1 | /* $Id: timer-r0drv-solaris.c 54184 2015-02-12 20:58:24Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Timer, Ring-0 Driver, Solaris.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2014 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*******************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *******************************************************************************/
|
---|
31 | #include "the-solaris-kernel.h"
|
---|
32 | #include "internal/iprt.h"
|
---|
33 | #include <iprt/timer.h>
|
---|
34 |
|
---|
35 | #include <iprt/asm.h>
|
---|
36 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
37 | # include <iprt/asm-amd64-x86.h>
|
---|
38 | #endif
|
---|
39 | #include <iprt/assert.h>
|
---|
40 | #include <iprt/err.h>
|
---|
41 | #include <iprt/mem.h>
|
---|
42 | #include <iprt/mp.h>
|
---|
43 | #include <iprt/spinlock.h>
|
---|
44 | #include <iprt/time.h>
|
---|
45 | #include <iprt/thread.h>
|
---|
46 | #include "internal/magics.h"
|
---|
47 |
|
---|
48 |
|
---|
49 | /*******************************************************************************
|
---|
50 | * Structures and Typedefs *
|
---|
51 | *******************************************************************************/
|
---|
52 | /**
|
---|
53 | * The internal representation of a Solaris timer handle.
|
---|
54 | */
|
---|
55 | typedef struct RTTIMER
|
---|
56 | {
|
---|
57 | /** Magic.
|
---|
58 | * This is RTTIMER_MAGIC, but changes to something else before the timer
|
---|
59 | * is destroyed to indicate clearly that thread should exit. */
|
---|
60 | uint32_t volatile u32Magic;
|
---|
61 | /** Reference counter. */
|
---|
62 | uint32_t volatile cRefs;
|
---|
63 | /** Flag indicating that the timer is suspended. */
|
---|
64 | uint8_t volatile fSuspended;
|
---|
65 | /** Whether the timer must run on all CPUs or not. */
|
---|
66 | uint8_t fAllCpus;
|
---|
67 | /** Whether the timer must run on a specific CPU or not. */
|
---|
68 | uint8_t fSpecificCpu;
|
---|
69 | /** The CPU it must run on if fSpecificCpu is set. */
|
---|
70 | uint32_t iCpu;
|
---|
71 | /** The nano second interval for repeating timers. */
|
---|
72 | uint64_t cNsInterval;
|
---|
73 | /** Cyclic timer Id. */
|
---|
74 | cyclic_id_t hCyclicId;
|
---|
75 | /** The user callback. */
|
---|
76 | PFNRTTIMER pfnTimer;
|
---|
77 | /** The argument for the user callback. */
|
---|
78 | void *pvUser;
|
---|
79 | /** Union with timer type specific data. */
|
---|
80 | union
|
---|
81 | {
|
---|
82 | /** Single timer (fAllCpus == false). */
|
---|
83 | struct
|
---|
84 | {
|
---|
85 | /** Cyclic handler. */
|
---|
86 | cyc_handler_t hHandler;
|
---|
87 | /** Cyclic time and interval representation. */
|
---|
88 | cyc_time_t hFireTime;
|
---|
89 | /** Timer ticks. */
|
---|
90 | uint64_t u64Tick;
|
---|
91 | } Single;
|
---|
92 |
|
---|
93 | /** Omni timer (fAllCpus == true). */
|
---|
94 | struct
|
---|
95 | {
|
---|
96 | /** Absolute timestamp of when the timer should fire next. */
|
---|
97 | uint64_t u64When;
|
---|
98 | /** Array of timer ticks per CPU. Reinitialized when a CPU is online'd
|
---|
99 | * (variable size). */
|
---|
100 | uint64_t au64Ticks[1];
|
---|
101 | } Omni;
|
---|
102 | } u;
|
---|
103 | } RTTIMER;
|
---|
104 |
|
---|
105 |
|
---|
106 | /*******************************************************************************
|
---|
107 | * Defined Constants And Macros *
|
---|
108 | *******************************************************************************/
|
---|
109 | /** Validates that the timer is valid. */
|
---|
110 | #define RTTIMER_ASSERT_VALID_RET(pTimer) \
|
---|
111 | do \
|
---|
112 | { \
|
---|
113 | AssertPtrReturn(pTimer, VERR_INVALID_HANDLE); \
|
---|
114 | AssertMsgReturn((pTimer)->u32Magic == RTTIMER_MAGIC, ("pTimer=%p u32Magic=%x expected %x\n", (pTimer), (pTimer)->u32Magic, RTTIMER_MAGIC), \
|
---|
115 | VERR_INVALID_HANDLE); \
|
---|
116 | } while (0)
|
---|
117 |
|
---|
118 |
|
---|
119 |
|
---|
120 | /**
|
---|
121 | * Retains a reference to the timer.
