/* $Id: semevent-posix.cpp 25638 2010-01-04 16:08:04Z vboxsync $ */ /** @file * IPRT - Event Semaphore, POSIX. */ /* * Copyright (C) 2006-2010 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include #include "internal/iprt.h" #include #include #include #include #include #include "internal/strict.h" #include #include #include #include #ifdef RT_OS_DARWIN # define pthread_yield() pthread_yield_np() #endif #ifdef RT_OS_SOLARIS # include # define pthread_yield() sched_yield() #endif /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** Internal representation of the POSIX implementation of an Event semaphore. * The POSIX implementation uses a mutex and a condition variable to implement * the automatic reset event semaphore semantics. */ struct RTSEMEVENTINTERNAL { /** pthread condition. */ pthread_cond_t Cond; /** pthread mutex which protects the condition and the event state. */ pthread_mutex_t Mutex; /** The state of the semaphore. * This is operated while owning mutex and using atomic updating. */ volatile uint32_t u32State; /** Number of waiters. */ volatile uint32_t cWaiters; #ifdef RTSEMEVENT_STRICT /** Signallers. */ RTLOCKVALRECSHRD Signallers; /** Indicates that lock validation should be performed. */ bool volatile fEverHadSignallers; #endif }; /** The valus of the u32State variable in a RTSEMEVENTINTERNAL. * @{ */ /** The object isn't initialized. */ #define EVENT_STATE_UNINITIALIZED 0 /** The semaphore is signaled. */ #define EVENT_STATE_SIGNALED 0xff00ff00 /** The semaphore is not signaled. */ #define EVENT_STATE_NOT_SIGNALED 0x00ff00ff /** @} */ RTDECL(int) RTSemEventCreate(PRTSEMEVENT pEventSem) { int rc; /* * Allocate semaphore handle. */ struct RTSEMEVENTINTERNAL *pThis = (struct RTSEMEVENTINTERNAL *)RTMemAlloc(sizeof(struct RTSEMEVENTINTERNAL)); if (pThis) { /* * Create the condition variable. */ pthread_condattr_t CondAttr; rc = pthread_condattr_init(&CondAttr); if (!rc) { rc = pthread_cond_init(&pThis->Cond, &CondAttr); if (!rc) { /* * Create the semaphore. */ pthread_mutexattr_t MutexAttr; rc = pthread_mutexattr_init(&MutexAttr); if (!rc) { rc = pthread_mutex_init(&pThis->Mutex, &MutexAttr); if (!rc) { pthread_mutexattr_destroy(&MutexAttr); pthread_condattr_destroy(&CondAttr); ASMAtomicXchgU32(&pThis->u32State, EVENT_STATE_NOT_SIGNALED); ASMAtomicXchgU32(&pThis->cWaiters, 0); #ifdef RTSEMEVENT_STRICT RTLockValidatorRecSharedInit(&pThis->Signallers, NIL_RTLOCKVALIDATORCLASS, RTLOCKVALIDATOR_SUB_CLASS_ANY, "RTSemEvent", pThis, true /*fSignaller*/); pThis->fEverHadSignallers = false; #endif *pEventSem = pThis; return VINF_SUCCESS; } pthread_mutexattr_destroy(&MutexAttr); } pthread_cond_destroy(&pThis->Cond); } pthread_condattr_destroy(&CondAttr); } rc = RTErrConvertFromErrno(rc); RTMemFree(pThis); } else rc = VERR_NO_MEMORY; return rc; } RTDECL(int) RTSemEventDestroy(RTSEMEVENT EventSem) { /* * Validate handle. */ struct RTSEMEVENTINTERNAL *pThis = EventSem; if (pThis == NIL_RTSEMEVENT) /* don't bitch */ return VERR_INVALID_HANDLE; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); uint32_t u32 = pThis->u32State; AssertReturn(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED, VERR_INVALID_HANDLE); /* * Abort all waiters forcing them to return failure. */ int rc; for (int i = 30; i > 0; i--) { ASMAtomicXchgU32(&pThis->u32State, EVENT_STATE_UNINITIALIZED); rc = pthread_cond_destroy(&pThis->Cond); if (rc != EBUSY) break; pthread_cond_broadcast(&pThis->Cond); usleep(1000); } if (rc) { AssertMsgFailed(("Failed to destroy event sem %p, rc=%d.\n", EventSem, rc)); return RTErrConvertFromErrno(rc); } /* * Destroy the semaphore * If it's busy we'll wait a bit to give the threads a chance to be scheduled. */ for (int i = 30; i > 0; i--) { rc = pthread_mutex_destroy(&pThis->Mutex); if (rc != EBUSY) break; usleep(1000); } if (rc) { AssertMsgFailed(("Failed to destroy event sem %p, rc=%d. (mutex)\n", EventSem, rc)); return RTErrConvertFromErrno(rc); } /* * Free the semaphore memory and be gone. */ #ifdef RTSEMEVENT_STRICT RTLockValidatorRecSharedDelete(&pThis->Signallers); #endif RTMemFree(pThis); return VINF_SUCCESS; } RTDECL(int) RTSemEventSignal(RTSEMEVENT EventSem) { /* * Validate input. */ struct RTSEMEVENTINTERNAL *pThis = EventSem; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); uint32_t u32 = pThis->u32State; AssertReturn(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED, VERR_INVALID_HANDLE); #ifdef RTSEMEVENT_STRICT if (pThis->fEverHadSignallers) { int rc9 = RTLockValidatorRecSharedCheckSignaller(&pThis->Signallers, NIL_RTTHREAD); if (RT_FAILURE(rc9)) return rc9; } #endif /* * Lock the mutex semaphore. */ int rc = pthread_mutex_lock(&pThis->Mutex); if (rc) { AssertMsgFailed(("Failed to lock event sem %p, rc=%d.\n", EventSem, rc)); return RTErrConvertFromErrno(rc); } /* * Check the state. */ if (pThis->u32State == EVENT_STATE_NOT_SIGNALED) { ASMAtomicXchgU32(&pThis->u32State, EVENT_STATE_SIGNALED); rc = pthread_cond_signal(&pThis->Cond); AssertMsg(!rc, ("Failed to signal event sem %p, rc=%d.\n", EventSem, rc)); } else if (pThis->u32State == EVENT_STATE_SIGNALED) { rc = pthread_cond_signal(&pThis->Cond); /* give'm another kick... */ AssertMsg(!rc, ("Failed to signal event sem %p, rc=%d. (2)\n", EventSem, rc)); } else rc = VERR_SEM_DESTROYED; /* * Release the mutex and return. */ int rc2 = pthread_mutex_unlock(&pThis->Mutex); AssertMsg(!rc2, ("Failed to unlock event sem %p, rc=%d.\n", EventSem, rc)); if (rc) return RTErrConvertFromErrno(rc); if (rc2) return RTErrConvertFromErrno(rc2); return VINF_SUCCESS; } DECL_FORCE_INLINE(int) rtSemEventWait(RTSEMEVENT EventSem, unsigned cMillies, bool fAutoResume) { PCRTLOCKVALSRCPOS pSrcPos = NULL; /* * Validate input. */ struct RTSEMEVENTINTERNAL *pThis = EventSem; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); uint32_t u32 = pThis->u32State; AssertReturn(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED, VERR_INVALID_HANDLE); /* * Timed or indefinite wait? */ if (cMillies == RT_INDEFINITE_WAIT) { /* for fairness, yield before going to sleep. */ if ( ASMAtomicIncU32(&pThis->cWaiters) > 1 && pThis->u32State == EVENT_STATE_SIGNALED) pthread_yield(); /* take mutex */ int rc = pthread_mutex_lock(&pThis->Mutex); if (rc) { ASMAtomicDecU32(&pThis->cWaiters); AssertMsgFailed(("Failed to lock event sem %p, rc=%d.