/* $Id: rtmempage-exec-mmap-heap-posix.cpp 53278 2014-11-09 21:01:25Z vboxsync $ */ /** @file * IPRT - RTMemPage*, POSIX with heap. */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "internal/iprt.h" #include #include #include #include #include #include #include #include #include #include "internal/mem.h" #include "../alloc-ef.h" #include #include #include #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) # define MAP_ANONYMOUS MAP_ANON #endif /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** Threshold at which to we switch to simply calling mmap. */ #define RTMEMPAGEPOSIX_MMAP_THRESHOLD _128K /** The size of a heap block (power of two) - in bytes. */ #define RTMEMPAGEPOSIX_BLOCK_SIZE _2M AssertCompile(RTMEMPAGEPOSIX_BLOCK_SIZE == (RTMEMPAGEPOSIX_BLOCK_SIZE / PAGE_SIZE) * PAGE_SIZE); /** The number of pages per heap block. */ #define RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT (RTMEMPAGEPOSIX_BLOCK_SIZE / PAGE_SIZE) /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** Pointer to a page heap block. */ typedef struct RTHEAPPAGEBLOCK *PRTHEAPPAGEBLOCK; /** * A simple page heap. */ typedef struct RTHEAPPAGE { /** Magic number (RTHEAPPAGE_MAGIC). */ uint32_t u32Magic; /** The number of pages in the heap (in BlockTree). */ uint32_t cHeapPages; /** The number of currently free pages. */ uint32_t cFreePages; /** Number of successful calls. */ uint32_t cAllocCalls; /** Number of successful free calls. */ uint32_t cFreeCalls; /** The free call number at which we last tried to minimize the heap. */ uint32_t uLastMinimizeCall; /** Tree of heap blocks. */ AVLRPVTREE BlockTree; /** Allocation hint no 1 (last freed). */ PRTHEAPPAGEBLOCK pHint1; /** Allocation hint no 2 (last alloc). */ PRTHEAPPAGEBLOCK pHint2; /** Critical section protecting the heap. */ RTCRITSECT CritSect; /** Set if the memory must allocated with execute access. */ bool fExec; } RTHEAPPAGE; #define RTHEAPPAGE_MAGIC UINT32_C(0xfeedface) /** Pointer to a page heap. */ typedef RTHEAPPAGE *PRTHEAPPAGE; /** * Describes a page heap block. */ typedef struct RTHEAPPAGEBLOCK { /** The AVL tree node core (void pointer range). */ AVLRPVNODECORE Core; /** Allocation bitmap. Set bits marks allocated pages. */ uint32_t bmAlloc[RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT / 32]; /** Allocation boundrary bitmap. Set bits marks the start of * allocations. */ uint32_t bmFirst[RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT / 32]; /** The number of free pages. */ uint32_t cFreePages; /** Pointer back to the heap. */ PRTHEAPPAGE pHeap; } RTHEAPPAGEBLOCK; /** * Argument package for rtHeapPageAllocCallback. */ typedef struct RTHEAPPAGEALLOCARGS { /** The number of pages to allocate. */ size_t cPages; /** Non-null on success. */ void *pvAlloc; /** Whether the pages should be zeroed or not. */ bool fZero; } RTHEAPPAGEALLOCARGS; /******************************************************************************* * Global Variables * *******************************************************************************/ /** Initialize once structure. */ static RTONCE g_MemPagePosixInitOnce = RTONCE_INITIALIZER; /** The page heap. */ static RTHEAPPAGE g_MemPagePosixHeap; /** The exec page heap. */ static RTHEAPPAGE g_MemExecPosixHeap; #ifdef RT_OS_OS2 /* * A quick mmap/munmap mockup for avoid duplicating lots of good code. */ # define INCL_BASE # include # undef MAP_PRIVATE # define MAP_PRIVATE 0 # undef MAP_ANONYMOUS # define MAP_ANONYMOUS 0 # undef MAP_FAILED # define MAP_FAILED (void *)-1 # undef mmap # define mmap iprt_mmap # undef munmap # define munmap iprt_munmap static void *mmap(void *pvWhere, size_t cb, int fProt, int fFlags, int fd, off_t off) { NOREF(pvWhere); NOREF(fd); NOREF(off); void *pv = NULL; ULONG fAlloc = OBJ_ANY | PAG_COMMIT; if (fProt & PROT_EXEC) fAlloc |= PAG_EXECUTE; if (fProt & PROT_READ) fAlloc |= PAG_READ; if (fProt & PROT_WRITE) fAlloc |= PAG_WRITE; APIRET rc = DosAllocMem(&pv, cb, fAlloc); if (rc == NO_ERROR) return pv; errno = ENOMEM; return MAP_FAILED; } static int munmap(void *pv, size_t cb) { APIRET rc = DosFreeMem(pv); if (rc == NO_ERROR) return 0; errno = EINVAL; return -1; } #endif /** * Initializes the heap. * * @returns IPRT status code. * @param pHeap The page heap to initialize. * @param fExec Whether the heap memory should be marked as * executable or not. */ int RTHeapPageInit(PRTHEAPPAGE pHeap, bool fExec) { int rc = RTCritSectInitEx(&pHeap->CritSect, RTCRITSECT_FLAGS_NO_LOCK_VAL | RTCRITSECT_FLAGS_NO_NESTING | RTCRITSECT_FLAGS_BOOTSTRAP_HACK, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, NULL); if (RT_SUCCESS(rc)) { pHeap->cHeapPages = 0; pHeap->cFreePages = 0; pHeap->cAllocCalls = 0; pHeap->cFreeCalls = 0; pHeap->uLastMinimizeCall = 0; pHeap->BlockTree = NULL; pHeap->fExec = fExec; pHeap->u32Magic = RTHEAPPAGE_MAGIC; } return rc; } /** * Deletes the heap and all the memory it tracks. * * @returns IPRT status code. * @param pHeap The page heap to delete. */ int RTHeapPageDelete(PRTHEAPPAGE pHeap) { NOREF(pHeap); return VERR_NOT_IMPLEMENTED; } /** * Avoids some gotos in rtHeapPageAllocFromBlock. * * @returns VINF_SUCCESS. * @param pBlock The block. * @param iPage The page to start allocating at. * @param cPages The number of pages. * @param fZero Whether to clear them. * @param ppv Where to return the allocation address. */ DECLINLINE(int) rtHeapPageAllocFromBlockSuccess(PRTHEAPPAGEBLOCK pBlock, uint32_t iPage, size_t cPages, bool fZero, void **ppv) { PRTHEAPPAGE pHeap = pBlock->pHeap; ASMBitSet(&pBlock->bmFirst[0], iPage); pBlock->cFreePages -= cPages; pHeap->cFreePages -= cPages; if (!pHeap->pHint2 || pHeap->pHint2->cFreePages < pBlock->cFreePages) pHeap->pHint2 = pBlock; pHeap->cAllocCalls++; void *pv = (uint8_t *)pBlock->Core.Key + (iPage << PAGE_SHIFT); *ppv = pv; if (fZero) RT_BZERO(pv, cPages << PAGE_SHIFT); return VINF_SUCCESS; } /** * Checks if a page range is free in the specified block. * * @returns @c true if the range is free, @c false if not. * @param pBlock The block. * @param iFirst The first page to check. * @param cPages The number of pages to