1 | /* $Id: memobj-r0drv-solaris.c 40966 2012-04-17 16:43:28Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Ring-0 Memory Objects, Solaris.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2007 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*******************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *******************************************************************************/
|
---|
31 | #include "../the-solaris-kernel.h"
|
---|
32 | #include "internal/iprt.h"
|
---|
33 | #include <iprt/memobj.h>
|
---|
34 |
|
---|
35 | #include <iprt/asm.h>
|
---|
36 | #include <iprt/assert.h>
|
---|
37 | #include <iprt/err.h>
|
---|
38 | #include <iprt/log.h>
|
---|
39 | #include <iprt/mem.h>
|
---|
40 | #include <iprt/param.h>
|
---|
41 | #include <iprt/process.h>
|
---|
42 | #include "internal/memobj.h"
|
---|
43 | #include "memobj-r0drv-solaris.h"
|
---|
44 |
|
---|
45 | #define SOL_IS_KRNL_ADDR(vx) ((uintptr_t)(vx) >= kernelbase)
|
---|
46 | static vnode_t s_PageVnode;
|
---|
47 |
|
---|
48 | /*******************************************************************************
|
---|
49 | * Structures and Typedefs *
|
---|
50 | *******************************************************************************/
|
---|
51 | /**
|
---|
52 | * The Solaris version of the memory object structure.
|
---|
53 | */
|
---|
54 | typedef struct RTR0MEMOBJSOL
|
---|
55 | {
|
---|
56 | /** The core structure. */
|
---|
57 | RTR0MEMOBJINTERNAL Core;
|
---|
58 | /** Pointer to kernel memory cookie. */
|
---|
59 | ddi_umem_cookie_t Cookie;
|
---|
60 | /** Shadow locked pages. */
|
---|
61 | void *pvHandle;
|
---|
62 | /** Access during locking. */
|
---|
63 | int fAccess;
|
---|
64 | /** Set if large pages are involved in an RTR0MEMOBJTYPE_PHYS
|
---|
65 | * allocation. */
|
---|
66 | bool fLargePage;
|
---|
67 | } RTR0MEMOBJSOL, *PRTR0MEMOBJSOL;
|
---|
68 |
|
---|
69 |
|
---|
70 | /**
|
---|
71 | * Returns the physical address for a virtual address.
|
---|
72 | *
|
---|
73 | * @param pv The virtual address.
|
---|
74 | *
|
---|
75 | * @returns The physical address corresponding to @a pv.
|
---|
76 | */
|
---|
77 | static uint64_t rtR0MemObjSolVirtToPhys(void *pv)
|
---|
78 | {
|
---|
79 | struct hat *pHat = NULL;
|
---|
80 | pfn_t PageFrameNum = 0;
|
---|
81 | uintptr_t uVirtAddr = (uintptr_t)pv;
|
---|
82 |
|
---|
83 | if (SOL_IS_KRNL_ADDR(pv))
|
---|
84 | pHat = kas.a_hat;
|
---|
85 | else
|
---|
86 | {
|
---|
87 | proc_t *pProcess = (proc_t *)RTR0ProcHandleSelf();
|
---|
88 | AssertRelease(pProcess);
|
---|
89 | pHat = pProcess->p_as->a_hat;
|
---|
90 | }
|
---|
91 |
|
---|
92 | PageFrameNum = hat_getpfnum(pHat, (caddr_t)(uVirtAddr & PAGEMASK));
|
---|
93 | AssertReleaseMsg(PageFrameNum != PFN_INVALID, ("rtR0MemObjSolVirtToPhys failed. pv=%p\n", pv));
|
---|
94 | return (((uint64_t)PageFrameNum << PAGESHIFT) | (uVirtAddr & PAGEOFFSET));
|
---|
95 | }
|
---|
96 |
|
---|
97 |
|
---|
98 | /**
|
---|
99 | * Returns the physical address of a page from an array of pages.
|
---|
100 | *
|
---|
101 | * @param ppPages The array of pages.
|
---|
102 | * @param iPage Index of the page in the array to get the physical
|
---|
103 | * address.
|
---|
104 | *
|
---|
105 | * @returns Physical address of specific page within the list of pages specified
|
---|
106 | * in @a ppPages.
|
---|
107 | */
|
---|
108 | static inline uint64_t rtR0MemObjSolPageToPhys(page_t **ppPages, size_t iPage)
|
---|
109 | {
|
---|
110 | pfn_t PageFrameNum = page_pptonum(ppPages[iPage]);
|
---|
111 | AssertReleaseMsg(PageFrameNum != PFN_INVALID, ("rtR0MemObjSolPageToPhys failed. ppPages=%p iPage=%u\n", ppPages, iPage));
|
---|
112 | return (uint64_t)PageFrameNum << PAGESHIFT;
|
---|
113 | }
|
---|
114 |
|
---|
115 |
|
---|
116 | /**
|
---|
117 | * Retreives a free page from the kernel freelist.
|
---|
118 | *
|
---|
119 | * @param virtAddr The virtual address to which this page maybe mapped in
|
---|
120 | * the future.
|
---|
121 | * @param cbPage The size of the page.
|
---|
122 | *
|
---|
123 | * @returns Pointer to the allocated page, NULL on failure.
|
---|
124 | */
|
---|
125 | static page_t *rtR0MemObjSolPageFromFreelist(caddr_t virtAddr, size_t cbPage)
|
---|
126 | {
|
---|
127 | seg_t KernelSeg;
|
---|
128 | KernelSeg.s_as = &kas;
|
---|
129 | page_t *pPage = page_get_freelist(&s_PageVnode, 0 /* offset */, &KernelSeg, virtAddr,
|
---|
130 | cbPage, 0 /* flags */, NULL /* NUMA group */);
|
---|
131 | if ( !pPage
|
---|
132 | && g_frtSolUseKflt)
|
---|
133 | {
|
---|
134 | pPage = page_get_freelist(&s_PageVnode, 0 /* offset */, &KernelSeg, virtAddr,
|
---|
135 | cbPage, 0x200 /* PG_KFLT */, NULL /* NUMA group */);
|
---|
136 | }
|
---|
137 | return pPage;
|
---|
138 | }
|
---|
139 |
|
---|
140 |
|
---|
141 | /**
|
---|
142 | * Retrieves a free page from the kernel cachelist.
|
---|
143 | *
|
---|
144 | * @param virtAddr The virtual address to which this page maybe mapped in
|
---|
145 | * the future.
|
---|
146 | * @param cbPage The size of the page.
|
---|
147 | *
|
---|
148 | * @return Pointer to the allocated page, NULL on failure.