\n", EventSem, rc)); return RTErrConvertFromErrno(rc); } for (;;) { /* check state. */ if (pThis->u32State == EVENT_STATE_SIGNALED) { ASMAtomicXchgU32(&pThis->u32State, EVENT_STATE_NOT_SIGNALED); ASMAtomicDecU32(&pThis->cWaiters); rc = pthread_mutex_unlock(&pThis->Mutex); AssertMsg(!rc, ("Failed to unlock event sem %p, rc=%d.\n", EventSem, rc)); NOREF(rc); return VINF_SUCCESS; } if (pThis->u32State == EVENT_STATE_UNINITIALIZED) { rc = pthread_mutex_unlock(&pThis->Mutex); AssertMsg(!rc, ("Failed to unlock event sem %p, rc=%d.\n", EventSem, rc)); NOREF(rc); return VERR_SEM_DESTROYED; } /* wait */ #ifdef RTSEMEVENT_STRICT RTTHREAD hThreadSelf = RTThreadSelfAutoAdopt(); if (pThis->fEverHadSignallers) { rc = RTLockValidatorRecSharedCheckBlocking(&pThis->Signallers, hThreadSelf, pSrcPos, false, RTTHREADSTATE_EVENT, true); if (RT_FAILURE(rc)) { ASMAtomicDecU32(&pThis->cWaiters); pthread_mutex_unlock(&pThis->Mutex); return rc; } } #else RTTHREAD hThreadSelf = RTThreadSelf(); #endif RTThreadBlocking(hThreadSelf, RTTHREADSTATE_EVENT, true); rc = pthread_cond_wait(&pThis->Cond, &pThis->Mutex); RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_EVENT); if (rc) { AssertMsgFailed(("Failed to wait on event sem %p, rc=%d.\n", EventSem, rc)); ASMAtomicDecU32(&pThis->cWaiters); int rc2 = pthread_mutex_unlock(&pThis->Mutex); AssertMsg(!rc2, ("Failed to unlock event sem %p, rc=%d.\n", EventSem, rc2)); NOREF(rc2); return RTErrConvertFromErrno(rc); } } } else { /* * Get current time and calc end of wait time. */ struct timespec ts = {0,0}; #ifdef RT_OS_DARWIN struct timeval tv = {0,0}; gettimeofday(&tv, NULL); ts.tv_sec = tv.tv_sec; ts.tv_nsec = tv.tv_usec * 1000; #else clock_gettime(CLOCK_REALTIME, &ts); #endif if (cMillies != 0) { ts.tv_nsec += (cMillies % 1000) * 1000000; ts.tv_sec += cMillies / 1000; if (ts.tv_nsec >= 1000000000) { ts.tv_nsec -= 1000000000; ts.tv_sec++; } } /* for fairness, yield before going to sleep. */ if (ASMAtomicIncU32(&pThis->cWaiters) > 1 && cMillies) pthread_yield(); /* take mutex */ int rc = pthread_mutex_lock(&pThis->Mutex); if (rc) { ASMAtomicDecU32(&pThis->cWaiters); AssertMsg(rc == ETIMEDOUT, ("Failed to lock event sem %p, rc=%d.\n", EventSem, rc)); return RTErrConvertFromErrno(rc); } for (;;) { /* check state. */ if (pThis->u32State == EVENT_STATE_SIGNALED) { ASMAtomicXchgU32(&pThis->u32State, EVENT_STATE_NOT_SIGNALED); ASMAtomicDecU32(&pThis->cWaiters); rc = pthread_mutex_unlock(&pThis->Mutex); AssertMsg(!rc, ("Failed to unlock event sem %p, rc=%d.