|
---|
122 | *
|
---|
123 | * @returns New reference counter value.
|
---|
124 | * @param pTimer The timer.
|
---|
125 | */
|
---|
126 | DECLINLINE(uint32_t) rtTimerSolRetain(PRTTIMER pTimer)
|
---|
127 | {
|
---|
128 | return ASMAtomicIncU32(&pTimer->cRefs);
|
---|
129 | }
|
---|
130 |
|
---|
131 |
|
---|
132 | /**
|
---|
133 | * Destroys the timer when the reference counter has reached zero.
|
---|
134 | *
|
---|
135 | * @returns 0 (new references counter value).
|
---|
136 | * @param pTimer The timer.
|
---|
137 | */
|
---|
138 | static uint32_t rtTimeSolReleaseCleanup(PRTTIMER pTimer)
|
---|
139 | {
|
---|
140 | Assert(pTimer->hCyclicId == CYCLIC_NONE);
|
---|
141 | ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
|
---|
142 | RTMemFree(pTimer);
|
---|
143 | }
|
---|
144 |
|
---|
145 |
|
---|
146 | /**
|
---|
147 | * Releases a reference to the timer.
|
---|
148 | *
|
---|
149 | * @returns New reference counter value.
|
---|
150 | * @param pTimer The timer.
|
---|
151 | */
|
---|
152 | DECLINLINE(uint32_t) rtTimerSolRelease(PRTTIMER pTimer)
|
---|
153 | {
|
---|
154 | uint32_t cRefs = ASMAtomicDecU32(&pTimer->cRefs);
|
---|
155 | if (!cRefs)
|
---|
156 | return rtTimeSolReleaseCleanup(pTimer);
|
---|
157 | return cRefs;
|
---|
158 | }
|
---|
159 |
|
---|
160 |
|
---|
161 | /**
|
---|
162 | * RTMpOnSpecific callback used by rtTimerSolCallbackWrapper() to deal with
|
---|
163 | * callouts on the wrong CPU (race with cyclic_bind).
|
---|
164 | *
|
---|
165 | * @param idCpu The CPU this is fired on.
|
---|
166 | * @param pvUser1 Opaque pointer to the timer.
|
---|
167 | * @param pvUser2 Not used, NULL.
|
---|
168 | */
|
---|
169 | static void rtTimerSolMpCallbackWrapper(RTCPUID idCpu, void *pvUser1, void *pvUser2)
|
---|
170 | {
|
---|
171 | PRTTIMER pTimer = (PRTTIMER)pvUser1;
|
---|
172 | AssertPtrReturnVoid(pTimer);
|
---|
173 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
174 | Assert(pTimer->iCpu == RTMpCpuId()); /* ASSUMES: index == cpuid */
|
---|
175 | Assert(!pTimer->fAllCpus);
|
---|
176 | NOREF(pvUser2);
|
---|
177 |
|
---|
178 | /* Make sure one-shots do not fire another time. */
|
---|
179 | Assert( !pTimer->fSuspended
|
---|
180 | || pTimer->cNsInterval != 0);
|
---|
181 |
|
---|
182 | /* For one-shot specific timers, allow RTTimer to restart them. */
|
---|
183 | if (pTimer->cNsInterval == 0)
|
---|
184 | pTimer->fSuspended = true;
|
---|
185 |
|
---|
186 | uint64_t u64Tick = ++pTimer->u.Single.u64Tick;
|
---|
187 | pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);
|
---|
188 | }
|
---|
189 |
|
---|
190 |
|
---|
191 | /**
|
---|
192 | * Callback wrapper for single-CPU timers.