check. */ DECLINLINE(bool) rtHeapPageIsPageRangeFree(PRTHEAPPAGEBLOCK pBlock, uint32_t iFirst, uint32_t cPages) { uint32_t i = iFirst + cPages; while (i-- > iFirst) { if (ASMBitTest(&pBlock->bmAlloc[0], i)) return false; Assert(!ASMBitTest(&pBlock->bmFirst[0], i)); } return true; } /** * Tries to allocate a chunk of pages from a heap block. * * @retval VINF_SUCCESS on success. * @retval VERR_NO_MEMORY if the allocation failed. * @param pBlock The block to allocate from. * @param cPages The size of the allocation. * @param fZero Whether it should be zeroed or not. * @param ppv Where to return the allocation address on success. */ DECLINLINE(int) rtHeapPageAllocFromBlock(PRTHEAPPAGEBLOCK pBlock, size_t cPages, bool fZero, void **ppv) { if (pBlock->cFreePages >= cPages) { int iPage = ASMBitFirstClear(&pBlock->bmAlloc[0], RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT); Assert(iPage >= 0); /* special case: single page. */ if (cPages == 1) { ASMBitSet(&pBlock->bmAlloc[0], iPage); return rtHeapPageAllocFromBlockSuccess(pBlock, iPage, cPages, fZero, ppv); } while ( iPage >= 0 && (unsigned)iPage <= RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT - cPages) { if (rtHeapPageIsPageRangeFree(pBlock, iPage + 1, cPages - 1)) { ASMBitSetRange(&pBlock->bmAlloc[0], iPage, iPage + cPages); return rtHeapPageAllocFromBlockSuccess(pBlock, iPage, cPages, fZero, ppv); } /* next */ iPage = ASMBitNextSet(&pBlock->bmAlloc[0], RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT, iPage); if (iPage < 0 || iPage >= RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT - 1) break; iPage = ASMBitNextClear(&pBlock->bmAlloc[0], RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT, iPage); } } return VERR_NO_MEMORY; } /** * RTAvlrPVDoWithAll callback. * * @returns 0 to continue the enum, non-zero to quit it. * @param pNode The node. * @param pvUser The user argument. */ static DECLCALLBACK(int) rtHeapPageAllocCallback(PAVLRPVNODECORE pNode, void *pvUser) { PRTHEAPPAGEBLOCK pBlock = RT_FROM_MEMBER(pNode, RTHEAPPAGEBLOCK, Core); RTHEAPPAGEALLOCARGS *pArgs = (RTHEAPPAGEALLOCARGS *)pvUser; int rc = rtHeapPageAllocFromBlock(pBlock, pArgs->cPages, pArgs->fZero, &pArgs->pvAlloc); return RT_SUCCESS(rc) ? 1 : 0; } /** * Worker for RTHeapPageAlloc. * * @returns IPRT status code * @param pHeap The heap - locked. * @param cPages The page count. * @param pszTag The tag. * @param fZero Whether to zero the memory. * @param ppv Where to return the address of the allocation * on success. */ static int rtHeapPageAllocLocked(PRTHEAPPAGE pHeap, size_t cPages, const char *pszTag, bool fZero, void **ppv) { int rc; NOREF(pszTag); /* * Use the hints first. */ if (pHeap->pHint1) { rc = rtHeapPageAllocFromBlock(pHeap->pHint1, cPages, fZero, ppv); if (rc != VERR_NO_MEMORY) return rc; } if (pHeap->pHint2) { rc = rtHeapPageAllocFromBlock(pHeap->pHint2, cPages, fZero, ppv); if (rc != VERR_NO_MEMORY) return rc; } /* * Search the heap for a block with enough free space. * * N.B. This search algorithm is not optimal at all. What (hopefully) saves * it are the two hints above. */ if (pHeap->cFreePages >= cPages) { RTHEAPPAGEALLOCARGS Args; Args.cPages = cPages; Args.pvAlloc = NULL; Args.fZero = fZero; RTAvlrPVDoWithAll(&pHeap->BlockTree, true /*fFromLeft*/, rtHeapPageAllocCallback, &Args); if (Args.pvAlloc) { *ppv = Args.pvAlloc; return VINF_SUCCESS; } } /* * Didn't find anytyhing, so expand the heap with a new block. */ RTCritSectLeave(&pHeap->CritSect); void *pvPages; pvPages = mmap(NULL, RTMEMPAGEPOSIX_BLOCK_SIZE, PROT_READ | PROT_WRITE | (pHeap->fExec ? PROT_EXEC : 0), MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (pvPages == MAP_FAILED) { RTCritSectEnter(&pHeap->CritSect); return RTErrConvertFromErrno(errno); } /** @todo Eliminate this rtMemBaseAlloc dependency! */ PRTHEAPPAGEBLOCK pBlock; #ifdef RTALLOC_REPLACE_MALLOC if (g_pfnOrgMalloc) pBlock = (PRTHEAPPAGEBLOCK)g_pfnOrgMalloc(sizeof(*pBlock)); else #endif pBlock = (PRTHEAPPAGEBLOCK)rtMemBaseAlloc(sizeof(*pBlock)); if (!pBlock) { munmap(pvPages, RTMEMPAGEPOSIX_BLOCK_SIZE); RTCritSectEnter(&pHeap->CritSect); return VERR_NO_MEMORY; } RT_ZERO(*pBlock); pBlock->Core.Key = pvPages; pBlock->Core.KeyLast = (uint8_t *)pvPages + RTMEMPAGEPOSIX_BLOCK_SIZE - 1; pBlock->cFreePages = RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT; pBlock->pHeap = pHeap; RTCritSectEnter(&pHeap->CritSect); bool fRc = RTAvlrPVInsert(&pHeap->BlockTree, &pBlock->Core); Assert(fRc); NOREF(fRc); pHeap->cFreePages += RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT; pHeap->cHeapPages += RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT; /* * Grab memory from the new block (cannot fail). */ rc = rtHeapPageAllocFromBlock(pBlock, cPages, fZero, ppv); Assert(rc == VINF_SUCCESS); return rc; } /** * Allocates one or more pages off the heap. * * @returns IPRT status code. * @param pHeap The page heap. * @param cPages The number of pages to allocate. * @param pszTag The allocation tag. * @param fZero Set if the pages should be zeroed or not. * @param ppv Where to return the pointer to the pages. */ int RTHeapPageAlloc(PRTHEAPPAGE pHeap, size_t cPages, const char *pszTag, bool fZero, void **ppv) { /* * Validate input. */ AssertPtr(ppv); *ppv = NULL; AssertPtrReturn(pHeap, VERR_INVALID_HANDLE); AssertReturn(pHeap->u32Magic == RTHEAPPAGE_MAGIC, VERR_INVALID_HANDLE); AssertMsgReturn(cPages < RTMEMPAGEPOSIX_BLOCK_SIZE, ("%#zx\n", cPages), VERR_OUT_OF_RANGE); /* * Grab the lock and call a worker with many returns. */ int rc = RTCritSectEnter(&pHeap->CritSect); if (RT_SUCCESS(rc)) { rc = rtHeapPageAllocLocked(pHeap, cPages, pszTag, fZero, ppv); RTCritSectLeave(&pHeap->CritSect); } return rc; } /** * RTAvlrPVDoWithAll callback. * * @returns 0 to continue the enum, non-zero to quit it. * @param pNode The node. * @param pvUser Pointer to a block pointer variable. For returning * the address of the block to be freed. */ static DECLCALLBACK(int) rtHeapPageFindUnusedBlockCallback(PAVLRPVNODECORE pNode, void *pvUser) { PRTHEAPPAGEBLOCK pBlock = RT_FROM_MEMBER(pNode, RTHEAPPAGEBLOCK, Core); if (pBlock->cFreePages == RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT) { *(PRTHEAPPAGEBLOCK *)pvUser = pBlock; return 1; } return 0; } /** * Allocates one or more pages off the heap. * * @returns IPRT status code. * @param pHeap The page heap. * @param pv Pointer to what RTHeapPageAlloc returned. * @param cPages The number of pages that was allocated. */ int RTHeapPageFree(PRTHEAPPAGE pHeap, void *pv, size_t cPages) { /* * Validate input. */ if (!pv) return VINF_SUCCESS; AssertPtrReturn(pHeap, VERR_INVALID_HANDLE); AssertReturn(pHeap->u32Magic == RTHEAPPAGE_MAGIC, VERR_INVALID_HANDLE); /* * Grab the lock and look up the page. */ int rc = RTCritSectEnter(&pHeap->CritSect); if (RT_SUCCESS(rc)) { PRTHEAPPAGEBLOCK pBlock = (PRTHEAPPAGEBLOCK)RTAvlrPVRangeGet(&pHeap->BlockTree, pv); if (pBlock) { /* * Validate the specified address range. */ uint32_t const iPage = (uint32_t)(((uintptr_t)pv - (uintptr_t)pBlock->Core.Key) >> PAGE_SHIFT); /* Check the range is within the block. */ bool fOk = iPage + cPages <= RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT; /* Check that it's the start of an allocation. */ fOk = fOk && ASMBitTest(&pBlock->bmFirst[0], iPage); /* Check that the range ends at an allocation boundrary. */ fOk = fOk && ( iPage + cPages == RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT || ASMBitTest(&pBlock->bmFirst[0], iPage + cPages) || !ASMBitTest(&pBlock->bmAlloc[0], iPage + cPages)); /* Check the other pages. */ uint32_t const iLastPage = iPage + cPages - 1; for (uint32_t i = iPage + 1; i < iLastPage && fOk; i++) fOk = ASMBitTest(&pBlock->bmAlloc[0], i) && !ASMBitTest(&pBlock->bmFirst[0], i); if (fOk) { /* * Free the memory. */ ASMBitClearRange(&pBlock->bmAlloc[0], iPage, iPage + cPages); ASMBitClear(&pBlock->bmFirst[0], iPage); pBlock->cFreePages += cPages; pHeap->cFreePages += cPages; pHeap->cFreeCalls++; if (!pHeap->pHint1 || pHeap->pHint1->cFreePages < pBlock->cFreePages) pHeap->pHint1 = pBlock; /* * Shrink the heap. Not very efficient because of the AVL tree. */ if ( pHeap->cFreePages >= RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT * 3 && pHeap->cFreePages >= pHeap->cHeapPages / 2 /* 50% free */ && pHeap->cFreeCalls - pHeap->uLastMinimizeCall > RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT ) { uint32_t cFreePageTarget = pHeap->cHeapPages / 4; /* 25% free */ while (pHeap->cFreePages > cFreePageTarget) { pHeap->uLastMinimizeCall = pHeap->cFreeCalls; pBlock = NULL; RTAvlrPVDoWithAll(&pHeap->BlockTree, false /*fFromLeft*/, rtHeapPageFindUnusedBlockCallback, &pBlock); if (!pBlock) break; void *pv2 = RTAvlrPVRemove(&pHeap->BlockTree, pBlock->Core.Key); Assert(pv2); NOREF(pv2); pHeap->cHeapPages -= RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT; pHeap->cFreePages -= RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT; pHeap->pHint1 = NULL; pHeap->pHint2 = NULL; RTCritSectLeave(&pHeap->CritSect); munmap(pBlock->Core.Key, RTMEMPAGEPOSIX_BLOCK_SIZE); pBlock->Core.Key = pBlock->Core.KeyLast = NULL; pBlock->cFreePages = 0; #ifdef