);
|
---|
169 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
170 |
|
---|
171 | if (pTimer->pSingleTimer)
|
---|
172 | {
|
---|
173 | /* Make sure one-shots do not fire another time. */
|
---|
174 | Assert( !pTimer->fSuspended
|
---|
175 | || pTimer->interval != 0);
|
---|
176 |
|
---|
177 | /* For specific timers, we might fire on the wrong CPU between cyclic_add() and cyclic_bind().
|
---|
178 | Redirect these shots to the right CPU as we are temporarily rebinding to the right CPU. */
|
---|
179 | if ( pTimer->fSpecificCpu
|
---|
180 | && pTimer->iCpu != RTMpCpuId()) /* ASSUMES: index == cpuid */
|
---|
181 | {
|
---|
182 | RTMpOnSpecific(pTimer->iCpu, rtTimerSolMpCallbackWrapper, pTimer, NULL);
|
---|
183 | return;
|
---|
184 | }
|
---|
185 |
|
---|
186 | /* For one-shot any-cpu timers, allow RTTimer to restart them. */
|
---|
187 | if (pTimer->interval == 0)
|
---|
188 | pTimer->fSuspended = true;
|
---|
189 |
|
---|
190 | uint64_t u64Tick = ++pTimer->pSingleTimer->u64Tick;
|
---|
191 | pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);
|
---|
192 | }
|
---|
193 | else if (pTimer->pOmniTimer)
|
---|
194 | {
|
---|
195 | uint64_t u64Tick = ++pTimer->pOmniTimer->au64Ticks[CPU->cpu_id];
|
---|
196 | pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);
|
---|
197 | }
|
---|
198 | }
|
---|
199 |
|
---|
200 |
|
---|
201 | /**
|
---|
202 | * Omni-CPU cyclic online event. This is called before the omni cycle begins to
|
---|
203 | * fire on the specified CPU.
|
---|
204 | *
|
---|
205 | * @param pvArg Opaque pointer to the timer.
|
---|
206 | * @param pCpu Pointer to the CPU on which it will fire.
|
---|
207 | * @param pCyclicHandler Pointer to a cyclic handler to add to the CPU
|
---|
208 | * specified in @a pCpu.
|
---|
209 | * @param pCyclicTime Pointer to the cyclic time and interval object.
|
---|
210 | *
|
---|
211 | * @remarks We -CANNOT- call back into the cyclic subsystem here, we can however
|
---|
212 | * block (sleep).
|
---|
213 | */
|
---|
214 | static void rtTimerSolOmniCpuOnline(void *pvArg, cpu_t *pCpu, cyc_handler_t *pCyclicHandler, cyc_time_t *pCyclicTime)
|
---|
215 | {
|
---|
216 | PRTTIMER pTimer = (PRTTIMER)pvArg;
|
---|
217 | AssertPtrReturnVoid(pTimer);
|
---|
218 | AssertPtrReturnVoid(pCpu);
|
---|
219 | AssertPtrReturnVoid(pCyclicHandler);
|
---|
220 | AssertPtrReturnVoid(pCyclicTime);
|
---|
221 |
|
---|
222 | pTimer->pOmniTimer->au64Ticks[pCpu->cpu_id] = 0;
|
---|
223 | pCyclicHandler->cyh_func = rtTimerSolCallbackWrapper;
|
---|
224 | pCyclicHandler->cyh_arg = pTimer;
|
---|
225 | pCyclicHandler->cyh_level = CY_LOCK_LEVEL;
|
---|
226 |
|
---|
227 | uint64_t u64Now = RTTimeSystemNanoTS();
|
---|
228 | if (pTimer->pOmniTimer->u64When < u64Now)
|
---|
229 | pCyclicTime->cyt_when = u64Now + pTimer->interval / 2;
|
---|
230 | else
|
---|
231 | pCyclicTime->cyt_when = pTimer->pOmniTimer->u64When;
|
---|
232 |
|
---|
233 | pCyclicTime->cyt_interval = pTimer->interval;
|
---|
234 | }
|
---|
235 |
|
---|
236 |
|
---|
237 | RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
|
---|
238 | {
|
---|
239 | RT_ASSERT_PREEMPTIBLE();
|
---|
240 | *ppTimer = NULL;
|
---|
241 |
|
---|
242 | /*
|
---|
243 | * Validate flags.