|
---|
193 | *
|
---|
194 | * @param pvArg Opaque pointer to the timer.
|
---|
195 | *
|
---|
196 | * @remarks This will be executed in interrupt context but only at the specified
|
---|
197 | * level i.e. CY_LOCK_LEVEL in our case. We -CANNOT- call into the
|
---|
198 | * cyclic subsystem here, neither should pfnTimer().
|
---|
199 | */
|
---|
200 | static void rtTimerSolSingleCallbackWrapper(void *pvArg)
|
---|
201 | {
|
---|
202 | PRTTIMER pTimer = (PRTTIMER)pvArg;
|
---|
203 | AssertPtrReturnVoid(pTimer);
|
---|
204 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
205 | Assert(!pTimer->fAllCpus);
|
---|
206 |
|
---|
207 | /* Make sure one-shots do not fire another time. */
|
---|
208 | Assert( !pTimer->fSuspended
|
---|
209 | || pTimer->cNsInterval != 0);
|
---|
210 |
|
---|
211 | /* For specific timers, we might fire on the wrong CPU between cyclic_add() and cyclic_bind().
|
---|
212 | Redirect these shots to the right CPU as we are temporarily rebinding to the right CPU. */
|
---|
213 | if ( pTimer->fSpecificCpu
|
---|
214 | && pTimer->iCpu != RTMpCpuId()) /* ASSUMES: index == cpuid */
|
---|
215 | {
|
---|
216 | RTMpOnSpecific(pTimer->iCpu, rtTimerSolMpCallbackWrapper, pTimer, NULL);
|
---|
217 | return;
|
---|
218 | }
|
---|
219 |
|
---|
220 | /* For one-shot any-cpu timers, allow RTTimer to restart them. */
|
---|
221 | if (pTimer->cNsInterval == 0)
|
---|
222 | pTimer->fSuspended = true;
|
---|
223 |
|
---|
224 | uint64_t u64Tick = ++pTimer->u.Single.u64Tick;
|
---|
225 | pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);
|
---|
226 | }
|
---|
227 |
|
---|
228 |
|
---|
229 | /**
|
---|
230 | * Callback wrapper for Omni-CPU timers.
|
---|
231 | *
|
---|
232 | * @param pvArg Opaque pointer to the timer.
|
---|
233 | *
|
---|
234 | * @remarks This will be executed in interrupt context but only at the specified
|
---|
235 | * level i.e. CY_LOCK_LEVEL in our case. We -CANNOT- call into the
|
---|
236 | * cyclic subsystem here, neither should pfnTimer().
|
---|
237 | */
|
---|
238 | static void rtTimerSolOmniCallbackWrapper(void *pvArg)
|
---|
239 | {
|
---|
240 | PRTTIMER pTimer = (PRTTIMER)pvArg;
|
---|
241 | AssertPtrReturnVoid(pTimer);
|
---|
242 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
243 | Assert(pTimer->fAllCpus);
|
---|
244 |
|
---|
245 | uint64_t u64Tick = ++pTimer->u.Omni.au64Ticks[CPU->cpu_id];
|
---|
246 | pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);
|
---|
247 | }
|
---|
248 |
|
---|
249 |
|
---|
250 | /**
|
---|
251 | * Omni-CPU cyclic online event. This is called before the omni cycle begins to
|
---|
252 | * fire on the specified CPU.
|
---|
253 | *
|
---|
254 | * @param pvArg Opaque pointer to the timer.
|
---|
255 | * @param pCpu Pointer to the CPU on which it will fire.
|
---|
256 | * @param pCyclicHandler Pointer to a cyclic handler to add to the CPU
|
---|
257 | * specified in @a pCpu.
|
---|
258 | * @param pCyclicTime Pointer to the cyclic time and interval object.
