VirtualBox

source: vbox/trunk/src/VBox/Runtime/r3/linux/fileaio-linux.cpp@ 78359

Last change on this file since 78359 was 76553, checked in by vboxsync, 6 years ago

scm --update-copyright-year

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 26.6 KB
Line 
1/* $Id: fileaio-linux.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */
2/** @file
3 * IPRT - File async I/O, native implementation for the Linux host platform.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27/** @page pg_rtfileaio_linux RTFile Async I/O - Linux Implementation Notes
28 * @internal
29 *
30 * Linux implements the kernel async I/O API through the io_* syscalls. They are
31 * not exposed in the glibc (the aio_* API uses userspace threads and blocking
32 * I/O operations to simulate async behavior). There is an external library
33 * called libaio which implements these syscalls but because we don't want to
34 * have another dependency and this library is not installed by default and the
35 * interface is really simple we use the kernel interface directly using wrapper
36 * functions.
37 *
38 * The interface has some limitations. The first one is that the file must be
39 * opened with O_DIRECT. This disables caching done by the kernel which can be
40 * compensated if the user of this API implements caching itself. The next
41 * limitation is that data buffers must be aligned at a 512 byte boundary or the
42 * request will fail.
43 */
44/** @todo r=bird: What's this about "must be opened with O_DIRECT"? An
45 * explanation would be nice, esp. seeing what Linus is quoted saying
46 * about it in the open man page... */
47
48
49/*********************************************************************************************************************************
50* Header Files *
51*********************************************************************************************************************************/
52#define LOG_GROUP RTLOGGROUP_FILE
53#include <iprt/asm.h>
54#include <iprt/mem.h>
55#include <iprt/assert.h>
56#include <iprt/string.h>
57#include <iprt/err.h>
58#include <iprt/log.h>
59#include <iprt/thread.h>
60#include "internal/fileaio.h"
61
62#include <unistd.h>
63#include <sys/syscall.h>
64#include <errno.h>
65
66#include <iprt/file.h>
67
68
69/*********************************************************************************************************************************
70* Structures and Typedefs *
71*********************************************************************************************************************************/
72/** The async I/O context handle */
73typedef unsigned long LNXKAIOCONTEXT;
74
75/**
76 * Supported commands for the iocbs
77 */
78enum
79{
80 LNXKAIO_IOCB_CMD_READ = 0,
81 LNXKAIO_IOCB_CMD_WRITE = 1,
82 LNXKAIO_IOCB_CMD_FSYNC = 2,
83 LNXKAIO_IOCB_CMD_FDSYNC = 3
84};
85
86/**
87 * The iocb structure of a request which is passed to the kernel.
88 *
89 * We redefined this here because the version in the header lacks padding
90 * for 32bit.
91 */
92typedef struct LNXKAIOIOCB
93{
94 /** Opaque pointer to data which is returned on an I/O event. */
95 void *pvUser;
96#ifdef RT_ARCH_X86
97 uint32_t u32Padding0;
98#endif
99 /** Contains the request number and is set by the kernel. */
100 uint32_t u32Key;
101 /** Reserved. */
102 uint32_t u32Reserved0;
103 /** The I/O opcode. */
104 uint16_t u16IoOpCode;
105 /** Request priority. */
106 int16_t i16Priority;
107 /** The file descriptor. */
108 uint32_t uFileDesc;
109 /** The userspace pointer to the buffer containing/receiving the data. */
110 void *pvBuf;
111#ifdef RT_ARCH_X86
112 uint32_t u32Padding1;
113#endif
114 /** How many bytes to transfer. */
115#ifdef RT_ARCH_X86
116 uint32_t cbTransfer;
117 uint32_t u32Padding2;
118#elif defined(RT_ARCH_AMD64)
119 uint64_t cbTransfer;
120#else
121# error "Unknown architecture"
122#endif
123 /** At which offset to start the transfer. */
124 int64_t off;
125 /** Reserved. */
126 uint64_t u64Reserved1;
127 /** Flags */
128 uint32_t fFlags;
129 /** Readyness signal file descriptor. */
130 uint32_t u32ResFd;
131} LNXKAIOIOCB, *PLNXKAIOIOCB;
132
133/**
134 * I/O event structure to notify about completed requests.