|
---|
244 | */
|
---|
245 | if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
|
---|
246 | return VERR_INVALID_PARAMETER;
|
---|
247 |
|
---|
248 | if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
|
---|
249 | && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
|
---|
250 | && !RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)))
|
---|
251 | return VERR_CPU_NOT_FOUND;
|
---|
252 |
|
---|
253 | /* One-shot omni timers are not supported by the cyclic system. */
|
---|
254 | if ( (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL
|
---|
255 | && u64NanoInterval == 0)
|
---|
256 | {
|
---|
257 | return VERR_NOT_SUPPORTED;
|
---|
258 | }
|
---|
259 |
|
---|
260 | /*
|
---|
261 | * Allocate and initialize the timer handle.
|
---|
262 | */
|
---|
263 | PRTTIMER pTimer = (PRTTIMER)RTMemAlloc(sizeof(*pTimer));
|
---|
264 | if (!pTimer)
|
---|
265 | return VERR_NO_MEMORY;
|
---|
266 |
|
---|
267 | pTimer->u32Magic = RTTIMER_MAGIC;
|
---|
268 | pTimer->fSuspended = true;
|
---|
269 | if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
|
---|
270 | {
|
---|
271 | pTimer->fAllCpu = true;
|
---|
272 | pTimer->fSpecificCpu = false;
|
---|
273 | pTimer->iCpu = 255;
|
---|
274 | }
|
---|
275 | else if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
|
---|
276 | {
|
---|
277 | pTimer->fAllCpu = false;
|
---|
278 | pTimer->fSpecificCpu = true;
|
---|
279 | pTimer->iCpu = fFlags & RTTIMER_FLAGS_CPU_MASK; /* ASSUMES: index == cpuid */
|
---|
280 | }
|
---|
281 | else
|
---|
282 | {
|
---|
283 | pTimer->fAllCpu = false;
|
---|
284 | pTimer->fSpecificCpu = false;
|
---|
285 | pTimer->iCpu = 255;
|
---|
286 | }
|
---|
287 | pTimer->interval = u64NanoInterval;
|
---|
288 | pTimer->pfnTimer = pfnTimer;
|
---|
289 | pTimer->pvUser = pvUser;
|
---|
290 | pTimer->pSingleTimer = NULL;
|
---|
291 | pTimer->pOmniTimer = NULL;
|
---|
292 | pTimer->hCyclicId = CYCLIC_NONE;
|
---|
293 |
|
---|
294 | *ppTimer = pTimer;
|
---|
295 | return VINF_SUCCESS;
|
---|
296 | }
|
---|
297 |
|
---|
298 |
|
---|
299 | RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
|
---|
300 | {
|
---|
301 | if (pTimer == NULL)
|
---|
302 | return VINF_SUCCESS;
|
---|
303 | RTTIMER_ASSERT_VALID_RET(pTimer);
|
---|
304 | RT_ASSERT_INTS_ON();
|
---|
305 |
|
---|
306 | /*
|
---|
307 | * Free the associated resources.