|
---|
259 | *
|
---|
260 | * @remarks We -CANNOT- call back into the cyclic subsystem here, we can however
|
---|
261 | * block (sleep).
|
---|
262 | */
|
---|
263 | static void rtTimerSolOmniCpuOnline(void *pvArg, cpu_t *pCpu, cyc_handler_t *pCyclicHandler, cyc_time_t *pCyclicTime)
|
---|
264 | {
|
---|
265 | PRTTIMER pTimer = (PRTTIMER)pvArg;
|
---|
266 | AssertPtrReturnVoid(pTimer);
|
---|
267 | AssertPtrReturnVoid(pCpu);
|
---|
268 | AssertPtrReturnVoid(pCyclicHandler);
|
---|
269 | AssertPtrReturnVoid(pCyclicTime);
|
---|
270 |
|
---|
271 | pTimer->u.Omni.au64Ticks[pCpu->cpu_id] = 0;
|
---|
272 | pCyclicHandler->cyh_func = (cyc_func_t)rtTimerSolOmniCallbackWrapper;
|
---|
273 | pCyclicHandler->cyh_arg = pTimer;
|
---|
274 | pCyclicHandler->cyh_level = CY_LOCK_LEVEL;
|
---|
275 |
|
---|
276 | uint64_t u64Now = RTTimeSystemNanoTS();
|
---|
277 | if (pTimer->u.Omni.u64When < u64Now)
|
---|
278 | pCyclicTime->cyt_when = u64Now + pTimer->cNsInterval / 2;
|
---|
279 | else
|
---|
280 | pCyclicTime->cyt_when = pTimer->u.Omni.u64When;
|
---|
281 |
|
---|
282 | pCyclicTime->cyt_interval = pTimer->cNsInterval;
|
---|
283 | }
|
---|
284 |
|
---|
285 |
|
---|
286 | RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
|
---|
287 | {
|
---|
288 | RT_ASSERT_PREEMPTIBLE();
|
---|
289 | *ppTimer = NULL;
|
---|
290 |
|
---|
291 | /*
|
---|
292 | * Validate flags.
|
---|
293 | */
|
---|
294 | if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
|
---|
295 | return VERR_INVALID_PARAMETER;
|
---|
296 |
|
---|
297 | if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
|
---|
298 | && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
|
---|
299 | && !RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)))
|
---|
300 | return VERR_CPU_NOT_FOUND;
|
---|
301 |
|
---|
302 | /* One-shot omni timers are not supported by the cyclic system. */
|
---|
303 | if ( (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL
|
---|
304 | && u64NanoInterval == 0)
|
---|
305 | return VERR_NOT_SUPPORTED;
|
---|
306 |
|
---|
307 | /*
|
---|
308 | * Allocate and initialize the timer handle. The omni variant has a
|
---|
309 | * variable sized array of ticks counts, thus the size calculation.
|
---|
310 | */
|
---|
311 | PRTTIMER pTimer = (PRTTIMER)RTMemAllocZ( (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL
|
---|
312 | ? RT_OFFSETOF(RTTIMER, u.Omni.au64Ticks[RTMpGetCount()])
|
---|
313 | : sizeof(RTTIMER));
|
---|
314 | if (!pTimer)
|
---|
315 | return VERR_NO_MEMORY;
|
---|
316 |
|
---|
317 | pTimer->u32Magic = RTTIMER_MAGIC;
|
---|
318 | pTimer->cRefs = 1;
|
---|
319 | pTimer->fSuspended = true;
|
---|
320 | if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
|
---|
321 | {
|
---|
322 | pTimer->fAllCpus = true;
|
---|
323 | pTimer->fSpecificCpu = false;
|
---|
324 | pTimer->iCpu = UINT32_MAX;
|
---|
325 | }
|
---|
326 | else if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
|
---|
327 | {
|
---|
328 | pTimer->fAllCpus = false;
|
---|
329 | pTimer->fSpecificCpu = true;
|
---|
330 | pTimer->iCpu = fFlags & RTTIMER_FLAGS_CPU_MASK; /* ASSUMES: index == cpuid */
|
---|
331 | }
|
---|
332 | else
|
---|
333 | {
|
---|
334 | pTimer->fAllCpus = false;
|
---|
335 | pTimer->fSpecificCpu = false;
|
---|
336 | pTimer->iCpu = UINT32_MAX;
|
---|
337 | }
|
---|
338 | pTimer->cNsInterval = u64NanoInterval;
|
---|
339 | pTimer->pfnTimer = pfnTimer;
|
---|
340 | pTimer->pvUser = pvUser;
|
---|
341 | pTimer->hCyclicId = CYCLIC_NONE;
|
---|
342 |
|
---|
343 | *ppTimer = pTimer;
|
---|
344 | return VINF_SUCCESS;
|
---|
345 | }
|
---|
346 |
|
---|
347 |
|
---|
348 | RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
|
---|
349 | {
|
---|
350 | if (pTimer == NULL)
|
---|
351 | return VINF_SUCCESS;
|
---|
352 | RTTIMER_ASSERT_VALID_RET(pTimer);
|
---|
353 | RT_ASSERT_INTS_ON();
|
---|
354 |
|
---|
355 | /*
|
---|
356 | * Free the associated resources.