135 * Redefined here too because of the padding.
136 */
137typedef struct LNXKAIOIOEVENT
138{
139 /** The pvUser field from the iocb. */
140 void *pvUser;
141#ifdef RT_ARCH_X86
142 uint32_t u32Padding0;
143#endif
144 /** The LNXKAIOIOCB object this event is for. */
145 PLNXKAIOIOCB *pIoCB;
146#ifdef RT_ARCH_X86
147 uint32_t u32Padding1;
148#endif
149 /** The result code of the operation .*/
150#ifdef RT_ARCH_X86
151 int32_t rc;
152 uint32_t u32Padding2;
153#elif defined(RT_ARCH_AMD64)
154 int64_t rc;
155#else
156# error "Unknown architecture"
157#endif
158 /** Secondary result code. */
159#ifdef RT_ARCH_X86
160 int32_t rc2;
161 uint32_t u32Padding3;
162#elif defined(RT_ARCH_AMD64)
163 int64_t rc2;
164#else
165# error "Unknown architecture"
166#endif
167} LNXKAIOIOEVENT, *PLNXKAIOIOEVENT;
168
169
170/**
171 * Async I/O completion context state.
172 */
173typedef struct RTFILEAIOCTXINTERNAL
174{
175 /** Handle to the async I/O context. */
176 LNXKAIOCONTEXT AioContext;
177 /** Maximum number of requests this context can handle. */
178 int cRequestsMax;
179 /** Current number of requests active on this context. */
180 volatile int32_t cRequests;
181 /** The ID of the thread which is currently waiting for requests. */
182 volatile RTTHREAD hThreadWait;
183 /** Flag whether the thread was woken up. */
184 volatile bool fWokenUp;
185 /** Flag whether the thread is currently waiting in the syscall. */
186 volatile bool fWaiting;
187 /** Flags given during creation. */
188 uint32_t fFlags;
189 /** Magic value (RTFILEAIOCTX_MAGIC). */
190 uint32_t u32Magic;
191} RTFILEAIOCTXINTERNAL;
192/** Pointer to an internal context structure. */
193typedef RTFILEAIOCTXINTERNAL *PRTFILEAIOCTXINTERNAL;
194
195/**
196 * Async I/O request state.
197 */
198typedef struct RTFILEAIOREQINTERNAL
199{
200 /** The aio control block. This must be the FIRST elment in
201 * the structure! (see notes below) */
202 LNXKAIOIOCB AioCB;
203 /** Current state the request is in. */
204 RTFILEAIOREQSTATE enmState;
205 /** The I/O context this request is associated with. */
206 LNXKAIOCONTEXT AioContext;
207 /** Return code the request completed with. */
208 int Rc;
209 /** Number of bytes actually transferred. */
210 size_t cbTransfered;
211 /** Completion context we are assigned to. */
212 PRTFILEAIOCTXINTERNAL pCtxInt;
213 /** Magic value (RTFILEAIOREQ_MAGIC). */
214 uint32_t u32Magic;
215} RTFILEAIOREQINTERNAL;
216/** Pointer to an internal request structure. */
217typedef RTFILEAIOREQINTERNAL *PRTFILEAIOREQINTERNAL;
218
219
220/*********************************************************************************************************************************
221* Defined Constants And Macros *
222*********************************************************************************************************************************/
223/** The max number of events to get in one call. */
224#define AIO_MAXIMUM_REQUESTS_PER_CONTEXT 64
225
226
227/**
228 * Creates a new async I/O context.
229 */
230DECLINLINE(int) rtFileAsyncIoLinuxCreate(unsigned cEvents, LNXKAIOCONTEXT *pAioContext)
231{
232 int rc = syscall(__NR_io_setup, cEvents, pAioContext);
233 if (RT_UNLIKELY(rc == -1))
234 {
235 if (errno == EAGAIN)
236 return VERR_FILE_AIO_INSUFFICIENT_EVENTS;
237 else
238 return RTErrConvertFromErrno(errno);
239 }
240
241 return VINF_SUCCESS;
242}
243
244/**
245 * Destroys a async I/O context.