|
---|
308 | */
|
---|
309 | RTTimerStop(pTimer);
|
---|
310 |
|
---|
311 | /** @remarks Do -not- call this function from a timer callback,
|
---|
312 | * cyclic_remove() will deadlock the system. */
|
---|
313 | if (pTimer->pSingleTimer)
|
---|
314 | {
|
---|
315 | mutex_enter(&cpu_lock);
|
---|
316 | cyclic_remove(pTimer->hCyclicId);
|
---|
317 | mutex_exit(&cpu_lock);
|
---|
318 | RTMemFree(pTimer->pSingleTimer);
|
---|
319 | }
|
---|
320 | else if (pTimer->pOmniTimer)
|
---|
321 | {
|
---|
322 | mutex_enter(&cpu_lock);
|
---|
323 | cyclic_remove(pTimer->hCyclicId);
|
---|
324 | mutex_exit(&cpu_lock);
|
---|
325 | RTMemFree(pTimer->pOmniTimer->au64Ticks);
|
---|
326 | RTMemFree(pTimer->pOmniTimer);
|
---|
327 | }
|
---|
328 |
|
---|
329 | ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
|
---|
330 | RTMemFree(pTimer);
|
---|
331 | return VINF_SUCCESS;
|
---|
332 | }
|
---|
333 |
|
---|
334 |
|
---|
335 | RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
|
---|
336 | {
|
---|
337 | RTTIMER_ASSERT_VALID_RET(pTimer);
|
---|
338 | RT_ASSERT_INTS_ON();
|
---|
339 |
|
---|
340 | if (!pTimer->fSuspended)
|
---|
341 | return VERR_TIMER_ACTIVE;
|
---|
342 |
|
---|
343 | pTimer->fSuspended = false;
|
---|
344 | if (pTimer->fAllCpu)
|
---|
345 | {
|
---|
346 | Assert(pTimer->interval);
|
---|
347 | PRTR0OMNITIMERSOL pOmniTimer = RTMemAllocZ(sizeof(RTR0OMNITIMERSOL));
|
---|
348 | if (RT_UNLIKELY(!pOmniTimer))
|
---|
349 | return VERR_NO_MEMORY;
|
---|
350 |
|
---|
351 | pOmniTimer->au64Ticks = RTMemAllocZ(RTMpGetCount() * sizeof(uint64_t));
|
---|
352 | if (RT_UNLIKELY(!pOmniTimer->au64Ticks))
|
---|
353 | {
|
---|
354 | RTMemFree(pOmniTimer);
|
---|
355 | return VERR_NO_MEMORY;
|
---|
356 | }
|
---|
357 |
|
---|
358 | /*
|
---|
359 | * Setup omni (all CPU) timer. The Omni-CPU online event will fire
|
---|
360 | * and from there we setup periodic timers per CPU.
|
---|
361 | */
|
---|
362 | pTimer->pOmniTimer = pOmniTimer;
|
---|
363 | pOmniTimer->u64When = pTimer->interval + RTTimeSystemNanoTS();
|
---|
364 |
|
---|
365 | cyc_omni_handler_t hOmni;
|
---|
366 | hOmni.cyo_online = rtTimerSolOmniCpuOnline;
|
---|
367 | hOmni.cyo_offline = NULL;
|
---|
368 | hOmni.cyo_arg = pTimer;
|
---|
369 |
|
---|
370 | mutex_enter(&cpu_lock);
|
---|
371 | pTimer->hCyclicId = cyclic_add_omni(&hOmni);
|
---|
372 | mutex_exit(&cpu_lock);
|
---|
373 | }
|
---|
374 | else
|
---|
375 | {
|
---|
376 | int iCpu = SOL_TIMER_ANY_CPU;
|
---|
377 | if (pTimer->fSpecificCpu)
|
---|
378 | {
|
---|
379 | iCpu = pTimer->iCpu;
|
---|
380 | if (!RTMpIsCpuOnline(iCpu)) /* ASSUMES: index == cpuid */
|
---|
381 | return VERR_CPU_OFFLINE;
|
---|
382 | }
|
---|
383 |
|
---|
384 | PRTR0SINGLETIMERSOL pSingleTimer = RTMemAllocZ(sizeof(RTR0SINGLETIMERSOL));
|
---|
385 | if (RT_UNLIKELY(!pSingleTimer))
|
---|
386 | return VERR_NO_MEMORY;
|
---|
387 |
|
---|
388 | pTimer->pSingleTimer = pSingleTimer;
|
---|
389 | pSingleTimer->hHandler.cyh_func = rtTimerSolCallbackWrapper;
|
---|
390 | pSingleTimer->hHandler.cyh_arg = pTimer;
|
---|
391 | pSingleTimer->hHandler.cyh_level = CY_LOCK_LEVEL;
|
---|
392 |
|
---|
393 | mutex_enter(&cpu_lock);
|
---|
394 | if ( iCpu != SOL_TIMER_ANY_CPU
|
---|
395 | && !cpu_is_online(cpu[iCpu]))
|
---|
396 | {
|
---|
397 | mutex_exit(&cpu_lock);
|
---|
398 | RTMemFree(pSingleTimer);
|
---|
399 | pTimer->pSingleTimer = NULL;
|
---|
400 | return VERR_CPU_OFFLINE;
|
---|
401 | }
|
---|
402 |
|
---|
403 | pSingleTimer->hFireTime.cyt_when = u64First + RTTimeSystemNanoTS();
|
---|
404 | if (pTimer->interval == 0)
|
---|
405 | {
|
---|
406 | /*
|
---|
407 | * cylic_add() comment: "The caller is responsible for assuring that cyt_when + cyt_interval <= INT64_MAX"
|
---|
408 | * but it contradicts itself because cyclic_reprogram() updates only the interval and accepts CY_INFINITY as
|
---|
409 | * a valid, special value. See cyclic_fire().
