/* $Id: semwait-linux.h 93115 2022-01-01 11:31:46Z vboxsync $ */ /** @file * IPRT - Common semaphore wait code, Linux. */ /* * Copyright (C) 2021-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ #ifndef IPRT_INCLUDED_SRC_r3_linux_semwait_linux_h #define IPRT_INCLUDED_SRC_r3_linux_semwait_linux_h #ifndef RT_WITHOUT_PRAGMA_ONCE # pragma once #endif /* With 2.6.17 futex.h has become C++ unfriendly, so define the bits we need. */ #define FUTEX_WAIT 0 #define FUTEX_WAKE 1 #define FUTEX_WAIT_BITSET 9 /**< @since 2.6.25 - uses absolute timeout. */ /** * Wrapper for the futex syscall. */ DECLINLINE(long) sys_futex(uint32_t volatile *uaddr, int op, int val, struct timespec *utime, int32_t *uaddr2, int val3) { errno = 0; long rc = syscall(__NR_futex, uaddr, op, val, utime, uaddr2, val3); if (rc < 0) { Assert(rc == -1); rc = -errno; } return rc; } DECL_NO_INLINE(static, void) rtSemLinuxCheckForFutexWaitBitSetSlow(int volatile *pfCanUseWaitBitSet) { uint32_t uTestVar = UINT32_MAX; long rc = sys_futex(&uTestVar, FUTEX_WAIT_BITSET, UINT32_C(0xf0f0f0f0), NULL, NULL, UINT32_MAX); *pfCanUseWaitBitSet = rc == -EAGAIN; AssertMsg(rc == -ENOSYS || rc == -EAGAIN, ("%d\n", rc)); } DECLINLINE(void) rtSemLinuxCheckForFutexWaitBitSet(int volatile *pfCanUseWaitBitSet) { if (*pfCanUseWaitBitSet != -1) { /* likely */ } else rtSemLinuxCheckForFutexWaitBitSetSlow(pfCanUseWaitBitSet); } /** * Converts a extended wait timeout specification to an timespec and * corresponding futex operation, as well as an approximate relative nanosecond * interval. * * @note This does not check for RTSEMWAIT_FLAGS_INDEFINITE, caller should've * done that already. * * @returns The relative wait in nanoseconds. 0 for a poll call, UINT64_MAX for * an effectively indefinite wait. * @param fFlags RTSEMWAIT_FLAGS_XXX. * @param fCanUseWaitBitSet Whether we can use FUTEX_WAIT_BITMSET or not. * @param uTimeout The timeout. * @param pDeadline Where to return the deadline. * @param piWaitOp Where to return the FUTEX wait operation number. * @param puWaitVal3 Where to return the FUTEX wait value 3. * @param pnsAbsTimeout Where to return the absolute timeout in case of * a resuming relative call (i.e. FUTEX_WAIT). */ DECL_FORCE_INLINE(uint64_t) rtSemLinuxCalcDeadline(uint32_t fFlags, uint64_t uTimeout, int fCanUseWaitBitSet, struct timespec *pDeadline, int *piWaitOp, uint32_t *puWaitVal3, uint64_t *pnsAbsTimeout) { Assert(!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)); if (fFlags & RTSEMWAIT_FLAGS_RELATIVE) { Assert(!(fFlags & RTSEMWAIT_FLAGS_ABSOLUTE)); /* * Polling call? */ if (uTimeout == 0) return 0; /* * We use FUTEX_WAIT here as it takes a relative timespec. * * Note! For non-resuming waits, we can skip calculating the absolute * time ASSUMING it is only needed for timeout adjustments * after an -EINTR return. */ if (fFlags & RTSEMWAIT_FLAGS_MILLISECS) { if ( sizeof(pDeadline->tv_sec) >= sizeof(uint64_t) || uTimeout < (uint64_t)UINT32_MAX * RT_MS_1SEC) { pDeadline->tv_sec = uTimeout / RT_MS_1SEC; pDeadline->tv_nsec = (uTimeout % RT_MS_1SEC) & RT_NS_1MS; uTimeout *= RT_NS_1MS; } else return UINT64_MAX; } else { Assert(fFlags & RTSEMWAIT_FLAGS_NANOSECS); if ( sizeof(pDeadline->tv_sec) >= sizeof(uint64_t) || uTimeout < (uint64_t)UINT32_MAX * RT_NS_1SEC) { pDeadline->tv_sec = uTimeout / RT_NS_1SEC; pDeadline->tv_nsec = uTimeout % RT_NS_1SEC; } else return UINT64_MAX; } #ifdef RT_STRICT if (!(fFlags & RTSEMWAIT_FLAGS_RESUME)) *pnsAbsTimeout = uTimeout; else #endif *pnsAbsTimeout = RTTimeNanoTS() + uTimeout; /* Note! only relevant for relative waits (FUTEX_WAIT). */ } else { /* Absolute deadline: */ Assert(fFlags & RTSEMWAIT_FLAGS_ABSOLUTE); if (fCanUseWaitBitSet == true) { /* * Use FUTEX_WAIT_BITSET as it takes an absolute deadline. */ if (fFlags & RTSEMWAIT_FLAGS_MILLISECS) { if ( sizeof(pDeadline->tv_sec) >= sizeof(uint64_t) || uTimeout < (uint64_t)UINT32_MAX * RT_MS_1SEC) { pDeadline->tv_sec = uTimeout / RT_MS_1SEC; pDeadline->tv_nsec = (uTimeout % RT_MS_1SEC) & RT_NS_1MS; } else return UINT64_MAX; } else { Assert(fFlags & RTSEMWAIT_FLAGS_NANOSECS); if ( sizeof(pDeadline->tv_sec) >= sizeof(uint64_t) || uTimeout < (uint64_t)UINT32_MAX * RT_NS_1SEC) { pDeadline->tv_sec = uTimeout / RT_NS_1SEC; pDeadline->tv_nsec = uTimeout % RT_NS_1SEC; } else return UINT64_MAX; } *pnsAbsTimeout = uTimeout; *piWaitOp = FUTEX_WAIT_BITSET; *puWaitVal3 = UINT32_MAX; return RT_MS_1SEC; /* Whatever non-zero; Whole point is not calling RTTimeNanoTS() in this path. */ } /* * FUTEX_WAIT_BITSET is not available, so use FUTEX_WAIT with a * relative timeout. */ if (fFlags & RTSEMWAIT_FLAGS_MILLISECS) { if (uTimeout < UINT64_MAX / RT_NS_1MS) uTimeout *= RT_NS_1MS; else return UINT64_MAX; } uint64_t const u64Now = RTTimeNanoTS(); if (u64Now < uTimeout) { *pnsAbsTimeout = uTimeout; uTimeout -= u64Now; } else return 0; if ( sizeof(pDeadline->tv_sec) >= sizeof(uint64_t) || uTimeout < (uint64_t)UINT32_MAX * RT_NS_1SEC) { pDeadline->tv_sec = uTimeout / RT_NS_1SEC; pDeadline->tv_nsec = uTimeout % RT_NS_1SEC; } else return UINT64_MAX; } *piWaitOp = FUTEX_WAIT; *puWaitVal3 = 0; return uTimeout; } #endif /* !IPRT_INCLUDED_SRC_r3_linux_semwait_linux_h */