246 */
247DECLINLINE(int) rtFileAsyncIoLinuxDestroy(LNXKAIOCONTEXT AioContext)
248{
249 int rc = syscall(__NR_io_destroy, AioContext);
250 if (RT_UNLIKELY(rc == -1))
251 return RTErrConvertFromErrno(errno);
252
253 return VINF_SUCCESS;
254}
255
256/**
257 * Submits an array of I/O requests to the kernel.
258 */
259DECLINLINE(int) rtFileAsyncIoLinuxSubmit(LNXKAIOCONTEXT AioContext, long cReqs, LNXKAIOIOCB **ppIoCB, int *pcSubmitted)
260{
261 int rc = syscall(__NR_io_submit, AioContext, cReqs, ppIoCB);
262 if (RT_UNLIKELY(rc == -1))
263 return RTErrConvertFromErrno(errno);
264
265 *pcSubmitted = rc;
266
267 return VINF_SUCCESS;
268}
269
270/**
271 * Cancels a I/O request.
272 */
273DECLINLINE(int) rtFileAsyncIoLinuxCancel(LNXKAIOCONTEXT AioContext, PLNXKAIOIOCB pIoCB, PLNXKAIOIOEVENT pIoResult)
274{
275 int rc = syscall(__NR_io_cancel, AioContext, pIoCB, pIoResult);
276 if (RT_UNLIKELY(rc == -1))
277 return RTErrConvertFromErrno(errno);
278
279 return VINF_SUCCESS;
280}
281
282/**
283 * Waits for I/O events.
284 * @returns Number of events (natural number w/ 0), IPRT error code (negative).
285 */
286DECLINLINE(int) rtFileAsyncIoLinuxGetEvents(LNXKAIOCONTEXT AioContext, long cReqsMin, long cReqs,
287 PLNXKAIOIOEVENT paIoResults, struct timespec *pTimeout)
288{
289 int rc = syscall(__NR_io_getevents, AioContext, cReqsMin, cReqs, paIoResults, pTimeout);
290 if (RT_UNLIKELY(rc == -1))
291 return RTErrConvertFromErrno(errno);
292
293 return rc;
294}
295
296RTR3DECL(int) RTFileAioGetLimits(PRTFILEAIOLIMITS pAioLimits)
297{
298 int rc = VINF_SUCCESS;
299 AssertPtrReturn(pAioLimits, VERR_INVALID_POINTER);
300
301 /*
302 * Check if the API is implemented by creating a
303 * completion port.
304 */
305 LNXKAIOCONTEXT AioContext = 0;
306 rc = rtFileAsyncIoLinuxCreate(1, &AioContext);
307 if (RT_FAILURE(rc))
308 return rc;
309
310 rc = rtFileAsyncIoLinuxDestroy(AioContext);
311 if (RT_FAILURE(rc))
312 return rc;
313
314 /* Supported - fill in the limits. The alignment is the only restriction. */
315 pAioLimits->cReqsOutstandingMax = RTFILEAIO_UNLIMITED_REQS;
316 pAioLimits->cbBufferAlignment = 512;
317
318 return VINF_SUCCESS;
319}
320
321
322RTR3DECL(int) RTFileAioReqCreate(PRTFILEAIOREQ phReq)
323{
324 AssertPtrReturn(phReq, VERR_INVALID_POINTER);
325
326 /*
327 * Allocate a new request and initialize it.
328 */
329 PRTFILEAIOREQINTERNAL pReqInt = (PRTFILEAIOREQINTERNAL)RTMemAllocZ(sizeof(*pReqInt));
330 if (RT_UNLIKELY(!pReqInt))
331 return VERR_NO_MEMORY;
332
333 pReqInt->pCtxInt = NULL;
334 pReqInt->u32Magic = RTFILEAIOREQ_MAGIC;
335 RTFILEAIOREQ_SET_STATE(pReqInt, COMPLETED);
336
337 *phReq = (RTFILEAIOREQ)pReqInt;
338 return VINF_SUCCESS;
339}
340
341
342RTDECL(int) RTFileAioReqDestroy(RTFILEAIOREQ hReq)
343{
344 /*
345 * Validate the handle and ignore nil.
346 */
347 if (hReq == NIL_RTFILEAIOREQ)
348 return VINF_SUCCESS;
349 PRTFILEAIOREQINTERNAL pReqInt = hReq;
350 RTFILEAIOREQ_VALID_RETURN(pReqInt);
351 RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_IN_PROGRESS);
352
353 /*
354 * Trash the magic and free it.