|
---|
410 | */
|
---|
411 | pSingleTimer->hFireTime.cyt_interval = CY_INFINITY;
|
---|
412 | }
|
---|
413 | else
|
---|
414 | pSingleTimer->hFireTime.cyt_interval = pTimer->interval;
|
---|
415 |
|
---|
416 | pTimer->hCyclicId = cyclic_add(&pSingleTimer->hHandler, &pSingleTimer->hFireTime);
|
---|
417 | if (iCpu != SOL_TIMER_ANY_CPU)
|
---|
418 | cyclic_bind(pTimer->hCyclicId, cpu[iCpu], NULL /* cpupart */);
|
---|
419 |
|
---|
420 | mutex_exit(&cpu_lock);
|
---|
421 | }
|
---|
422 |
|
---|
423 | return VINF_SUCCESS;
|
---|
424 | }
|
---|
425 |
|
---|
426 |
|
---|
427 | RTDECL(int) RTTimerStop(PRTTIMER pTimer)
|
---|
428 | {
|
---|
429 | RTTIMER_ASSERT_VALID_RET(pTimer);
|
---|
430 | RT_ASSERT_INTS_ON();
|
---|
431 |
|
---|
432 | if (pTimer->fSuspended)
|
---|
433 | return VERR_TIMER_SUSPENDED;
|
---|
434 |
|
---|
435 | /*
|
---|
436 | * Solaris does not allow removing cyclics from the timer callback but it does allow
|
---|
437 | * reprogramming the cyclic. Reprogram such that it never expires.
|
---|
438 | */
|
---|
439 | int rc = RTTimerChangeInterval(pTimer, CY_INFINITY);
|
---|
440 | if (RT_SUCCESS(rc))
|
---|
441 | pTimer->fSuspended = true;
|
---|
442 | return rc;
|
---|
443 | }
|
---|
444 |
|
---|
445 |
|
---|
446 | RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
|
---|
447 | {
|
---|
448 | RTTIMER_ASSERT_VALID_RET(pTimer);
|
---|
449 |
|
---|
450 | if (pTimer->hCyclicId != CYCLIC_NONE)
|
---|
451 | {
|
---|
452 | uint64_t uNanoTS = RTTimeSystemNanoTS();
|
---|
453 | if ( u64NanoInterval >= CY_INFINITY
|
---|
454 | || uNanoTS >= CY_INFINITY - u64NanoInterval)
|
---|
455 | cyclic_reprogram(pTimer->hCyclicId, CY_INFINITY);
|
---|
456 | else
|
---|
457 | cyclic_reprogram(pTimer->hCyclicId, (hrtime_t)(u64NanoInterval + uNanoTS));
|
---|
458 |
|
---|
459 | return VINF_SUCCESS;
|
---|
460 | }
|
---|
461 | return VERR_INVALID_STATE;
|
---|
462 | }
|
---|
463 |
|
---|
464 |
|
---|
465 | RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
|
---|
466 | {
|
---|
467 | return nsec_per_tick;
|
---|
468 | }
|
---|
469 |
|
---|
470 |
|
---|
471 | RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
|
---|
472 | {
|
---|
473 | return VERR_NOT_SUPPORTED;
|
---|
474 | }
|
---|
475 |
|
---|
476 |
|
---|
477 | RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
|
---|
478 | {
|
---|
479 | return VERR_NOT_SUPPORTED;
|
---|
480 | }
|
---|
481 |
|
---|
482 |
|
---|
483 | RTDECL(bool) RTTimerCanDoHighResolution(void)
|
---|
484 | {
|
---|
485 | /** @todo return true; - when missing bits have been implemented and tested*/
|
---|
486 | return false;
|
---|
487 | }
|
---|
488 |
|
---|