|
---|
149 | */
|
---|
150 | static page_t *rtR0MemObjSolPageFromCachelist(caddr_t virtAddr, size_t cbPage)
|
---|
151 | {
|
---|
152 | seg_t KernelSeg;
|
---|
153 | KernelSeg.s_as = &kas;
|
---|
154 | page_t *pPage = page_get_cachelist(&s_PageVnode, 0 /* offset */, &KernelSeg, virtAddr,
|
---|
155 | 0 /* flags */, NULL /* NUMA group */);
|
---|
156 | if ( !pPage
|
---|
157 | && g_frtSolUseKflt)
|
---|
158 | {
|
---|
159 | pPage = page_get_cachelist(&s_PageVnode, 0 /* offset */, &KernelSeg, virtAddr,
|
---|
160 | 0x200 /* PG_KFLT */, NULL /* NUMA group */);
|
---|
161 | }
|
---|
162 |
|
---|
163 | /*
|
---|
164 | * Remove association with the vnode for pages from the cachelist.
|
---|
165 | */
|
---|
166 | if (!PP_ISAGED(pPage))
|
---|
167 | page_hashout(pPage, NULL /* mutex */);
|
---|
168 |
|
---|
169 | return pPage;
|
---|
170 | }
|
---|
171 |
|
---|
172 |
|
---|
173 | /**
|
---|
174 | * Allocates physical non-contiguous memory.
|
---|
175 | *
|
---|
176 | * @param uPhysHi The upper physical address limit (inclusive).
|
---|
177 | * @param puPhys Where to store the physical address of first page. Optional,
|
---|
178 | * can be NULL.
|
---|
179 | * @param cb The size of the allocation.
|
---|
180 | *
|
---|
181 | * @return Array of allocated pages, NULL on failure.
|
---|
182 | */
|
---|
183 | static page_t **rtR0MemObjSolPagesAlloc(uint64_t uPhysHi, uint64_t *puPhys, size_t cb)
|
---|
184 | {
|
---|
185 | /** @todo We need to satisfy the upper physical address constraint */
|
---|
186 |
|
---|
187 | /*
|
---|
188 | * The page freelist and cachelist both hold pages that are not mapped into any address space.
|
---|
189 | * The cachelist is not really free pages but when memory is exhausted they'll be moved to the
|
---|
190 | * free lists, it's the total of the free+cache list that we see on the 'free' column in vmstat.
|
---|
191 | *
|
---|
192 | * Reserve available memory for pages and create the pages.
|
---|
193 | */
|
---|
194 | pgcnt_t cPages = (cb + PAGESIZE - 1) >> PAGESHIFT;
|
---|
195 | int rc = page_resv(cPages, KM_NOSLEEP);
|
---|
196 | if (rc)
|
---|
197 | {
|
---|
198 | rc = page_create_wait(cPages, 0 /* flags */);
|
---|
199 | if (rc)
|
---|
200 | {
|
---|
201 | size_t cbPages = cPages * sizeof(page_t *);
|
---|
202 | page_t **ppPages = kmem_zalloc(cbPages, KM_SLEEP);
|
---|
203 | if (RT_LIKELY(ppPages))
|
---|
204 | {
|
---|
205 | /*
|
---|
206 | * Get pages from kseg, the 'virtAddr' here is only for colouring but unfortunately
|
---|
207 | * we don't yet have the 'virtAddr' to which this memory may be mapped.
|
---|
208 | */
|
---|
209 | caddr_t virtAddr = NULL;
|
---|
210 | for (size_t i = 0; i < cPages; i++, virtAddr += PAGESIZE)
|
---|
211 | {
|
---|
212 | /*
|
---|
213 | * Get a page from the freelist or cachelist.
|
---|
214 | */
|
---|
215 | page_t *pPage = rtR0MemObjSolPageFromFreelist(virtAddr, PAGESIZE);
|
---|
216 | if (!pPage)
|
---|
217 | pPage = rtR0MemObjSolPageFromCachelist(virtAddr, PAGESIZE);
|
---|
218 | if (RT_UNLIKELY(!pPage))
|
---|
219 | {
|
---|
220 | /*
|
---|
221 | * No more pages found, release was grabbed so far.
|
---|
222 | */
|
---|
223 | page_create_putback(cPages - i);
|
---|
224 | while (--i >= 0)
|
---|
225 | page_free(ppPages[i], 0 /* don't need page, move to tail of pagelist */);
|
---|
226 | kmem_free(ppPages, cbPages);
|
---|
227 | page_unresv(cPages);
|
---|
228 | return NULL;
|
---|
229 | }
|
---|
230 |
|
---|
231 | PP_CLRFREE(pPage); /* Page is no longer free */
|
---|
232 | PP_CLRAGED(pPage); /* Page is not hashed in */
|
---|
233 | ppPages[i] = pPage;
|
---|
234 | }
|
---|
235 |
|
---|
236 | /*
|
---|
237 | * We now have the pages locked exclusively, before they are mapped in
|
---|
238 | * we must downgrade the lock.
|
---|
239 | */
|
---|
240 | if (puPhys)
|
---|
241 | *puPhys = (uint64_t)page_pptonum(ppPages[0]) << PAGESHIFT;
|
---|
242 | return ppPages;
|
---|
243 | }
|
---|
244 |
|
---|
245 | page_create_putback(cPages);
|
---|
246 | }
|
---|
247 |
|
---|
248 | page_unresv(cPages);
|
---|
249 | }
|
---|
250 |
|
---|
251 | return NULL;
|
---|
252 | }
|
---|
253 |
|
---|
254 |
|
---|
255 | /**
|
---|
256 | * Prepares pages allocated by rtR0MemObjSolPagesAlloc for mapping.
|
---|
257 | *
|
---|
258 | * @param ppPages Pointer to the page list.
|
---|
259 | * @param cb Size of the allocation.
|
---|
260 | * @param auPhys Where to store the physical address of the premapped
|
---|
261 | * pages.
|
---|
262 | * @param cPages The number of pages (entries) in @a auPhys.
|
---|
263 | *
|
---|
264 | * @returns IPRT status code.
|
---|
265 | */
|
---|
266 | static int rtR0MemObjSolPagesPreMap(page_t **ppPages, size_t cb, uint64_t auPhys[], size_t cPages)
|
---|
267 | {
|
---|
268 | AssertPtrReturn(ppPages, VERR_INVALID_PARAMETER);
|
---|
269 | AssertPtrReturn(auPhys, VERR_INVALID_PARAMETER);
|
---|
270 |
|
---|
271 | for (size_t iPage = 0; iPage < cPages; iPage++)
|
---|
272 | {
|
---|
273 | /*
|
---|
274 | * Prepare pages for mapping into kernel/user-space. Downgrade the
|
---|
275 | * exclusive page lock to a shared lock if necessary.
|
---|
276 | */
|
---|
277 | if (page_tryupgrade(ppPages[iPage]) == 1)
|
---|
278 | page_downgrade(ppPages[iPage]);
|
---|
279 |
|
---|
280 | auPhys[iPage] = rtR0MemObjSolPageToPhys(ppPages, iPage);
|
---|
281 | }
|
---|
282 |
|
---|
283 | return VINF_SUCCESS;
|
---|
284 | }
|
---|
285 |
|
---|
286 |
|
---|
287 | /**
|
---|
288 | * Frees pages allocated by rtR0MemObjSolPagesAlloc.