355 */
356 ASMAtomicUoWriteU32(&pReqInt->u32Magic, ~RTFILEAIOREQ_MAGIC);
357 RTMemFree(pReqInt);
358 return VINF_SUCCESS;
359}
360
361
362/**
363 * Worker setting up the request.
364 */
365DECLINLINE(int) rtFileAioReqPrepareTransfer(RTFILEAIOREQ hReq, RTFILE hFile,
366 uint16_t uTransferDirection,
367 RTFOFF off, void *pvBuf, size_t cbTransfer,
368 void *pvUser)
369{
370 /*
371 * Validate the input.
372 */
373 PRTFILEAIOREQINTERNAL pReqInt = hReq;
374 RTFILEAIOREQ_VALID_RETURN(pReqInt);
375 RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_IN_PROGRESS);
376 Assert(hFile != NIL_RTFILE);
377
378 if (uTransferDirection != LNXKAIO_IOCB_CMD_FSYNC)
379 {
380 AssertPtr(pvBuf);
381 Assert(off >= 0);
382 Assert(cbTransfer > 0);
383 }
384
385 /*
386 * Setup the control block and clear the finished flag.
387 */
388 pReqInt->AioCB.u16IoOpCode = uTransferDirection;
389 pReqInt->AioCB.uFileDesc = RTFileToNative(hFile);
390 pReqInt->AioCB.off = off;
391 pReqInt->AioCB.cbTransfer = cbTransfer;
392 pReqInt->AioCB.pvBuf = pvBuf;
393 pReqInt->AioCB.pvUser = pvUser;
394
395 pReqInt->pCtxInt = NULL;
396 RTFILEAIOREQ_SET_STATE(pReqInt, PREPARED);
397
398 return VINF_SUCCESS;
399}
400
401
402RTDECL(int) RTFileAioReqPrepareRead(RTFILEAIOREQ hReq, RTFILE hFile, RTFOFF off,
403 void *pvBuf, size_t cbRead, void *pvUser)
404{
405 return rtFileAioReqPrepareTransfer(hReq, hFile, LNXKAIO_IOCB_CMD_READ,
406 off, pvBuf, cbRead, pvUser);
407}
408
409
410RTDECL(int) RTFileAioReqPrepareWrite(RTFILEAIOREQ hReq, RTFILE hFile, RTFOFF off,
411 void const *pvBuf, size_t cbWrite, void *pvUser)
412{
413 return rtFileAioReqPrepareTransfer(hReq, hFile, LNXKAIO_IOCB_CMD_WRITE,
414 off, (void *)pvBuf, cbWrite, pvUser);
415}
416
417
418RTDECL(int) RTFileAioReqPrepareFlush(RTFILEAIOREQ hReq, RTFILE hFile, void *pvUser)
419{
420 PRTFILEAIOREQINTERNAL pReqInt = hReq;
421 RTFILEAIOREQ_VALID_RETURN(pReqInt);
422 AssertReturn(hFile != NIL_RTFILE, VERR_INVALID_HANDLE);
423 RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_IN_PROGRESS);
424
425 return rtFileAioReqPrepareTransfer(pReqInt, hFile, LNXKAIO_IOCB_CMD_FSYNC,
426 0, NULL, 0, pvUser);
427}
428
429
430RTDECL(void *) RTFileAioReqGetUser(RTFILEAIOREQ hReq)
431{
432 PRTFILEAIOREQINTERNAL pReqInt = hReq;
433 RTFILEAIOREQ_VALID_RETURN_RC(pReqInt, NULL);
434
435 return pReqInt->AioCB.pvUser;
436}
437
438
439RTDECL(int) RTFileAioReqCancel(RTFILEAIOREQ hReq)
440{
441 PRTFILEAIOREQINTERNAL pReqInt = hReq;
442 RTFILEAIOREQ_VALID_RETURN(pReqInt);
443 RTFILEAIOREQ_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_NOT_SUBMITTED);
444
445 LNXKAIOIOEVENT AioEvent;
446 int rc = rtFileAsyncIoLinuxCancel(pReqInt->AioContext, &pReqInt->AioCB, &AioEvent);
447 if (RT_SUCCESS(rc))
448 {
449 /*
450 * Decrement request count because the request will never arrive at the
451 * completion port.