|
---|
357 | */
|
---|
358 | RTTimerStop(pTimer);
|
---|
359 | ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
|
---|
360 |
|
---|
361 | rtTimerSolRelease(pTimer);
|
---|
362 | return VINF_SUCCESS;
|
---|
363 | }
|
---|
364 |
|
---|
365 |
|
---|
366 | RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
|
---|
367 | {
|
---|
368 | RTTIMER_ASSERT_VALID_RET(pTimer);
|
---|
369 | RT_ASSERT_INTS_ON();
|
---|
370 |
|
---|
371 | if (!pTimer->fSuspended)
|
---|
372 | return VERR_TIMER_ACTIVE;
|
---|
373 |
|
---|
374 | pTimer->fSuspended = false;
|
---|
375 | if (pTimer->fAllCpus)
|
---|
376 | {
|
---|
377 | /*
|
---|
378 | * Setup omni (all CPU) timer. The Omni-CPU online event will fire
|
---|
379 | * and from there we setup periodic timers per CPU.
|
---|
380 | */
|
---|
381 | pTimer->u.Omni.u64When = pTimer->cNsInterval + RTTimeSystemNanoTS();
|
---|
382 |
|
---|
383 | cyc_omni_handler_t HandlerOmni;
|
---|
384 | HandlerOmni.cyo_online = rtTimerSolOmniCpuOnline;
|
---|
385 | HandlerOmni.cyo_offline = NULL;
|
---|
386 | HandlerOmni.cyo_arg = pTimer;
|
---|
387 |
|
---|
388 | mutex_enter(&cpu_lock);
|
---|
389 | pTimer->hCyclicId = cyclic_add_omni(&HandlerOmni);
|
---|
390 | mutex_exit(&cpu_lock);
|
---|
391 | }
|
---|
392 | else
|
---|
393 | {
|
---|
394 | if (pTimer->fSpecificCpu && !RTMpIsCpuOnline(pTimer->iCpu)) /* ASSUMES: index == cpuid */
|
---|
395 | return VERR_CPU_OFFLINE;
|
---|
396 |
|
---|
397 | pTimer->u.Single.hHandler.cyh_func = (cyc_func_t)rtTimerSolSingleCallbackWrapper;
|
---|
398 | pTimer->u.Single.hHandler.cyh_arg = pTimer;
|
---|
399 | pTimer->u.Single.hHandler.cyh_level = CY_LOCK_LEVEL;
|
---|
400 |
|
---|
401 | mutex_enter(&cpu_lock);
|
---|
402 | if (RT_UNLIKELY( pTimer->fSpecificCpu
|
---|
403 | && !cpu_is_online(cpu[pTimer->iCpu])))
|
---|
404 | {
|
---|
405 | mutex_exit(&cpu_lock);
|
---|
406 | return VERR_CPU_OFFLINE;
|
---|
407 | }
|
---|
408 |
|
---|
409 | pTimer->u.Single.hFireTime.cyt_when = u64First + RTTimeSystemNanoTS();
|
---|
410 | if (pTimer->cNsInterval == 0)
|
---|
411 | {
|
---|
412 | /*
|
---|
413 | * cylic_add() comment: "The caller is responsible for assuring that cyt_when + cyt_interval <= INT64_MAX"
|
---|
414 | * but it contradicts itself because cyclic_reprogram() updates only the interval and accepts CY_INFINITY as
|
---|
415 | * a valid, special value. See cyclic_fire().