|
---|
289 | *
|
---|
290 | * @param ppPages Pointer to the page list.
|
---|
291 | * @param cbPages Size of the allocation.
|
---|
292 | */
|
---|
293 | static void rtR0MemObjSolPagesFree(page_t **ppPages, size_t cb)
|
---|
294 | {
|
---|
295 | size_t cPages = (cb + PAGESIZE - 1) >> PAGESHIFT;
|
---|
296 | size_t cbPages = cPages * sizeof(page_t *);
|
---|
297 | for (size_t iPage = 0; iPage < cPages; iPage++)
|
---|
298 | {
|
---|
299 | /*
|
---|
300 | * We need to exclusive lock the pages before freeing them.
|
---|
301 | */
|
---|
302 | int rc = page_tryupgrade(ppPages[iPage]);
|
---|
303 | if (!rc)
|
---|
304 | {
|
---|
305 | page_unlock(ppPages[iPage]);
|
---|
306 | while (!page_lock(ppPages[iPage], SE_EXCL, NULL /* mutex */, P_RECLAIM))
|
---|
307 | {
|
---|
308 | /* nothing */;
|
---|
309 | }
|
---|
310 | }
|
---|
311 | page_free(ppPages[iPage], 0 /* don't need page, move to tail of pagelist */);
|
---|
312 | }
|
---|
313 | kmem_free(ppPages, cbPages);
|
---|
314 | page_unresv(cPages);
|
---|
315 | }
|
---|
316 |
|
---|
317 |
|
---|
318 | /**
|
---|
319 | * Allocates a large page to cover the required allocation size.
|
---|
320 | *
|
---|
321 | * @param puPhys Where to store the physical address of the allocated
|
---|
322 | * page. Optional, can be NULL.
|
---|
323 | * @param cb Size of the allocation.
|
---|
324 | *
|
---|
325 | * @returns Pointer to the allocated large page, NULL on failure.
|
---|
326 | */
|
---|
327 | static page_t *rtR0MemObjSolLargePageAlloc(uint64_t *puPhys, size_t cb)
|
---|
328 | {
|
---|
329 | /*
|
---|
330 | * Reserve available memory and create the sub-pages.
|
---|
331 | */
|
---|
332 | const pgcnt_t cPages = cb >> PAGESHIFT;
|
---|
333 | int rc = page_resv(cPages, KM_NOSLEEP);
|
---|
334 | if (rc)
|
---|
335 | {
|
---|
336 | rc = page_create_wait(cPages, 0 /* flags */);
|
---|
337 | if (rc)
|
---|
338 | {
|
---|
339 | /*
|
---|
340 | * Get a page off the free list. We set virtAddr to 0 since we don't know where
|
---|
341 | * the memory is going to be mapped.
|
---|
342 | */
|
---|
343 | seg_t KernelSeg;
|
---|
344 | caddr_t virtAddr = NULL;
|
---|
345 | KernelSeg.s_as = &kas;
|
---|
346 | page_t *pRootPage = rtR0MemObjSolPageFromFreelist(virtAddr, cb);
|
---|
347 | if (pRootPage)
|
---|
348 | {
|
---|
349 | AssertMsg(!(page_pptonum(pRootPage) & (cPages - 1)), ("%p:%lx cPages=%lx\n", pRootPage, page_pptonum(pRootPage), cPages));
|
---|
350 |
|
---|
351 | /*
|
---|
352 | * Mark all the sub-pages as non-free and not-hashed-in.
|
---|
353 | * It is paramount that we destroy the list (before freeing it).
|
---|
354 | */
|
---|
355 | page_t *pPageList = pRootPage;
|
---|
356 | for (size_t iPage = 0; iPage < cPages; iPage++)
|
---|
357 | {
|
---|
358 | page_t *pPage = pPageList;
|
---|
359 | AssertPtr(pPage);
|
---|
360 | AssertMsg(page_pptonum(pPage) == iPage + page_pptonum(pRootPage),
|
---|
361 | ("%p:%lx %lx+%lx\n", pPage, page_pptonum(pPage), iPage, page_pptonum(pRootPage)));
|
---|
362 | page_sub(&pPageList, pPage);
|
---|
363 |
|
---|
364 | /*
|
---|
365 | * Ensure page is now be free and the page size-code must match that of the root page.
|
---|
366 | */
|
---|
367 | AssertMsg(PP_ISFREE(pPage), ("%p\n", pPage));
|
---|
368 | AssertMsg(pPage->p_szc == pRootPage->p_szc, ("%p - %d expected %d \n", pPage, pPage->p_szc, pRootPage->p_szc));
|
---|
369 |
|
---|
370 | PP_CLRFREE(pPage); /* Page no longer free */
|
---|
371 | PP_CLRAGED(pPage); /* Page no longer hashed-in */
|
---|
372 | }
|
---|
373 |
|
---|
374 | uint64_t uPhys = (uint64_t)page_pptonum(pRootPage) << PAGESHIFT;
|
---|
375 | AssertMsg(!(uPhys & (cb - 1)), ("%llx %zx\n", uPhys, cb));
|
---|
376 | if (puPhys)
|
---|
377 | *puPhys = uPhys;
|
---|
378 |
|
---|
379 | return pRootPage;
|
---|
380 | }
|
---|
381 |
|
---|
382 | page_create_putback(cPages);
|
---|
383 | }
|
---|
384 |
|
---|
385 | page_unresv(cPages);
|
---|
386 | }
|
---|
387 |
|
---|
388 | return NULL;
|
---|
389 | }
|
---|
390 |
|
---|
391 | /**
|
---|
392 | * Prepares the large page allocated by rtR0MemObjSolLargePageAlloc to be mapped.
|
---|
393 | *
|
---|
394 | * @param pRootPage Pointer to the root page.
|
---|
395 | * @param cb Size of the allocation.
|
---|
396 | *
|
---|
397 | * @returns IPRT status code.
|
---|
398 | */
|
---|
399 | static int rtR0MemObjSolLargePagePreMap(page_t *pRootPage, size_t cb)
|
---|
400 | {
|
---|
401 | const pgcnt_t cPages = cb >> PAGESHIFT;
|
---|
402 |
|
---|
403 | Assert(page_get_pagecnt(pRootPage->p_szc) == cPages);
|
---|
404 | AssertMsg(!(page_pptonum(pRootPage) & (cPages - 1)), ("%p:%lx npages=%lx\n", pRootPage, page_pptonum(pRootPage), cPages));
|
---|
405 |
|
---|
406 | /*
|
---|
407 | * We need to downgrade the sub-pages from exclusive to shared locking
|
---|
408 | * because otherweise we cannot <you go figure>.