452 */
453 AssertMsg(VALID_PTR(pReqInt->pCtxInt),
454 ("Invalid state. Request was canceled but wasn't submitted\n"));
455
456 ASMAtomicDecS32(&pReqInt->pCtxInt->cRequests);
457 pReqInt->Rc = VERR_FILE_AIO_CANCELED;
458 RTFILEAIOREQ_SET_STATE(pReqInt, COMPLETED);
459 return VINF_SUCCESS;
460 }
461 if (rc == VERR_TRY_AGAIN)
462 return VERR_FILE_AIO_IN_PROGRESS;
463 return rc;
464}
465
466
467RTDECL(int) RTFileAioReqGetRC(RTFILEAIOREQ hReq, size_t *pcbTransfered)
468{
469 PRTFILEAIOREQINTERNAL pReqInt = hReq;
470 RTFILEAIOREQ_VALID_RETURN(pReqInt);
471 AssertPtrNull(pcbTransfered);
472 RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, SUBMITTED, VERR_FILE_AIO_IN_PROGRESS);
473 RTFILEAIOREQ_NOT_STATE_RETURN_RC(pReqInt, PREPARED, VERR_FILE_AIO_NOT_SUBMITTED);
474
475 if ( pcbTransfered
476 && RT_SUCCESS(pReqInt->Rc))
477 *pcbTransfered = pReqInt->cbTransfered;
478
479 return pReqInt->Rc;
480}
481
482
483RTDECL(int) RTFileAioCtxCreate(PRTFILEAIOCTX phAioCtx, uint32_t cAioReqsMax,
484 uint32_t fFlags)
485{
486 PRTFILEAIOCTXINTERNAL pCtxInt;
487 AssertPtrReturn(phAioCtx, VERR_INVALID_POINTER);
488 AssertReturn(!(fFlags & ~RTFILEAIOCTX_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER);
489
490 /* The kernel interface needs a maximum. */
491 if (cAioReqsMax == RTFILEAIO_UNLIMITED_REQS)
492 return VERR_OUT_OF_RANGE;
493
494 pCtxInt = (PRTFILEAIOCTXINTERNAL)RTMemAllocZ(sizeof(RTFILEAIOCTXINTERNAL));
495 if (RT_UNLIKELY(!pCtxInt))
496 return VERR_NO_MEMORY;
497
498 /* Init the event handle. */
499 int rc = rtFileAsyncIoLinuxCreate(cAioReqsMax, &pCtxInt->AioContext);
500 if (RT_SUCCESS(rc))
501 {
502 pCtxInt->fWokenUp = false;
503 pCtxInt->fWaiting = false;
504 pCtxInt->hThreadWait = NIL_RTTHREAD;
505 pCtxInt->cRequestsMax = cAioReqsMax;
506 pCtxInt->fFlags = fFlags;
507 pCtxInt->u32Magic = RTFILEAIOCTX_MAGIC;
508 *phAioCtx = (RTFILEAIOCTX)pCtxInt;
509 }
510 else
511 RTMemFree(pCtxInt);
512
513 return rc;
514}
515
516
517RTDECL(int) RTFileAioCtxDestroy(RTFILEAIOCTX hAioCtx)
518{
519 /* Validate the handle and ignore nil. */
520 if (hAioCtx == NIL_RTFILEAIOCTX)
521 return VINF_SUCCESS;
522 PRTFILEAIOCTXINTERNAL pCtxInt = hAioCtx;
523 RTFILEAIOCTX_VALID_RETURN(pCtxInt);
524
525 /* Cannot destroy a busy context. */
526 if (RT_UNLIKELY(pCtxInt->cRequests))
527 return VERR_FILE_AIO_BUSY;
528
529 /* The native bit first, then mark it as dead and free it. */
530 int rc = rtFileAsyncIoLinuxDestroy(pCtxInt->AioContext);
531 if (RT_FAILURE(rc))
532 return rc;
533 ASMAtomicUoWriteU32(&pCtxInt->u32Magic, RTFILEAIOCTX_MAGIC_DEAD);