RTALLOC_REPLACE_MALLOC if (g_pfnOrgFree) g_pfnOrgFree(pBlock); else #endif rtMemBaseFree(pBlock); RTCritSectEnter(&pHeap->CritSect); } } } else rc = VERR_INVALID_POINTER; } else rc = VERR_INVALID_POINTER; RTCritSectLeave(&pHeap->CritSect); } return rc; } /** * Initializes the heap. * * @returns IPRT status code * @param pvUser Unused. */ static DECLCALLBACK(int) rtMemPagePosixInitOnce(void *pvUser) { NOREF(pvUser); int rc = RTHeapPageInit(&g_MemPagePosixHeap, false /*fExec*/); if (RT_SUCCESS(rc)) { rc = RTHeapPageInit(&g_MemExecPosixHeap, true /*fExec*/); if (RT_SUCCESS(rc)) return rc; RTHeapPageDelete(&g_MemPagePosixHeap); } return rc; } /** * Allocates memory from the specified heap. * * @returns Address of the allocated memory. * @param cb The number of bytes to allocate. * @param pszTag The tag. * @param fZero Whether to zero the memory or not. * @param pHeap The heap to use. */ static void *rtMemPagePosixAlloc(size_t cb, const char *pszTag, bool fZero, PRTHEAPPAGE pHeap) { /* * Validate & adjust the input. */ Assert(cb > 0); NOREF(pszTag); cb = RT_ALIGN_Z(cb, PAGE_SIZE); /* * If the allocation is relatively large, we use mmap/munmap directly. */ void *pv; if (cb >= RTMEMPAGEPOSIX_MMAP_THRESHOLD) { pv = mmap(NULL, cb, PROT_READ | PROT_WRITE | (pHeap == &g_MemExecPosixHeap ? PROT_EXEC : 0), MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (pv != MAP_FAILED) { AssertPtr(pv); if (fZero) RT_BZERO(pv, cb); } else pv = NULL; } else { int rc = RTOnce(&g_MemPagePosixInitOnce, rtMemPagePosixInitOnce, NULL); if (RT_SUCCESS(rc)) rc = RTHeapPageAlloc(pHeap, cb >> PAGE_SHIFT, pszTag, fZero, &pv); if (RT_FAILURE(rc)) pv = NULL; } return pv; } /** * Free memory allocated by rtMemPagePosixAlloc. * * @param pv The address of the memory to free. * @param cb The size. * @param pHeap The heap. */ static void rtMemPagePosixFree(void *pv, size_t cb, PRTHEAPPAGE pHeap) { /* * Validate & adjust the input. */ if (!pv) return; AssertPtr(pv); Assert(cb > 0); Assert(!((uintptr_t)pv & PAGE_OFFSET_MASK)); cb = RT_ALIGN_Z(cb, PAGE_SIZE); /* * If the allocation is relatively large, we use mmap/munmap directly. */ if (cb >= RTMEMPAGEPOSIX_MMAP_THRESHOLD) { int rc = munmap(pv, cb); AssertMsg(rc == 0, ("rc=%d pv=%p cb=%#zx\n", rc, pv, cb)); NOREF(rc); } else { int rc = RTHeapPageFree(pHeap, pv, cb >> PAGE_SHIFT); AssertRC(rc); } } RTDECL(void *) RTMemPageAllocTag(size_t cb, const char *pszTag) RT_NO_THROW { return rtMemPagePosixAlloc(cb, pszTag, false /*fZero*/, &g_MemPagePosixHeap); } RTDECL(void *) RTMemPageAllocZTag(size_t cb, const char *pszTag) RT_NO_THROW { return rtMemPagePosixAlloc(cb, pszTag, true /*fZero*/, &g_MemPagePosixHeap); } RTDECL(void) RTMemPageFree(void *pv, size_t cb) RT_NO_THROW { return rtMemPagePosixFree(pv, cb, &g_MemPagePosixHeap); } RTDECL(void *) RTMemExecAllocTag(size_t cb, const char *pszTag) RT_NO_THROW { return rtMemPagePosixAlloc(cb, pszTag, false /*fZero*/, &g_MemExecPosixHeap); } RTDECL(void) RTMemExecFree(void *pv, size_t cb) RT_NO_THROW { return rtMemPagePosixFree(pv, cb, &g_MemExecPosixHeap); }