|
---|
409 | */
|
---|
410 | for (pgcnt_t iPage = 0; iPage < cPages; iPage++)
|
---|
411 | {
|
---|
412 | page_t *pPage = page_nextn(pRootPage, iPage);
|
---|
413 | AssertMsg(page_pptonum(pPage) == iPage + page_pptonum(pRootPage),
|
---|
414 | ("%p:%lx %lx+%lx\n", pPage, page_pptonum(pPage), iPage, page_pptonum(pRootPage)));
|
---|
415 | AssertMsg(!PP_ISFREE(pPage), ("%p\n", pPage));
|
---|
416 |
|
---|
417 | if (page_tryupgrade(pPage) == 1)
|
---|
418 | page_downgrade(pPage);
|
---|
419 | AssertMsg(!PP_ISFREE(pPage), ("%p\n", pPage));
|
---|
420 | }
|
---|
421 |
|
---|
422 | return VINF_SUCCESS;
|
---|
423 | }
|
---|
424 |
|
---|
425 |
|
---|
426 | /**
|
---|
427 | * Frees the page allocated by rtR0MemObjSolLargePageAlloc.
|
---|
428 | *
|
---|
429 | * @param pRootPage Pointer to the root page.
|
---|
430 | * @param cb Allocated size.
|
---|
431 | */
|
---|
432 | static void rtR0MemObjSolLargePageFree(page_t *pRootPage, size_t cb)
|
---|
433 | {
|
---|
434 | pgcnt_t cPages = cb >> PAGESHIFT;
|
---|
435 |
|
---|
436 | Assert(page_get_pagecnt(pRootPage->p_szc) == cPages);
|
---|
437 | AssertMsg(!(page_pptonum(pRootPage) & (cPages - 1)), ("%p:%lx cPages=%lx\n", pRootPage, page_pptonum(pRootPage), cPages));
|
---|
438 |
|
---|
439 | /*
|
---|
440 | * We need to exclusively lock the sub-pages before freeing the large one.
|
---|
441 | */
|
---|
442 | for (pgcnt_t iPage = 0; iPage < cPages; iPage++)
|
---|
443 | {
|
---|
444 | page_t *pPage = page_nextn(pRootPage, iPage);
|
---|
445 | AssertMsg(page_pptonum(pPage) == iPage + page_pptonum(pRootPage),
|
---|
446 | ("%p:%lx %lx+%lx\n", pPage, page_pptonum(pPage), iPage, page_pptonum(pRootPage)));
|
---|
447 | AssertMsg(!PP_ISFREE(pPage), ("%p\n", pPage));
|
---|
448 |
|
---|
449 | int rc = page_tryupgrade(pPage);
|
---|
450 | if (!rc)
|
---|
451 | {
|
---|
452 | page_unlock(pPage);
|
---|
453 | while (!page_lock(pPage, SE_EXCL, NULL /* mutex */, P_RECLAIM))
|
---|
454 | {
|
---|
455 | /* nothing */;
|
---|
456 | }
|
---|
457 | }
|
---|
458 | }
|
---|
459 |
|
---|
460 | /*
|
---|
461 | * Free the large page and unreserve the memory.
|
---|
462 | */
|
---|
463 | page_free_pages(pRootPage);
|
---|
464 | page_unresv(cPages);
|
---|
465 |
|
---|
466 | }
|
---|
467 |
|
---|
468 |
|
---|
469 | /**
|
---|
470 | * Unmaps kernel/user-space mapped memory.
|
---|
471 | *
|
---|
472 | * @param pv Pointer to the mapped memory block.
|
---|
473 | * @param cb Size of the memory block.
|
---|
474 | */
|
---|
475 | static void rtR0MemObjSolUnmap(void *pv, size_t cb)
|
---|
476 | {
|
---|
477 | if (SOL_IS_KRNL_ADDR(pv))
|
---|
478 | {
|
---|
479 | hat_unload(kas.a_hat, pv, cb, HAT_UNLOAD | HAT_UNLOAD_UNLOCK);
|
---|
480 | vmem_free(heap_arena, pv, cb);
|
---|
481 | }
|
---|
482 | else
|
---|
483 | {
|
---|
484 | struct as *pAddrSpace = ((proc_t *)RTR0ProcHandleSelf())->p_as;
|
---|
485 | AssertPtr(pAddrSpace);
|
---|
486 | as_rangelock(pAddrSpace);
|
---|
487 | as_unmap(pAddrSpace, pv, cb);
|
---|
488 | as_rangeunlock(pAddrSpace);
|
---|
489 | }
|
---|
490 | }
|
---|
491 |
|
---|
492 | /**
|
---|
493 | * Lock down memory mappings for a virtual address.
|
---|
494 | *
|
---|
495 | * @param pv Pointer to the memory to lock down.
|
---|
496 | * @param cb Size of the memory block.
|
---|
497 | * @param fAccess Page access rights (S_READ, S_WRITE, S_EXEC)
|
---|
498 | *
|
---|
499 | * @returns IPRT status code.
|
---|
500 | */
|
---|
501 | static int rtR0MemObjSolLock(void *pv, size_t cb, int fPageAccess)
|
---|
502 | {
|
---|
503 | /*
|
---|
504 | * Kernel memory mappings on x86/amd64 are always locked, only handle user-space memory.
|
---|
505 | */
|
---|
506 | if (!SOL_IS_KRNL_ADDR(pv))
|
---|
507 | {
|
---|
508 | proc_t *pProc = (proc_t *)RTR0ProcHandleSelf();
|
---|
509 | AssertPtr(pProc);
|
---|
510 | faultcode_t rc = as_fault(pProc->p_as->a_hat, pProc->p_as, (caddr_t)pv, cb, F_SOFTLOCK, fPageAccess);
|
---|
511 | if (rc)
|
---|
512 | {
|
---|
513 | LogRel(("rtR0MemObjSolLock failed for pv=%pv cb=%lx fPageAccess=%d rc=%d\n", pv, cb, fPageAccess, rc));
|
---|
514 | return VERR_LOCK_FAILED;
|
---|
515 | }
|
---|
516 | }
|
---|
517 | return VINF_SUCCESS;
|
---|
518 | }
|
---|
519 |
|
---|
520 |
|
---|
521 | /**
|
---|
522 | * Unlock memory mappings for a virtual address.
|
---|
523 | *
|
---|
524 | * @param pv Pointer to the locked memory.
|
---|
525 | * @param cb Size of the memory block.
|
---|
526 | * @param fPageAccess Page access rights (S_READ, S_WRITE, S_EXEC).
|
---|
527 | */
|
---|
528 | static void rtR0MemObjSolUnlock(void *pv, size_t cb, int fPageAccess)
|
---|
529 | {
|
---|
530 | if (!SOL_IS_KRNL_ADDR(pv))
|
---|
531 | {
|
---|
532 | proc_t *pProcess = (proc_t *)RTR0ProcHandleSelf();
|
---|
533 | AssertPtr(pProcess);
|
---|
534 | as_fault(pProcess->p_as->a_hat, pProcess->p_as, (caddr_t)pv, cb, F_SOFTUNLOCK, fPageAccess);
|
---|
535 | }
|
---|
536 | }
|
---|
537 |
|
---|
538 |
|
---|
539 | /**
|
---|
540 | * Maps a list of physical pages into user address space.
|
---|
541 | *
|
---|
542 | * @param pVirtAddr Where to store the virtual address of the mapping.
|
---|
543 | * @param fPageAccess Page access rights (PROT_READ, PROT_WRITE,
|
---|
544 | * PROT_EXEC)
|
---|
545 | * @param paPhysAddrs Array of physical addresses to pages.
|
---|
546 | * @param cb Size of memory being mapped.
|
---|
547 | *
|
---|
548 | * @returns IPRT status code.
|
---|
549 | */
|
---|
550 | static int rtR0MemObjSolUserMap(caddr_t *pVirtAddr, unsigned fPageAccess, uint64_t *paPhysAddrs, size_t cb)
|
---|
551 | {
|
---|
552 | struct as *pAddrSpace = ((proc_t *)RTR0ProcHandleSelf())->p_as;
|
---|
553 | int rc = VERR_INTERNAL_ERROR;
|
---|
554 | SEGVBOX_CRARGS Args;
|
---|
555 |
|
---|
556 | Args.paPhysAddrs = paPhysAddrs;
|
---|
557 | Args.fPageAccess = fPageAccess;
|
---|
558 |
|
---|
559 | as_rangelock(pAddrSpace);
|
---|
560 | map_addr(pVirtAddr, cb, 0 /* offset */, 0 /* vacalign */, MAP_SHARED);
|
---|
561 | if (*pVirtAddr != NULL)
|
---|
562 | rc = as_map(pAddrSpace, *pVirtAddr, cb, rtR0SegVBoxSolCreate, &Args);
|
---|
563 | else
|
---|
564 | rc = ENOMEM;
|
---|
565 | as_rangeunlock(pAddrSpace);
|
---|
566 |
|
---|
567 | return RTErrConvertFromErrno(rc);
|
---|
568 | }
|
---|
569 |
|
---|
570 |
|
---|
571 | DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
|
---|
572 | {
|
---|
573 | PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)pMem;
|
---|
574 |
|
---|
575 | switch (pMemSolaris->Core.enmType)
|
---|
576 | {
|
---|
577 | case RTR0MEMOBJTYPE_LOW:
|
---|
578 | rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
|
---|
579 | break;
|
---|
580 |
|
---|
581 | case RTR0MEMOBJTYPE_PHYS:
|
---|
582 | if (pMemSolaris->Core.u.Phys.fAllocated)
|
---|
583 | {
|
---|
584 | if (pMemSolaris->fLargePage)
|
---|
585 | rtR0MemObjSolLargePageFree(pMemSolaris->pvHandle, pMemSolaris->Core.cb);
|
---|
586 | else
|
---|
587 | rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
|
---|
588 | }
|
---|
589 | break;
|
---|
590 |
|
---|
591 | case RTR0MEMOBJTYPE_PHYS_NC:
|
---|
592 | rtR0MemObjSolPagesFree(pMemSolaris->pvHandle, pMemSolaris->Core.cb);
|
---|
593 | break;
|
---|
594 |
|
---|
595 | case RTR0MEMOBJTYPE_PAGE:
|
---|
596 | ddi_umem_free(pMemSolaris->Cookie);
|
---|
597 | break;
|
---|
598 |
|
---|
599 | case RTR0MEMOBJTYPE_LOCK:
|
---|
600 | rtR0MemObjSolUnlock(pMemSolaris->Core.pv, pMemSolaris->Core.cb, pMemSolaris->fAccess);
|
---|
601 | break;
|
---|
602 |
|
---|
603 | case RTR0MEMOBJTYPE_MAPPING:
|
---|
604 | rtR0MemObjSolUnmap(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
|
---|
605 | break;
|
---|
606 |
|
---|
607 | case RTR0MEMOBJTYPE_RES_VIRT:
|
---|
608 | {
|
---|
609 | if (pMemSolaris->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
|
---|
610 | vmem_xfree(heap_arena, pMemSolaris->Core.pv, pMemSolaris->Core.cb);
|
---|
611 | else
|
---|
612 | AssertFailed();
|
---|
613 | break;
|
---|
614 | }
|
---|
615 |
|
---|
616 | case RTR0MEMOBJTYPE_CONT: /* we don't use this type here. */
|
---|
617 | default:
|
---|
618 | AssertMsgFailed(("enmType=%d\n", pMemSolaris->Core.enmType));
|
---|
619 | return VERR_INTERNAL_ERROR;
|
---|
620 | }
|
---|
621 |
|
---|
622 | return VINF_SUCCESS;
|
---|
623 | }
|
---|
624 |
|
---|
625 |
|
---|
626 | DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
627 | {
|
---|
628 | /* Create the object. */
|
---|
629 | PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PAGE, NULL, cb);
|
---|
630 | if (RT_UNLIKELY(!pMemSolaris))
|
---|
631 | return VERR_NO_MEMORY;
|
---|
632 |
|
---|
633 | void *pvMem = ddi_umem_alloc(cb, DDI_UMEM_SLEEP, &pMemSolaris->Cookie);
|
---|
634 | if (RT_UNLIKELY(!pvMem))
|
---|
635 | {
|
---|
636 | rtR0MemObjDelete(&pMemSolaris->Core);
|
---|
637 | return VERR_NO_PAGE_MEMORY;
|
---|
638 | }
|
---|
639 |
|
---|
640 | pMemSolaris->Core.pv = pvMem;
|
---|
641 | pMemSolaris->pvHandle = NULL;
|
---|
642 | *ppMem = &pMemSolaris->Core;
|
---|
643 | return VINF_SUCCESS;
|
---|
644 | }
|
---|
645 |
|
---|
646 |
|
---|
647 | DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
648 | {
|
---|
649 | NOREF(fExecutable);
|
---|
650 |
|
---|
651 | /* Create the object */
|
---|
652 | PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOW, NULL, cb);
|
---|
653 | if (!pMemSolaris)
|
---|
654 | return VERR_NO_MEMORY;
|
---|
655 |
|
---|
656 | /* Allocate physically low page-aligned memory. */
|
---|
657 | uint64_t uPhysHi = _4G - 1;
|
---|
658 | void *pvMem = rtR0SolMemAlloc(uPhysHi, NULL /* puPhys */, cb, PAGESIZE, false /* fContig */);
|
---|
659 | if (RT_UNLIKELY(!pvMem))
|
---|
660 | {
|
---|
661 | rtR0MemObjDelete(&pMemSolaris->Core);
|
---|
662 | return VERR_NO_LOW_MEMORY;
|
---|
663 | }
|
---|
664 | pMemSolaris->Core.pv = pvMem;
|
---|
665 | pMemSolaris->pvHandle = NULL;
|
---|
666 | *ppMem = &pMemSolaris->Core;
|
---|
667 | return VINF_SUCCESS;
|
---|
668 | }
|
---|
669 |
|
---|
670 |
|
---|
671 | DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
|
---|
672 | {
|
---|
673 | NOREF(fExecutable);
|
---|
674 | return rtR0MemObjNativeAllocPhys(ppMem, cb, _4G - 1, PAGE_SIZE /* alignment */);
|
---|
675 | }
|
---|
676 |
|
---|
677 |
|
---|
678 | DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
|
---|
679 | {
|
---|
680 | #if HC_ARCH_BITS == 64
|
---|
681 | PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
|
---|
682 | if (RT_UNLIKELY(!pMemSolaris))
|
---|
683 | return VERR_NO_MEMORY;
|
---|
684 |
|
---|
685 | uint64_t PhysAddr = UINT64_MAX;
|
---|
686 | void *pvPages = rtR0MemObjSolPagesAlloc((uint64_t)PhysHighest, &PhysAddr, cb);
|
---|
687 | if (!pvPages)
|
---|
688 | {
|
---|
689 | LogRel(("rtR0MemObjNativeAllocPhysNC: rtR0MemObjSolPagesAlloc failed for cb=%u.\n", cb));
|
---|
690 | rtR0MemObjDelete(&pMemSolaris->Core);
|
---|
691 | return VERR_NO_MEMORY;
|
---|
692 | }
|
---|
693 | pMemSolaris->Core.pv = NULL;
|
---|
694 | pMemSolaris->pvHandle = pvPages;
|
---|
695 |
|
---|
696 | Assert(PhysAddr != UINT64_MAX);
|
---|
697 | Assert(!(PhysAddr & PAGE_OFFSET_MASK));
|
---|
698 | *ppMem = &pMemSolaris->Core;
|
---|
699 | return VINF_SUCCESS;
|
---|
700 |
|
---|
701 | #else /* 32 bit: */
|
---|
702 | return VERR_NOT_SUPPORTED; /* see the RTR0MemObjAllocPhysNC specs */
|
---|
703 | #endif
|
---|
704 | }
|
---|
705 |
|
---|
706 |
|
---|
707 | DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
|
---|
708 | {
|
---|
709 | AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_SUPPORTED);
|
---|
710 |
|
---|
711 | PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
|
---|
712 | if (RT_UNLIKELY(!pMemSolaris))
|
---|
713 | return VERR_NO_MEMORY;
|
---|
714 |
|
---|
715 | /*
|
---|
716 | * Allocating one large page gets special treatment.
|
---|
717 | */
|
---|
718 | static uint32_t s_cbLargePage = UINT32_MAX;
|
---|
719 | if (s_cbLargePage == UINT32_MAX)
|
---|
720 | {
|
---|
721 | #if 0 /* currently not entirely stable, so disabled. */
|
---|
722 | if (page_num_pagesizes() > 1)
|
---|
723 | ASMAtomicWriteU32(&s_cbLargePage, page_get_pagesize(1));
|
---|
724 | else
|
---|
725 | #endif
|
---|
726 | ASMAtomicWriteU32(&s_cbLargePage, 0);
|
---|
727 | }
|
---|
728 | uint64_t PhysAddr;
|
---|
729 | if ( cb == s_cbLargePage
|
---|
730 | && cb == uAlignment
|
---|
731 | && PhysHighest == NIL_RTHCPHYS)
|
---|
732 | {
|
---|
733 | /*
|
---|
734 | * Allocate one large page.
|
---|
735 | */
|
---|
736 | cmn_err(CE_NOTE, "calling rtR0MemObjSolLargePageAlloc\n");
|
---|
737 | void *pvPages = rtR0MemObjSolLargePageAlloc(&PhysAddr, cb);
|
---|
738 | if (RT_LIKELY(pvPages))
|
---|
739 | {
|
---|
740 | AssertMsg(!(PhysAddr & (cb - 1)), ("%RHp\n", PhysAddr));
|
---|
741 | pMemSolaris->Core.pv = NULL;
|
---|
742 | pMemSolaris->Core.u.Phys.PhysBase = PhysAddr;
|
---|
743 | pMemSolaris->Core.u.Phys.fAllocated = true;
|
---|
744 | pMemSolaris->pvHandle = pvPages;
|
---|
745 | pMemSolaris->fLargePage = true;
|
---|
746 |
|
---|
747 | *ppMem = &pMemSolaris->Core;
|
---|
748 | return VINF_SUCCESS;
|
---|
749 | }
|
---|
750 | }
|
---|
751 | else
|
---|
752 | {
|
---|
753 | /*
|
---|
754 | * Allocate physically contiguous memory aligned as specified.
|
---|
755 | */
|
---|
756 | cmn_err(CE_NOTE, "rtR0MemObjNativeAllocPhys->rtR0SolMemAlloc\n");
|
---|
757 | AssertCompile(NIL_RTHCPHYS == UINT64_MAX);
|
---|
758 | PhysAddr = PhysHighest;
|
---|
759 | void *pvMem = rtR0SolMemAlloc(PhysHighest, &PhysAddr, cb, uAlignment, true /* fContig */);
|
---|
760 | if (RT_LIKELY(pvMem))
|
---|
761 | {
|
---|
762 | Assert(!(PhysAddr & PAGE_OFFSET_MASK));
|
---|
763 | Assert(PhysAddr < PhysHighest);
|
---|
764 | Assert(PhysAddr + cb <= PhysHighest);
|
---|
765 |
|
---|
766 | pMemSolaris->Core.pv = pvMem;
|
---|
767 | pMemSolaris->Core.u.Phys.PhysBase = PhysAddr;
|
---|
768 | pMemSolaris->Core.u.Phys.fAllocated = true;
|
---|
769 | pMemSolaris->pvHandle = NULL;
|
---|
770 | pMemSolaris->fLargePage = false;
|
---|
771 |
|
---|
772 | *ppMem = &pMemSolaris->Core;
|
---|
773 | return VINF_SUCCESS;
|
---|
774 | }
|
---|
775 | }
|
---|
776 | rtR0MemObjDelete(&pMemSolaris->Core);
|
---|
777 | return VERR_NO_CONT_MEMORY;
|
---|
778 | }
|
---|
779 |
|
---|
780 |
|
---|
781 | DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
|
---|
782 | {
|
---|
783 | AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
|
---|
784 |
|
---|
785 | /* Create the object. */
|
---|
786 | PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
|
---|
787 | if (!pMemSolaris)
|
---|
788 | return VERR_NO_MEMORY;
|
---|
789 |
|
---|
790 | /* There is no allocation here, it needs to be mapped somewhere first. */
|
---|
791 | pMemSolaris->Core.u.Phys.fAllocated = false;
|
---|
792 | pMemSolaris->Core.u.Phys.PhysBase = Phys;
|
---|
793 | pMemSolaris->Core.u.Phys.uCachePolicy = uCachePolicy;
|
---|
794 | *ppMem = &pMemSolaris->Core;
|
---|
795 | return VINF_SUCCESS;
|
---|
796 | }
|
---|
797 |
|
---|
798 |
|
---|
799 | DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess,
|
---|
800 | RTR0PROCESS R0Process)
|
---|
801 | {
|
---|
802 | AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_INVALID_PARAMETER);
|
---|
803 | NOREF(fAccess);
|
---|
804 |
|
---|
805 | /* Create the locking object */
|
---|
806 | PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
|
---|
807 | if (!pMemSolaris)
|
---|
808 | return VERR_NO_MEMORY;
|
---|
809 |
|
---|
810 | /* Lock down user pages. */
|
---|
811 | int fPageAccess = S_READ;
|
---|
812 | if (fAccess & RTMEM_PROT_WRITE)
|
---|
813 | fPageAccess = S_WRITE;
|
---|
814 | if (fAccess & RTMEM_PROT_EXEC)
|
---|
815 | fPageAccess = S_EXEC;
|
---|
816 | int rc = rtR0MemObjSolLock((void *)R3Ptr, cb, fPageAccess);
|
---|
817 | if (RT_FAILURE(rc))
|
---|
818 | {
|
---|
819 | LogRel(("rtR0MemObjNativeLockUser: rtR0MemObjSolLock failed rc=%d\n", rc));
|
---|
820 | rtR0MemObjDelete(&pMemSolaris->Core);
|
---|
821 | return rc;
|
---|
822 | }
|
---|
823 |
|
---|
824 | /* Fill in the object attributes and return successfully. */
|
---|
825 | pMemSolaris->Core.u.Lock.R0Process = R0Process;
|
---|
826 | pMemSolaris->pvHandle = NULL;
|
---|
827 | pMemSolaris->fAccess = fPageAccess;
|
---|
828 | *ppMem = &pMemSolaris->Core;
|
---|
829 | return VINF_SUCCESS;
|
---|
830 | }
|
---|
831 |
|
---|
832 |
|
---|
833 | DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
|
---|
834 | {
|
---|
835 | NOREF(fAccess);
|
---|
836 |
|
---|
837 | PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, pv, cb);
|
---|
838 | if (!pMemSolaris)
|
---|
839 | return VERR_NO_MEMORY;
|
---|
840 |
|
---|
841 | /* Lock down kernel pages. */
|
---|
842 | int fPageAccess = S_READ;
|
---|
843 | if (fAccess & RTMEM_PROT_WRITE)
|
---|
844 | fPageAccess = S_WRITE;
|
---|
845 | if (fAccess & RTMEM_PROT_EXEC)
|
---|
846 | fPageAccess = S_EXEC;
|
---|
847 | int rc = rtR0MemObjSolLock(pv, cb, fPageAccess);
|
---|
848 | if (RT_FAILURE(rc))
|
---|
849 | {
|
---|
850 | LogRel(("rtR0MemObjNativeLockKernel: rtR0MemObjSolLock failed rc=%d\n", rc));
|
---|
851 | rtR0MemObjDelete(&pMemSolaris->Core);
|
---|
852 | return rc;
|
---|
853 | }
|
---|
854 |
|
---|
855 | /* Fill in the object attributes and return successfully. */
|
---|
856 | pMemSolaris->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
|
---|
857 | pMemSolaris->pvHandle = NULL;
|
---|
858 | pMemSolaris->fAccess = fPageAccess;
|
---|
859 | *ppMem = &pMemSolaris->Core;
|
---|
860 | return VINF_SUCCESS;
|
---|
861 | }
|
---|
862 |
|
---|
863 |
|
---|
864 | DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
|
---|
865 | {
|
---|
866 | PRTR0MEMOBJSOL pMemSolaris;
|
---|
867 |
|
---|
868 | /*
|
---|
869 | * Use xalloc.
|
---|
870 | */
|
---|
871 | void *pv = vmem_xalloc(heap_arena, cb, uAlignment, 0 /* phase */, 0 /* nocross */,
|
---|
872 | NULL /* minaddr */, NULL /* maxaddr */, VM_SLEEP);
|
---|
873 | if (RT_UNLIKELY(!pv))
|
---|
874 | return VERR_NO_MEMORY;
|
---|
875 |
|
---|
876 | /* Create the object. */
|
---|
877 | pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
|
---|
878 | if (!pMemSolaris)
|
---|
879 | {
|
---|
880 | LogRel(("rtR0MemObjNativeReserveKernel failed to alloc memory object.\n"));
|
---|
881 | vmem_xfree(heap_arena, pv, cb);
|
---|
882 | return VERR_NO_MEMORY;
|
---|
883 | }
|
---|
884 |
|
---|
885 | pMemSolaris->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
|
---|
886 | *ppMem = &pMemSolaris->Core;
|
---|
887 | return VINF_SUCCESS;
|
---|
888 | }
|
---|
889 |
|
---|
890 |
|
---|
891 | DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
|
---|
892 | {
|
---|
893 | return VERR_NOT_SUPPORTED;
|
---|
894 | }
|
---|
895 |
|
---|
896 |
|
---|
897 | DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
|
---|
898 | unsigned fProt, size_t offSub, size_t cbSub)
|
---|
899 | {
|
---|
900 | /** @todo rtR0MemObjNativeMapKernel / Solaris - Should be fairly simple alloc kernel memory and memload it. */
|
---|
901 | return VERR_NOT_SUPPORTED;
|
---|
902 | }
|
---|
903 |
|
---|
904 |
|
---|
905 | DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, PRTR0MEMOBJINTERNAL pMemToMap, RTR3PTR R3PtrFixed,
|
---|
906 | size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
|
---|
907 | {
|
---|
908 | /*
|
---|
909 | * Fend off things we cannot do.
|
---|
910 | */
|
---|
911 | AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
|
---|
912 | AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
|
---|
913 | if (uAlignment != PAGE_SIZE)
|
---|
914 | return VERR_NOT_SUPPORTED;
|
---|
915 |
|
---|
916 | /*
|
---|
917 | * Get parameters from the source object.
|
---|
918 | */
|
---|
919 | PRTR0MEMOBJSOL pMemToMapSolaris = (PRTR0MEMOBJSOL)pMemToMap;
|
---|
920 | void *pv = pMemToMapSolaris->Core.pv;
|
---|
921 | size_t cb = pMemToMapSolaris->Core.cb;
|
---|
922 | size_t cPages = cb >> PAGE_SHIFT;
|
---|
923 |
|
---|
924 | /*
|
---|
925 | * Create the mapping object
|
---|
926 | */
|
---|
927 | PRTR0MEMOBJSOL pMemSolaris;
|
---|
928 | pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, cb);
|
---|
929 | if (RT_UNLIKELY(!pMemSolaris))
|
---|
930 | return VERR_NO_MEMORY;
|
---|
931 |
|
---|
932 | int rc = VINF_SUCCESS;
|
---|
933 | uint64_t *paPhysAddrs = kmem_zalloc(sizeof(uint64_t) * cPages, KM_SLEEP);
|
---|
934 | if (RT_LIKELY(paPhysAddrs))
|
---|
935 | {
|
---|
936 | /*
|
---|
937 | * Prepare the pages according to type.
|
---|
938 | */
|
---|
939 | if (pMemToMapSolaris->Core.enmType == RTR0MEMOBJTYPE_PHYS_NC)
|
---|
940 | rc = rtR0MemObjSolPagesPreMap(pMemToMapSolaris->pvHandle, cb, paPhysAddrs, cPages);
|
---|
941 | else if ( pMemToMapSolaris->Core.enmType == RTR0MEMOBJTYPE_PHYS
|
---|
942 | && pMemToMapSolaris->fLargePage)
|
---|
943 | {
|
---|
944 | RTHCPHYS Phys = pMemToMapSolaris->Core.u.Phys.PhysBase;
|
---|
945 | for (pgcnt_t iPage = 0; iPage < cPages; iPage++, Phys += PAGE_SIZE)
|
---|
946 | paPhysAddrs[iPage] = Phys;
|
---|
947 | rc = rtR0MemObjSolLargePagePreMap(pMemToMapSolaris->pvHandle, cb);
|
---|
948 | }
|
---|
949 | else
|
---|
950 | {
|
---|
951 | /*
|
---|
952 | * Have kernel mapping, just translate virtual to physical.
|
---|
953 | */
|
---|
954 | AssertPtr(pv);
|
---|
955 | rc = VINF_SUCCESS;
|
---|
956 | for (size_t iPage = 0; iPage < cPages; iPage++)
|
---|
957 | {
|
---|
958 | paPhysAddrs[iPage] = rtR0MemObjSolVirtToPhys(pv);
|
---|
959 | if (RT_UNLIKELY(paPhysAddrs[iPage] == -(uint64_t)1))
|
---|
960 | {
|
---|
961 | LogRel(("rtR0MemObjNativeMapUser: no page to map.\n"));
|
---|
962 | rc = VERR_MAP_FAILED;
|
---|
963 | break;
|
---|
964 | }
|
---|
965 | pv = (void *)((uintptr_t)pv + PAGE_SIZE);
|
---|
966 | }
|
---|
967 | }
|
---|
968 | if (RT_SUCCESS(rc))
|
---|
969 | {
|
---|
970 | unsigned fPageAccess = PROT_READ;
|
---|
971 | if (fProt & RTMEM_PROT_WRITE)
|
---|
972 | fPageAccess |= PROT_WRITE;
|
---|
973 | if (fProt & RTMEM_PROT_EXEC)
|
---|
974 | fPageAccess |= PROT_EXEC;
|
---|
975 |
|
---|
976 | /*
|
---|
977 | * Perform the actual mapping.
|
---|
978 | */
|
---|
979 | caddr_t UserAddr = NULL;
|
---|
980 | rc = rtR0MemObjSolUserMap(&UserAddr, fPageAccess, paPhysAddrs, cb);
|
---|
981 | if (RT_SUCCESS(rc))
|
---|
982 | {
|
---|
983 | pMemSolaris->Core.u.Mapping.R0Process = R0Process;
|
---|
984 | pMemSolaris->Core.pv = UserAddr;
|
---|
985 |
|
---|
986 | *ppMem = &pMemSolaris->Core;
|
---|
987 | kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
|
---|
988 | return VINF_SUCCESS;
|
---|
989 | }
|
---|
990 |
|
---|
991 | LogRel(("rtR0MemObjNativeMapUser: rtR0MemObjSolUserMap failed rc=%d.\n", rc));
|
---|
992 | }
|
---|
993 |
|
---|
994 | rc = VERR_MAP_FAILED;
|
---|
995 | kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
|
---|
996 | }
|
---|
997 | else
|
---|
998 | rc = VERR_NO_MEMORY;
|
---|
999 | rtR0MemObjDelete(&pMemSolaris->Core);
|
---|
1000 | return rc;
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 |
|
---|
1004 | DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
|
---|
1005 | {
|
---|
1006 | NOREF(pMem);
|
---|
1007 | NOREF(offSub);
|
---|
1008 | NOREF(cbSub);
|
---|
1009 | NOREF(fProt);
|
---|
1010 | return VERR_NOT_SUPPORTED;
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 |
|
---|
1014 | DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
|
---|
1015 | {
|
---|
1016 | PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)pMem;
|
---|
1017 |
|
---|
1018 | switch (pMemSolaris->Core.enmType)
|
---|
1019 | {
|
---|
1020 | case RTR0MEMOBJTYPE_PHYS_NC:
|
---|
1021 | if (pMemSolaris->Core.u.Phys.fAllocated)
|
---|
1022 | {
|
---|
1023 | uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
|
---|
1024 | return rtR0MemObjSolVirtToPhys(pb);
|
---|
1025 | }
|
---|
1026 | return rtR0MemObjSolPageToPhys(pMemSolaris->pvHandle, iPage);
|
---|
1027 |
|
---|
1028 | case RTR0MEMOBJTYPE_PAGE:
|
---|
1029 | case RTR0MEMOBJTYPE_LOW:
|
---|
1030 | case RTR0MEMOBJTYPE_LOCK:
|
---|
1031 | {
|
---|
1032 | uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
|
---|
1033 | return rtR0MemObjSolVirtToPhys(pb);
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | /*
|
---|
1037 | * Although mapping can be handled by rtR0MemObjSolVirtToPhys(offset) like the above case,
|
---|
1038 | * request it from the parent so that we have a clear distinction between CONT/PHYS_NC.
|
---|
1039 | */
|
---|
1040 | case RTR0MEMOBJTYPE_MAPPING:
|
---|
1041 | return rtR0MemObjNativeGetPagePhysAddr(pMemSolaris->Core.uRel.Child.pParent, iPage);
|
---|
1042 |
|
---|
1043 | case RTR0MEMOBJTYPE_CONT:
|
---|
1044 | case RTR0MEMOBJTYPE_PHYS:
|
---|
1045 | AssertFailed(); /* handled by the caller */
|
---|
1046 | case RTR0MEMOBJTYPE_RES_VIRT:
|
---|
1047 | default:
|
---|
1048 | return NIL_RTHCPHYS;
|
---|
1049 | }
|
---|
1050 | }
|
---|
1051 |
|
---|