534 RTMemFree(pCtxInt);
535
536 return VINF_SUCCESS;
537}
538
539
540RTDECL(uint32_t) RTFileAioCtxGetMaxReqCount(RTFILEAIOCTX hAioCtx)
541{
542 /* Nil means global here. */
543 if (hAioCtx == NIL_RTFILEAIOCTX)
544 return RTFILEAIO_UNLIMITED_REQS; /** @todo r=bird: I'm a bit puzzled by this return value since it
545 * is completely useless in RTFileAioCtxCreate. */
546
547 /* Return 0 if the handle is invalid, it's better than garbage I think... */
548 PRTFILEAIOCTXINTERNAL pCtxInt = hAioCtx;
549 RTFILEAIOCTX_VALID_RETURN_RC(pCtxInt, 0);
550
551 return pCtxInt->cRequestsMax;
552}
553
554RTDECL(int) RTFileAioCtxAssociateWithFile(RTFILEAIOCTX hAioCtx, RTFILE hFile)
555{
556 /* Nothing to do. */
557 NOREF(hAioCtx); NOREF(hFile);
558 return VINF_SUCCESS;
559}
560
561RTDECL(int) RTFileAioCtxSubmit(RTFILEAIOCTX hAioCtx, PRTFILEAIOREQ pahReqs, size_t cReqs)
562{
563 int rc = VINF_SUCCESS;
564
565 /*
566 * Parameter validation.
567 */
568 PRTFILEAIOCTXINTERNAL pCtxInt = hAioCtx;
569 RTFILEAIOCTX_VALID_RETURN(pCtxInt);
570 AssertReturn(cReqs > 0, VERR_INVALID_PARAMETER);
571 AssertPtrReturn(pahReqs, VERR_INVALID_POINTER);
572 uint32_t i = cReqs;
573 PRTFILEAIOREQINTERNAL pReqInt = NULL;
574
575 /*
576 * Validate requests and associate with the context.
577 */
578 while (i-- > 0)
579 {
580 pReqInt = pahReqs[i];
581 if (RTFILEAIOREQ_IS_NOT_VALID(pReqInt))
582 {
583 /* Undo everything and stop submitting. */
584 size_t iUndo = cReqs;
585 while (iUndo-- > i)
586 {
587 pReqInt = pahReqs[iUndo];
588 RTFILEAIOREQ_SET_STATE(pReqInt, PREPARED);
589 pReqInt->pCtxInt = NULL;
590 }
591 return VERR_INVALID_HANDLE;
592 }
593
594 pReqInt->AioContext = pCtxInt->AioContext;
595 pReqInt->pCtxInt = pCtxInt;
596 RTFILEAIOREQ_SET_STATE(pReqInt, SUBMITTED);
597 }
598
599 do
600 {
601 /*
602 * We cast pahReqs to the Linux iocb structure to avoid copying the requests
603 * into a temporary array. This is possible because the iocb structure is
604 * the first element in the request structure (see PRTFILEAIOCTXINTERNAL).
605 */
606 int cReqsSubmitted = 0;
607 rc = rtFileAsyncIoLinuxSubmit(pCtxInt->AioContext, cReqs,
608 (PLNXKAIOIOCB *)pahReqs,
609 &cReqsSubmitted);
610 if (RT_FAILURE(rc))
611 {
612 /*
613 * We encountered an error.
614 * This means that the first IoCB
615 * is not correctly initialized
616 * (invalid buffer alignment or bad file descriptor).
617 * Revert every request into the prepared state except
618 * the first one which will switch to completed.
619 * Another reason could be insufficient resources.