|
---|
416 | */
|
---|
417 | pTimer->u.Single.hFireTime.cyt_interval = CY_INFINITY;
|
---|
418 | }
|
---|
419 | else
|
---|
420 | pTimer->u.Single.hFireTime.cyt_interval = pTimer->cNsInterval;
|
---|
421 |
|
---|
422 | pTimer->hCyclicId = cyclic_add(&pTimer->u.Single.hHandler, &pTimer->u.Single.hFireTime);
|
---|
423 | if (pTimer->fSpecificCpu)
|
---|
424 | cyclic_bind(pTimer->hCyclicId, cpu[pTimer->iCpu], NULL /* cpupart */);
|
---|
425 |
|
---|
426 | mutex_exit(&cpu_lock);
|
---|
427 | }
|
---|
428 |
|
---|
429 | return VINF_SUCCESS;
|
---|
430 | }
|
---|
431 |
|
---|
432 |
|
---|
433 | RTDECL(int) RTTimerStop(PRTTIMER pTimer)
|
---|
434 | {
|
---|
435 | RTTIMER_ASSERT_VALID_RET(pTimer);
|
---|
436 | RT_ASSERT_INTS_ON();
|
---|
437 |
|
---|
438 | if (pTimer->fSuspended)
|
---|
439 | return VERR_TIMER_SUSPENDED;
|
---|
440 |
|
---|
441 | /** @remarks Do -not- call this function from a timer callback,
|
---|
442 | * cyclic_remove() will deadlock the system. */
|
---|
443 | mutex_enter(&cpu_lock);
|
---|
444 |
|
---|
445 | pTimer->fSuspended = true;
|
---|
446 | cyclic_remove(pTimer->hCyclicId);
|
---|
447 | pTimer->hCyclicId = CYCLIC_NONE;
|
---|
448 |
|
---|
449 | mutex_exit(&cpu_lock);
|
---|
450 |
|
---|
451 | return VINF_SUCCESS;
|
---|
452 | }
|
---|
453 |
|
---|
454 |
|
---|
455 | RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
|
---|
456 | {
|
---|
457 | /*
|
---|
458 | * Validate.
|
---|
459 | */
|
---|
460 | RTTIMER_ASSERT_VALID_RET(pTimer);
|
---|
461 | AssertReturn(u64NanoInterval, VERR_INVALID_PARAMETER);
|
---|
462 |
|
---|
463 | if (pTimer->fSuspended)
|
---|
464 | {
|
---|
465 | pTimer->cNsInterval = u64NanoInterval;
|
---|
466 | return VINF_SUCCESS;
|
---|
467 | }
|
---|
468 |
|
---|
469 | return VERR_NOT_SUPPORTED;
|
---|
470 | }
|
---|
471 |
|
---|
472 |
|
---|
473 | RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
|
---|
474 | {
|
---|
475 | return nsec_per_tick;
|
---|
476 | }
|
---|
477 |
|
---|
478 |
|
---|
479 | RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
|
---|
480 | {
|
---|
481 | return VERR_NOT_SUPPORTED;
|
---|
482 | }
|
---|
483 |
|
---|
484 |
|
---|
485 | RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
|
---|
486 | {
|
---|
487 | return VERR_NOT_SUPPORTED;
|
---|
488 | }
|
---|
489 |
|
---|
490 |
|
---|
491 | RTDECL(bool) RTTimerCanDoHighResolution(void)
|
---|
492 | {
|
---|
493 | /** @todo return true; - when missing bits have been implemented and tested*/
|
---|
494 | return false;
|
---|
495 | }
|
---|
496 |
|
---|