\n", EventSem, rc)); NOREF(rc); return VINF_SUCCESS; } if (pThis->u32State == EVENT_STATE_UNINITIALIZED) { rc = pthread_mutex_unlock(&pThis->Mutex); AssertMsg(!rc, ("Failed to unlock event sem %p, rc=%d.\n", EventSem, rc)); NOREF(rc); return VERR_SEM_DESTROYED; } /* we're done if the timeout is 0. */ if (!cMillies) { ASMAtomicDecU32(&pThis->cWaiters); rc = pthread_mutex_unlock(&pThis->Mutex); return VERR_SEM_BUSY; } /* wait */ #ifdef RTSEMEVENT_STRICT RTTHREAD hThreadSelf = RTThreadSelfAutoAdopt(); if (pThis->fEverHadSignallers) { rc = RTLockValidatorRecSharedCheckBlocking(&pThis->Signallers, hThreadSelf, pSrcPos, false, RTTHREADSTATE_EVENT, true); if (RT_FAILURE(rc)) { ASMAtomicDecU32(&pThis->cWaiters); pthread_mutex_unlock(&pThis->Mutex); return rc; } } #else RTTHREAD hThreadSelf = RTThreadSelf(); #endif RTThreadBlocking(hThreadSelf, RTTHREADSTATE_EVENT, true); rc = pthread_cond_timedwait(&pThis->Cond, &pThis->Mutex, &ts); RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_EVENT); if (rc && (rc != EINTR || !fAutoResume)) /* according to SuS this function shall not return EINTR, but linux man page says differently. */ { AssertMsg(rc == ETIMEDOUT, ("Failed to wait on event sem %p, rc=%d.\n", EventSem, rc)); ASMAtomicDecU32(&pThis->cWaiters); int rc2 = pthread_mutex_unlock(&pThis->Mutex); AssertMsg(!rc2, ("Failed to unlock event sem %p, rc2=%d.\n", EventSem, rc2)); NOREF(rc2); return RTErrConvertFromErrno(rc); } } /* for (;;) */ } } RTDECL(int) RTSemEventWait(RTSEMEVENT EventSem, unsigned cMillies) { int rc = rtSemEventWait(EventSem, cMillies, true); Assert(rc != VERR_INTERRUPTED); return rc; } RTDECL(int) RTSemEventWaitNoResume(RTSEMEVENT EventSem, unsigned cMillies) { return rtSemEventWait(EventSem, cMillies, false); } RTDECL(void) RTSemEventSetSignaller(RTSEMEVENT hEventSem, RTTHREAD hThread) { #ifdef RTSEMEVENT_STRICT struct RTSEMEVENTINTERNAL *pThis = hEventSem; AssertPtrReturnVoid(pThis); uint32_t u32 = pThis->u32State; AssertReturnVoid(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED); ASMAtomicWriteBool(&pThis->fEverHadSignallers, true); RTLockValidatorRecSharedResetOwner(&pThis->Signallers, hThread, NULL); #endif } RTDECL(void) RTSemEventAddSignaller(RTSEMEVENT hEventSem, RTTHREAD hThread) { #ifdef RTSEMEVENT_STRICT struct RTSEMEVENTINTERNAL *pThis = hEventSem; AssertPtrReturnVoid(pThis); uint32_t u32 = pThis->u32State; AssertReturnVoid(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED); ASMAtomicWriteBool(&pThis->fEverHadSignallers, true); RTLockValidatorRecSharedAddOwner(&pThis->Signallers, hThread, NULL); #endif } RTDECL(void) RTSemEventRemoveSignaller(RTSEMEVENT hEventSem, RTTHREAD hThread) { #ifdef RTSEMEVENT_STRICT struct RTSEMEVENTINTERNAL *pThis = hEventSem; AssertPtrReturnVoid(pThis); uint32_t u32 = pThis->u32State; AssertReturnVoid(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED); RTLockValidatorRecSharedRemoveOwner(&pThis->Signallers, hThread); #endif }