620 */
621 i = cReqs;
622 while (i-- > 0)
623 {
624 /* Already validated. */
625 pReqInt = pahReqs[i];
626 pReqInt->pCtxInt = NULL;
627 pReqInt->AioContext = 0;
628 RTFILEAIOREQ_SET_STATE(pReqInt, PREPARED);
629 }
630
631 if (rc == VERR_TRY_AGAIN)
632 return VERR_FILE_AIO_INSUFFICIENT_RESSOURCES;
633 else
634 {
635 /* The first request failed. */
636 pReqInt = pahReqs[0];
637 RTFILEAIOREQ_SET_STATE(pReqInt, COMPLETED);
638 pReqInt->Rc = rc;
639 pReqInt->cbTransfered = 0;
640 return rc;
641 }
642 }
643
644 /* Advance. */
645 cReqs -= cReqsSubmitted;
646 pahReqs += cReqsSubmitted;
647 ASMAtomicAddS32(&pCtxInt->cRequests, cReqsSubmitted);
648
649 } while (cReqs);
650
651 return rc;
652}
653
654
655RTDECL(int) RTFileAioCtxWait(RTFILEAIOCTX hAioCtx, size_t cMinReqs, RTMSINTERVAL cMillies,
656 PRTFILEAIOREQ pahReqs, size_t cReqs, uint32_t *pcReqs)
657{
658 /*
659 * Validate the parameters, making sure to always set pcReqs.
660 */
661 AssertPtrReturn(pcReqs, VERR_INVALID_POINTER);
662 *pcReqs = 0; /* always set */
663 PRTFILEAIOCTXINTERNAL pCtxInt = hAioCtx;
664 RTFILEAIOCTX_VALID_RETURN(pCtxInt);
665 AssertPtrReturn(pahReqs, VERR_INVALID_POINTER);
666 AssertReturn(cReqs != 0, VERR_INVALID_PARAMETER);
667 AssertReturn(cReqs >= cMinReqs, VERR_OUT_OF_RANGE);
668
669 /*
670 * Can't wait if there are not requests around.
671 */
672 if ( RT_UNLIKELY(ASMAtomicUoReadS32(&pCtxInt->cRequests) == 0)
673 && !(pCtxInt->fFlags & RTFILEAIOCTX_FLAGS_WAIT_WITHOUT_PENDING_REQUESTS))
674 return VERR_FILE_AIO_NO_REQUEST;
675
676 /*
677 * Convert the timeout if specified.
678 */
679 struct timespec *pTimeout = NULL;
680 struct timespec Timeout = {0,0};
681 uint64_t StartNanoTS = 0;
682 if (cMillies != RT_INDEFINITE_WAIT)
683 {
684 Timeout.tv_sec = cMillies / 1000;
685 Timeout.tv_nsec = cMillies % 1000 * 1000000;
686 pTimeout = &Timeout;
687 StartNanoTS = RTTimeNanoTS();
688 }
689
690 /* Wait for at least one. */
691 if (!cMinReqs)
692 cMinReqs = 1;
693
694 /* For the wakeup call. */
695 Assert(pCtxInt->hThreadWait == NIL_RTTHREAD);
696 ASMAtomicWriteHandle(&pCtxInt->hThreadWait, RTThreadSelf());
697
698 /*
699 * Loop until we're woken up, hit an error (incl timeout), or
700 * have collected the desired number of requests.
701 */
702 int rc = VINF_SUCCESS;
703 int cRequestsCompleted = 0;
704 while (!pCtxInt->fWokenUp)
705 {
706 LNXKAIOIOEVENT aPortEvents[AIO_MAXIMUM_REQUESTS_PER_CONTEXT];
707 int cRequestsToWait = RT_MIN(cReqs, AIO_MAXIMUM_REQUESTS_PER_CONTEXT);
708 ASMAtomicXchgBool(&pCtxInt->fWaiting, true);
709 rc = rtFileAsyncIoLinuxGetEvents(pCtxInt->AioContext, cMinReqs, cRequestsToWait, &aPortEvents[0], pTimeout);
710 ASMAtomicXchgBool(&pCtxInt->fWaiting, false);
711 if (RT_FAILURE(rc))
712 break;
713 uint32_t const cDone = rc;
714 rc = VINF_SUCCESS;
715
716 /*
717 * Process received events / requests.
718 */
719 for (uint32_t i = 0; i < cDone; i++)
720 {
721 /*
722 * The iocb is the first element in our request structure.
723 * So we can safely cast it directly to the handle (see above)
724 */
725 PRTFILEAIOREQINTERNAL pReqInt = (PRTFILEAIOREQINTERNAL)aPortEvents[i].pIoCB;
726 AssertPtr(pReqInt);
727 Assert(pReqInt->u32Magic == RTFILEAIOREQ_MAGIC);
728
729 /** @todo aeichner: The rc field contains the result code
730 * like you can find in errno for the normal read/write ops.
731 * But there is a second field called rc2. I don't know the
732 * purpose for it yet.
733 */
734 if (RT_UNLIKELY(aPortEvents[i].rc < 0))
735 pReqInt->Rc = RTErrConvertFromErrno(-aPortEvents[i].rc); /* Convert to positive value. */
736 else
737 {
738 pReqInt->Rc = VINF_SUCCESS;
739 pReqInt->cbTransfered = aPortEvents[i].rc;
740 }
741
742 /* Mark the request as finished. */
743 RTFILEAIOREQ_SET_STATE(pReqInt, COMPLETED);
744
745 pahReqs[cRequestsCompleted++] = (RTFILEAIOREQ)pReqInt;
746 }
747
748 /*
749 * Done Yet? If not advance and try again.
750 */
751 if (cDone >= cMinReqs)
752 break;
753 cMinReqs -= cDone;
754 cReqs -= cDone;
755
756 if (cMillies != RT_INDEFINITE_WAIT)
757 {
758 /* The API doesn't return ETIMEDOUT, so we have to fix that ourselves. */
759 uint64_t NanoTS = RTTimeNanoTS();
760 uint64_t cMilliesElapsed = (NanoTS - StartNanoTS) / 1000000;
761 if (cMilliesElapsed >= cMillies)
762 {
763 rc = VERR_TIMEOUT;
764 break;
765 }
766
767 /* The syscall supposedly updates it, but we're paranoid. :-) */
768 Timeout.tv_sec = (cMillies - (RTMSINTERVAL)cMilliesElapsed) / 1000;
769 Timeout.tv_nsec = (cMillies - (RTMSINTERVAL)cMilliesElapsed) % 1000 * 1000000;
770 }
771 }
772
773 /*
774 * Update the context state and set the return value.
775 */
776 *pcReqs = cRequestsCompleted;
777 ASMAtomicSubS32(&pCtxInt->cRequests, cRequestsCompleted);
778 Assert(pCtxInt->hThreadWait == RTThreadSelf());
779 ASMAtomicWriteHandle(&pCtxInt->hThreadWait, NIL_RTTHREAD);
780
781 /*
782 * Clear the wakeup flag and set rc.
783 */
784 if ( pCtxInt->fWokenUp
785 && RT_SUCCESS(rc))
786 {
787 ASMAtomicXchgBool(&pCtxInt->fWokenUp, false);
788 rc = VERR_INTERRUPTED;
789 }
790
791 return rc;
792}
793
794
795RTDECL(int) RTFileAioCtxWakeup(RTFILEAIOCTX hAioCtx)
796{
797 PRTFILEAIOCTXINTERNAL pCtxInt = hAioCtx;
798 RTFILEAIOCTX_VALID_RETURN(pCtxInt);
799
800 /** @todo r=bird: Define the protocol for how to resume work after calling
801 * this function. */
802
803 bool fWokenUp = ASMAtomicXchgBool(&pCtxInt->fWokenUp, true);
804
805 /*
806 * Read the thread handle before the status flag.
807 * If we read the handle after the flag we might
808 * end up with an invalid handle because the thread
809 * waiting in RTFileAioCtxWakeup() might get scheduled
810 * before we read the flag and returns.
811 * We can ensure that the handle is valid if fWaiting is true
812 * when reading the handle before the status flag.
813 */
814 RTTHREAD hThread;
815 ASMAtomicReadHandle(&pCtxInt->hThreadWait, &hThread);
816 bool fWaiting = ASMAtomicReadBool(&pCtxInt->fWaiting);
817 if ( !fWokenUp
818 && fWaiting)
819 {
820 /*
821 * If a thread waits the handle must be valid.
822 * It is possible that the thread returns from
823 * rtFileAsyncIoLinuxGetEvents() before the signal
824 * is send.
825 * This is no problem because we already set fWokenUp
826 * to true which will let the thread return VERR_INTERRUPTED
827 * and the next call to RTFileAioCtxWait() will not
828 * return VERR_INTERRUPTED because signals are not saved
829 * and will simply vanish if the destination thread can't
830 * receive it.
831 */
832 Assert(hThread != NIL_RTTHREAD);
833 RTThreadPoke(hThread);
834 }
835
836 return VINF_SUCCESS;
837}
838
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette