VirtualBox

source: vbox/trunk/src/VBox/Runtime/r3/socket.cpp@ 78338

Last change on this file since 78338 was 76553, checked in by vboxsync, 6 years ago

scm --update-copyright-year

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 93.2 KB
Line 
1/* $Id: socket.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */
2/** @file
3 * IPRT - Network Sockets.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#ifdef RT_OS_WINDOWS
32# include <iprt/win/winsock2.h>
33# include <iprt/win/ws2tcpip.h>
34#else /* !RT_OS_WINDOWS */
35# include <errno.h>
36# include <sys/select.h>
37# include <sys/stat.h>
38# include <sys/socket.h>
39# include <netinet/in.h>
40# include <netinet/tcp.h>
41# include <arpa/inet.h>
42# ifdef IPRT_WITH_TCPIP_V6
43# include <netinet6/in6.h>
44# endif
45# include <sys/un.h>
46# include <netdb.h>
47# include <unistd.h>
48# include <fcntl.h>
49# include <sys/uio.h>
50#endif /* !RT_OS_WINDOWS */
51#include <limits.h>
52
53#include "internal/iprt.h"
54#include <iprt/socket.h>
55
56#include <iprt/alloca.h>
57#include <iprt/asm.h>
58#include <iprt/assert.h>
59#include <iprt/ctype.h>
60#include <iprt/err.h>
61#include <iprt/mempool.h>
62#include <iprt/poll.h>
63#include <iprt/string.h>
64#include <iprt/thread.h>
65#include <iprt/time.h>
66#include <iprt/mem.h>
67#include <iprt/sg.h>
68#include <iprt/log.h>
69
70#include "internal/magics.h"
71#include "internal/socket.h"
72#include "internal/string.h"
73#ifdef RT_OS_WINDOWS
74# include "win/internal-r3-win.h"
75#endif
76
77
78/*********************************************************************************************************************************
79* Defined Constants And Macros *
80*********************************************************************************************************************************/
81/* non-standard linux stuff (it seems). */
82#ifndef MSG_NOSIGNAL
83# define MSG_NOSIGNAL 0
84#endif
85
86/* Windows has different names for SHUT_XXX. */
87#ifndef SHUT_RDWR
88# ifdef SD_BOTH
89# define SHUT_RDWR SD_BOTH
90# else
91# define SHUT_RDWR 2
92# endif
93#endif
94#ifndef SHUT_WR
95# ifdef SD_SEND
96# define SHUT_WR SD_SEND
97# else
98# define SHUT_WR 1
99# endif
100#endif
101#ifndef SHUT_RD
102# ifdef SD_RECEIVE
103# define SHUT_RD SD_RECEIVE
104# else
105# define SHUT_RD 0
106# endif
107#endif
108
109/* fixup backlevel OSes. */
110#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS)
111# define socklen_t int
112#endif
113
114/** How many pending connection. */
115#define RTTCP_SERVER_BACKLOG 10
116
117/* Limit read and write sizes on Windows and OS/2. */
118#ifdef RT_OS_WINDOWS
119# define RTSOCKET_MAX_WRITE (INT_MAX / 2)
120# define RTSOCKET_MAX_READ (INT_MAX / 2)
121#elif defined(RT_OS_OS2)
122# define RTSOCKET_MAX_WRITE 0x10000
123# define RTSOCKET_MAX_READ 0x10000
124#endif
125
126
127/*********************************************************************************************************************************
128* Structures and Typedefs *
129*********************************************************************************************************************************/
130/**
131 * Socket handle data.
132 *
133 * This is mainly required for implementing RTPollSet on Windows.
134 */
135typedef struct RTSOCKETINT
136{
137 /** Magic number (RTSOCKET_MAGIC). */
138 uint32_t u32Magic;
139 /** Exclusive user count.
140 * This is used to prevent two threads from accessing the handle concurrently.
141 * It can be higher than 1 if this handle is reference multiple times in a
142 * polling set (Windows). */
143 uint32_t volatile cUsers;
144 /** The native socket handle. */
145 RTSOCKETNATIVE hNative;
146 /** Indicates whether the handle has been closed or not. */
147 bool volatile fClosed;
148 /** Indicates whether the socket is operating in blocking or non-blocking mode
149 * currently. */
150 bool fBlocking;
151#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
152 /** The pollset currently polling this socket. This is NIL if no one is
153 * polling. */
154 RTPOLLSET hPollSet;
155#endif
156#ifdef RT_OS_WINDOWS
157 /** The event semaphore we've associated with the socket handle.
158 * This is WSA_INVALID_EVENT if not done. */
159 WSAEVENT hEvent;
160 /** The events we're polling for. */
161 uint32_t fPollEvts;
162 /** The events we're currently subscribing to with WSAEventSelect.
163 * This is ZERO if we're currently not subscribing to anything. */
164 uint32_t fSubscribedEvts;
165 /** Saved events which are only posted once and events harvested for
166 * sockets entered multiple times into to a poll set. Imagine a scenario where
167 * you have a RTPOLL_EVT_READ entry and RTPOLL_EVT_ERROR entry. The READ
168 * condition can be triggered between checking the READ entry and the ERROR
169 * entry, and we don't want to drop the READ, so we store it here and make sure
170 * the event is signalled.
171 *
172 * The RTPOLL_EVT_ERROR is inconsistenly sticky at the momemnt... */
173 uint32_t fEventsSaved;
174 /** Set if fEventsSaved contains harvested events (used to avoid multiple
175 * calls to rtSocketPollCheck on the same socket during rtSocketPollDone). */
176 bool fHarvestedEvents;
177 /** Set if we're using the polling fallback. */
178 bool fPollFallback;
179 /** Set if the fallback polling is active (event not set). */
180 bool volatile fPollFallbackActive;
181 /** Set to shut down the fallback polling thread. */
182 bool volatile fPollFallbackShutdown;
183 /** Socket use to wake up the select thread. */
184 RTSOCKETNATIVE hPollFallbackNotifyW;
185 /** Socket the select thread always waits on. */
186 RTSOCKETNATIVE hPollFallbackNotifyR;
187 /** The fallback polling thread. */
188 RTTHREAD hPollFallbackThread;
189#endif /* RT_OS_WINDOWS */
190} RTSOCKETINT;
191
192
193/**
194 * Address union used internally for things like getpeername and getsockname.
195 */
196typedef union RTSOCKADDRUNION
197{
198 struct sockaddr Addr;
199 struct sockaddr_in IPv4;
200#ifdef IPRT_WITH_TCPIP_V6
201 struct sockaddr_in6 IPv6;
202#endif
203} RTSOCKADDRUNION;
204
205
206/*********************************************************************************************************************************
207* Global Variables *
208*********************************************************************************************************************************/
209#ifdef RT_OS_WINDOWS
210/** Indicates that we've successfully initialized winsock. */
211static uint32_t volatile g_uWinSockInitedVersion = 0;
212#endif
213
214
215/*********************************************************************************************************************************
216* Internal Functions *
217*********************************************************************************************************************************/
218#ifdef RT_OS_WINDOWS
219static void rtSocketPokePollFallbackThread(RTSOCKETINT *pThis);
220#endif
221
222
223
224#ifdef RT_OS_WINDOWS
225/**
226 * Initializes winsock for the process.
227 *
228 * @returns IPRT status code.
229 */
230static int rtSocketInitWinsock(void)
231{
232 if (g_uWinSockInitedVersion != 0)
233 return VINF_SUCCESS;
234
235 if ( !g_pfnWSAGetLastError
236 || !g_pfnWSAStartup
237 || !g_pfnsocket
238 || !g_pfnclosesocket)
239 return VERR_NET_INIT_FAILED;
240
241 /*
242 * Initialize winsock. Try with 2.2 and back down till we get something that works.
243 */
244 static const WORD s_awVersions[] =
245 {
246 MAKEWORD(2, 2),
247 MAKEWORD(2, 1),
248 MAKEWORD(2, 0),
249 MAKEWORD(1, 1),
250 MAKEWORD(1, 0),
251 };
252 for (uint32_t i = 0; i < RT_ELEMENTS(s_awVersions); i++)
253 {
254 WSADATA wsaData;
255 RT_ZERO(wsaData);
256 int rcWsa = g_pfnWSAStartup(s_awVersions[i], &wsaData);
257 if (rcWsa == 0)
258 {
259 /* AssertMsg(wsaData.wVersion >= s_awVersions[i]); - triggers with winsock 1.1 */
260 ASMAtomicWriteU32(&g_uWinSockInitedVersion, wsaData.wVersion);
261 return VINF_SUCCESS;
262 }
263 AssertLogRelMsg(rcWsa == WSAVERNOTSUPPORTED, ("rcWsa=%d (winsock version %#x)\n", rcWsa, s_awVersions[i]));
264 }
265 LogRel(("Failed to init winsock!\n"));
266 return VERR_NET_INIT_FAILED;
267}
268#endif
269
270
271/**
272 * Get the last error as an iprt status code.
273 *
274 * @returns IPRT status code.
275 */
276DECLINLINE(int) rtSocketError(void)
277{
278#ifdef RT_OS_WINDOWS
279 if (g_pfnWSAGetLastError)
280 return RTErrConvertFromWin32(g_pfnWSAGetLastError());
281 return VERR_NET_IO_ERROR;
282#else
283 return RTErrConvertFromErrno(errno);
284#endif
285}
286
287
288/**
289 * Resets the last error.
290 */
291DECLINLINE(void) rtSocketErrorReset(void)
292{
293#ifdef RT_OS_WINDOWS
294 if (g_pfnWSASetLastError)
295 g_pfnWSASetLastError(0);
296#else
297 errno = 0;
298#endif
299}
300
301
302/**
303 * Get the last resolver error as an iprt status code.
304 *
305 * @returns iprt status code.
306 */
307DECLHIDDEN(int) rtSocketResolverError(void)
308{
309#ifdef RT_OS_WINDOWS
310 if (g_pfnWSAGetLastError)
311 return RTErrConvertFromWin32(g_pfnWSAGetLastError());
312 return VERR_UNRESOLVED_ERROR;
313#else
314 switch (h_errno)
315 {
316 case HOST_NOT_FOUND:
317 return VERR_NET_HOST_NOT_FOUND;
318 case NO_DATA:
319 return VERR_NET_ADDRESS_NOT_AVAILABLE;
320 case NO_RECOVERY:
321 return VERR_IO_GEN_FAILURE;
322 case TRY_AGAIN:
323 return VERR_TRY_AGAIN;
324
325 default:
326 AssertLogRelMsgFailed(("Unhandled error %u\n", h_errno));
327 return VERR_UNRESOLVED_ERROR;
328 }
329#endif
330}
331
332
333/**
334 * Converts from a native socket address to a generic IPRT network address.
335 *
336 * @returns IPRT status code.
337 * @param pSrc The source address.
338 * @param cbSrc The size of the source address.
339 * @param pAddr Where to return the generic IPRT network
340 * address.
341 */
342static int rtSocketNetAddrFromAddr(RTSOCKADDRUNION const *pSrc, size_t cbSrc, PRTNETADDR pAddr)
343{
344 /*
345 * Convert the address.
346 */
347 if ( cbSrc == sizeof(struct sockaddr_in)
348 && pSrc->Addr.sa_family == AF_INET)
349 {
350 RT_ZERO(*pAddr);
351 pAddr->enmType = RTNETADDRTYPE_IPV4;
352 pAddr->uPort = RT_N2H_U16(pSrc->IPv4.sin_port);
353 pAddr->uAddr.IPv4.u = pSrc->IPv4.sin_addr.s_addr;
354 }
355#ifdef IPRT_WITH_TCPIP_V6
356 else if ( cbSrc == sizeof(struct sockaddr_in6)
357 && pSrc->Addr.sa_family == AF_INET6)
358 {
359 RT_ZERO(*pAddr);
360 pAddr->enmType = RTNETADDRTYPE_IPV6;
361 pAddr->uPort = RT_N2H_U16(pSrc->IPv6.sin6_port);
362 pAddr->uAddr.IPv6.au32[0] = pSrc->IPv6.sin6_addr.s6_addr32[0];
363 pAddr->uAddr.IPv6.au32[1] = pSrc->IPv6.sin6_addr.s6_addr32[1];
364 pAddr->uAddr.IPv6.au32[2] = pSrc->IPv6.sin6_addr.s6_addr32[2];
365 pAddr->uAddr.IPv6.au32[3] = pSrc->IPv6.sin6_addr.s6_addr32[3];
366 }
367#endif
368 else
369 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
370 return VINF_SUCCESS;
371}
372
373
374/**
375 * Converts from a generic IPRT network address to a native socket address.
376 *
377 * @returns IPRT status code.
378 * @param pAddr Pointer to the generic IPRT network address.
379 * @param pDst The source address.
380 * @param cbDst The size of the source address.
381 * @param pcbAddr Where to store the size of the returned address.
382 * Optional
383 */
384static int rtSocketAddrFromNetAddr(PCRTNETADDR pAddr, RTSOCKADDRUNION *pDst, size_t cbDst, int *pcbAddr)
385{
386 RT_BZERO(pDst, cbDst);
387 if ( pAddr->enmType == RTNETADDRTYPE_IPV4
388 && cbDst >= sizeof(struct sockaddr_in))
389 {
390 pDst->Addr.sa_family = AF_INET;
391 pDst->IPv4.sin_port = RT_H2N_U16(pAddr->uPort);
392 pDst->IPv4.sin_addr.s_addr = pAddr->uAddr.IPv4.u;
393 if (pcbAddr)
394 *pcbAddr = sizeof(pDst->IPv4);
395 }
396#ifdef IPRT_WITH_TCPIP_V6
397 else if ( pAddr->enmType == RTNETADDRTYPE_IPV6
398 && cbDst >= sizeof(struct sockaddr_in6))
399 {
400 pDst->Addr.sa_family = AF_INET6;
401 pDst->IPv6.sin6_port = RT_H2N_U16(pAddr->uPort);
402 pSrc->IPv6.sin6_addr.s6_addr32[0] = pAddr->uAddr.IPv6.au32[0];
403 pSrc->IPv6.sin6_addr.s6_addr32[1] = pAddr->uAddr.IPv6.au32[1];
404 pSrc->IPv6.sin6_addr.s6_addr32[2] = pAddr->uAddr.IPv6.au32[2];
405 pSrc->IPv6.sin6_addr.s6_addr32[3] = pAddr->uAddr.IPv6.au32[3];
406 if (pcbAddr)
407 *pcbAddr = sizeof(pDst->IPv6);
408 }
409#endif
410 else
411 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
412 return VINF_SUCCESS;
413}
414
415
416/**
417 * Tries to lock the socket for exclusive usage by the calling thread.
418 *
419 * Call rtSocketUnlock() to unlock.
420 *
421 * @returns @c true if locked, @c false if not.
422 * @param pThis The socket structure.
423 */
424DECLINLINE(bool) rtSocketTryLock(RTSOCKETINT *pThis)
425{
426 return ASMAtomicCmpXchgU32(&pThis->cUsers, 1, 0);
427}
428
429
430/**
431 * Unlocks the socket.
432 *
433 * @param pThis The socket structure.
434 */
435DECLINLINE(void) rtSocketUnlock(RTSOCKETINT *pThis)
436{
437 ASMAtomicCmpXchgU32(&pThis->cUsers, 0, 1);
438}
439
440
441/**
442 * The slow path of rtSocketSwitchBlockingMode that does the actual switching.
443 *
444 * @returns IPRT status code.
445 * @param pThis The socket structure.
446 * @param fBlocking The desired mode of operation.
447 * @remarks Do not call directly.
448 */
449static int rtSocketSwitchBlockingModeSlow(RTSOCKETINT *pThis, bool fBlocking)
450{
451#ifdef RT_OS_WINDOWS
452 AssertReturn(g_pfnioctlsocket, VERR_NET_NOT_UNSUPPORTED);
453 u_long uBlocking = fBlocking ? 0 : 1;
454 if (g_pfnioctlsocket(pThis->hNative, FIONBIO, &uBlocking))
455 return rtSocketError();
456
457#else
458 int fFlags = fcntl(pThis->hNative, F_GETFL, 0);
459 if (fFlags == -1)
460 return rtSocketError();
461
462 if (fBlocking)
463 fFlags &= ~O_NONBLOCK;
464 else
465 fFlags |= O_NONBLOCK;
466 if (fcntl(pThis->hNative, F_SETFL, fFlags) == -1)
467 return rtSocketError();
468#endif
469
470 pThis->fBlocking = fBlocking;
471 return VINF_SUCCESS;
472}
473
474
475/**
476 * Switches the socket to the desired blocking mode if necessary.
477 *
478 * The socket must be locked.
479 *
480 * @returns IPRT status code.
481 * @param pThis The socket structure.
482 * @param fBlocking The desired mode of operation.
483 */
484DECLINLINE(int) rtSocketSwitchBlockingMode(RTSOCKETINT *pThis, bool fBlocking)
485{
486 if (pThis->fBlocking != fBlocking)
487 return rtSocketSwitchBlockingModeSlow(pThis, fBlocking);
488 return VINF_SUCCESS;
489}
490
491
492/**
493 * Creates an IPRT socket handle for a native one.
494 *
495 * @returns IPRT status code.
496 * @param ppSocket Where to return the IPRT socket handle.
497 * @param hNative The native handle.
498 */
499DECLHIDDEN(int) rtSocketCreateForNative(RTSOCKETINT **ppSocket, RTSOCKETNATIVE hNative)
500{
501 RTSOCKETINT *pThis = (RTSOCKETINT *)RTMemPoolAlloc(RTMEMPOOL_DEFAULT, sizeof(*pThis));
502 if (!pThis)
503 return VERR_NO_MEMORY;
504 pThis->u32Magic = RTSOCKET_MAGIC;
505 pThis->cUsers = 0;
506 pThis->hNative = hNative;
507 pThis->fClosed = false;
508 pThis->fBlocking = true;
509#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
510 pThis->hPollSet = NIL_RTPOLLSET;
511#endif
512#ifdef RT_OS_WINDOWS
513 pThis->hEvent = WSA_INVALID_EVENT;
514 pThis->fPollEvts = 0;
515 pThis->fSubscribedEvts = 0;
516 pThis->fEventsSaved = 0;
517 pThis->fHarvestedEvents = false;
518 pThis->fPollFallback = g_uWinSockInitedVersion < MAKEWORD(2, 0)
519 || g_pfnWSACreateEvent == NULL
520 || g_pfnWSACloseEvent == NULL
521 || g_pfnWSAEventSelect == NULL
522 || g_pfnWSAEnumNetworkEvents == NULL;
523 pThis->fPollFallbackActive = false;
524 pThis->fPollFallbackShutdown = false;
525 pThis->hPollFallbackNotifyR = NIL_RTSOCKETNATIVE;
526 pThis->hPollFallbackNotifyW = NIL_RTSOCKETNATIVE;
527 pThis->hPollFallbackThread = NIL_RTTHREAD;
528#endif
529 *ppSocket = pThis;
530 return VINF_SUCCESS;
531}
532
533
534RTDECL(int) RTSocketFromNative(PRTSOCKET phSocket, RTHCINTPTR uNative)
535{
536 AssertReturn(uNative != NIL_RTSOCKETNATIVE, VERR_INVALID_PARAMETER);
537#ifndef RT_OS_WINDOWS
538 AssertReturn(uNative >= 0, VERR_INVALID_PARAMETER);
539#endif
540 AssertPtrReturn(phSocket, VERR_INVALID_POINTER);
541 return rtSocketCreateForNative(phSocket, uNative);
542}
543
544
545/**
546 * Wrapper around socket().
547 *
548 * @returns IPRT status code.
549 * @param phSocket Where to store the handle to the socket on
550 * success.
551 * @param iDomain The protocol family (PF_XXX).
552 * @param iType The socket type (SOCK_XXX).
553 * @param iProtocol Socket parameter, usually 0.
554 */
555DECLHIDDEN(int) rtSocketCreate(PRTSOCKET phSocket, int iDomain, int iType, int iProtocol)
556{
557#ifdef RT_OS_WINDOWS
558 AssertReturn(g_pfnsocket, VERR_NET_NOT_UNSUPPORTED);
559 AssertReturn(g_pfnclosesocket, VERR_NET_NOT_UNSUPPORTED);
560
561 /* Initialize WinSock. */
562 int rc2 = rtSocketInitWinsock();
563 if (RT_FAILURE(rc2))
564 return rc2;
565#endif
566
567 /*
568 * Create the socket.
569 */
570#ifdef RT_OS_WINDOWS
571 RTSOCKETNATIVE hNative = g_pfnsocket(iDomain, iType, iProtocol);
572#else
573 RTSOCKETNATIVE hNative = socket(iDomain, iType, iProtocol);
574#endif
575 if (hNative == NIL_RTSOCKETNATIVE)
576 return rtSocketError();
577
578 /*
579 * Wrap it.
580 */
581 int rc = rtSocketCreateForNative(phSocket, hNative);
582 if (RT_FAILURE(rc))
583 {
584#ifdef RT_OS_WINDOWS
585 g_pfnclosesocket(hNative);
586#else
587 close(hNative);
588#endif
589 }
590 return rc;
591}
592
593
594/**
595 * Wrapper around socketpair() for creating a local TCP connection.
596 *
597 * @returns IPRT status code.
598 * @param phServer Where to return the first native socket.
599 * @param phClient Where to return the second native socket.
600 */
601static int rtSocketCreateNativeTcpPair(RTSOCKETNATIVE *phServer, RTSOCKETNATIVE *phClient)
602{
603#ifdef RT_OS_WINDOWS
604 /*
605 * Initialize WinSock and make sure we got the necessary APIs.
606 */
607 int rc = rtSocketInitWinsock();
608 if (RT_FAILURE(rc))
609 return rc;
610 AssertReturn(g_pfnsocket, VERR_NET_NOT_UNSUPPORTED);
611 AssertReturn(g_pfnclosesocket, VERR_NET_NOT_UNSUPPORTED);
612 AssertReturn(g_pfnsetsockopt, VERR_NET_NOT_UNSUPPORTED);
613 AssertReturn(g_pfnbind, VERR_NET_NOT_UNSUPPORTED);
614 AssertReturn(g_pfngetsockname, VERR_NET_NOT_UNSUPPORTED);
615 AssertReturn(g_pfnlisten, VERR_NET_NOT_UNSUPPORTED);
616 AssertReturn(g_pfnaccept, VERR_NET_NOT_UNSUPPORTED);
617 AssertReturn(g_pfnconnect, VERR_NET_NOT_UNSUPPORTED);
618
619 /*
620 * Create the "server" listen socket and the "client" socket.
621 */
622 RTSOCKETNATIVE hListener = g_pfnsocket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
623 if (hListener == NIL_RTSOCKETNATIVE)
624 return rtSocketError();
625 RTSOCKETNATIVE hClient = g_pfnsocket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
626 if (hClient != NIL_RTSOCKETNATIVE)
627 {
628
629 /*
630 * We let WinSock choose a port number when we bind.
631 */
632 union
633 {
634 struct sockaddr_in Ip;
635 struct sockaddr Generic;
636 } uAddr;
637 RT_ZERO(uAddr);
638 uAddr.Ip.sin_family = AF_INET;
639 uAddr.Ip.sin_addr.s_addr = RT_H2N_U32_C(INADDR_LOOPBACK);
640 //uAddr.Ip.sin_port = 0;
641 int fReuse = 1;
642 rc = g_pfnsetsockopt(hListener, SOL_SOCKET, SO_REUSEADDR, (const char *)&fReuse, sizeof(fReuse));
643 if (rc == 0)
644 {
645 rc = g_pfnbind(hListener, &uAddr.Generic, sizeof(uAddr.Ip));
646 if (rc == 0)
647 {
648 /*
649 * Get the address the client should connect to. According to the docs,
650 * we cannot assume that getsockname sets the IP and family.
651 */
652 RT_ZERO(uAddr);
653 int cbAddr = sizeof(uAddr.Ip);
654 rc = g_pfngetsockname(hListener, &uAddr.Generic, &cbAddr);
655 if (rc == 0)
656 {
657 uAddr.Ip.sin_family = AF_INET;
658 uAddr.Ip.sin_addr.s_addr = RT_H2N_U32_C(INADDR_LOOPBACK);
659
660 /*
661 * Listen, connect and accept.
662 */
663 rc = g_pfnlisten(hListener, 1 /*cBacklog*/);
664 if (rc == 0)
665 {
666 rc = g_pfnconnect(hClient, &uAddr.Generic, sizeof(uAddr.Ip));
667 if (rc == 0)
668 {
669 RTSOCKETNATIVE hServer = g_pfnaccept(hListener, NULL, NULL);
670 if (hServer != NIL_RTSOCKETNATIVE)
671 {
672 g_pfnclosesocket(hListener);
673
674 /*
675 * Done!
676 */
677 *phServer = hServer;
678 *phClient = hClient;
679 return VINF_SUCCESS;
680 }
681 }
682 }
683 }
684 }
685 }
686 rc = rtSocketError();
687 g_pfnclosesocket(hClient);
688 }
689 else
690 rc = rtSocketError();
691 g_pfnclosesocket(hListener);
692 return rc;
693
694#else
695 /*
696 * Got socket pair, so use it.
697 * Note! This isn't TCP per se, but it should fool the users.
698 */
699 int aSockets[2] = { -1, -1 };
700 if (socketpair(AF_LOCAL, SOCK_STREAM, 0, aSockets) == 0)
701 {
702 *phServer = aSockets[0];
703 *phClient = aSockets[1];
704 return VINF_SUCCESS;
705 }
706 return rtSocketError();
707#endif
708}
709
710
711/**
712 * Worker for RTTcpCreatePair.
713 *
714 * @returns IPRT status code.
715 * @param phServer Where to return the "server" side of the pair.
716 * @param phClient Where to return the "client" side of the pair.
717 * @note There is no server or client side, but we gotta call it something.
718 */
719DECLHIDDEN(int) rtSocketCreateTcpPair(RTSOCKET *phServer, RTSOCKET *phClient)
720{
721 RTSOCKETNATIVE hServer = NIL_RTSOCKETNATIVE;
722 RTSOCKETNATIVE hClient = NIL_RTSOCKETNATIVE;
723 int rc = rtSocketCreateNativeTcpPair(&hServer, &hClient);
724 if (RT_SUCCESS(rc))
725 {
726 rc = rtSocketCreateForNative(phServer, hServer);
727 if (RT_SUCCESS(rc))
728 {
729 rc = rtSocketCreateForNative(phClient, hClient);
730 if (RT_SUCCESS(rc))
731 return VINF_SUCCESS;
732 RTSocketRelease(*phServer);
733 }
734 else
735 {
736#ifdef RT_OS_WINDOWS
737 g_pfnclosesocket(hServer);
738#else
739 close(hServer);
740#endif
741 }
742#ifdef RT_OS_WINDOWS
743 g_pfnclosesocket(hClient);
744#else
745 close(hClient);
746#endif
747 }
748
749 *phServer = NIL_RTSOCKET;
750 *phClient = NIL_RTSOCKET;
751 return rc;
752}
753
754
755RTDECL(uint32_t) RTSocketRetain(RTSOCKET hSocket)
756{
757 RTSOCKETINT *pThis = hSocket;
758 AssertPtrReturn(pThis, UINT32_MAX);
759 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
760 return RTMemPoolRetain(pThis);
761}
762
763
764/**
765 * Worker for RTSocketRelease and RTSocketClose.
766 *
767 * @returns IPRT status code.
768 * @param pThis The socket handle instance data.
769 * @param fDestroy Whether we're reaching ref count zero.
770 */
771static int rtSocketCloseIt(RTSOCKETINT *pThis, bool fDestroy)
772{
773 /*
774 * Invalidate the handle structure on destroy.
775 */
776 if (fDestroy)
777 {
778 Assert(ASMAtomicReadU32(&pThis->u32Magic) == RTSOCKET_MAGIC);
779 ASMAtomicWriteU32(&pThis->u32Magic, RTSOCKET_MAGIC_DEAD);
780 }
781
782 int rc = VINF_SUCCESS;
783 if (ASMAtomicCmpXchgBool(&pThis->fClosed, true, false))
784 {
785#ifdef RT_OS_WINDOWS
786 /*
787 * Poke the polling thread if active and give it a small chance to stop.
788 */
789 if ( pThis->fPollFallback
790 && pThis->hPollFallbackThread != NIL_RTTHREAD)
791 {
792 ASMAtomicWriteBool(&pThis->fPollFallbackShutdown, true);
793 rtSocketPokePollFallbackThread(pThis);
794 int rc2 = RTThreadWait(pThis->hPollFallbackThread, RT_MS_1SEC, NULL);
795 if (RT_SUCCESS(rc2))
796 pThis->hPollFallbackThread = NIL_RTTHREAD;
797 }
798#endif
799
800 /*
801 * Close the native handle.
802 */
803 RTSOCKETNATIVE hNative = pThis->hNative;
804 if (hNative != NIL_RTSOCKETNATIVE)
805 {
806 pThis->hNative = NIL_RTSOCKETNATIVE;
807
808#ifdef RT_OS_WINDOWS
809 AssertReturn(g_pfnclosesocket, VERR_NET_NOT_UNSUPPORTED);
810 if (g_pfnclosesocket(hNative))
811#else
812 if (close(hNative))
813#endif
814 {
815 rc = rtSocketError();
816#ifdef RT_OS_WINDOWS
817 AssertMsgFailed(("closesocket(%p) -> %Rrc\n", (uintptr_t)hNative, rc));
818#else
819 AssertMsgFailed(("close(%d) -> %Rrc\n", hNative, rc));
820#endif
821 }
822 }
823
824#ifdef RT_OS_WINDOWS
825 /*
826 * Windows specific polling cleanup.
827 */
828 WSAEVENT hEvent = pThis->hEvent;
829 if (hEvent != WSA_INVALID_EVENT)
830 {
831 pThis->hEvent = WSA_INVALID_EVENT;
832 if (!pThis->fPollFallback)
833 {
834 Assert(g_pfnWSACloseEvent);
835 if (g_pfnWSACloseEvent)
836 g_pfnWSACloseEvent(hEvent);
837 }
838 else
839 CloseHandle(hEvent);
840 }
841
842 if (pThis->fPollFallback)
843 {
844 if (pThis->hPollFallbackNotifyW != NIL_RTSOCKETNATIVE)
845 {
846 g_pfnclosesocket(pThis->hPollFallbackNotifyW);
847 pThis->hPollFallbackNotifyW = NIL_RTSOCKETNATIVE;
848 }
849
850 if (pThis->hPollFallbackThread != NIL_RTTHREAD)
851 {
852 int rc2 = RTThreadWait(pThis->hPollFallbackThread, RT_MS_1MIN / 2, NULL);
853 AssertRC(rc2);
854 pThis->hPollFallbackThread = NIL_RTTHREAD;
855 }
856
857 if (pThis->hPollFallbackNotifyR != NIL_RTSOCKETNATIVE)
858 {
859 g_pfnclosesocket(pThis->hPollFallbackNotifyR);
860 pThis->hPollFallbackNotifyR = NIL_RTSOCKETNATIVE;
861 }
862 }
863#endif
864 }
865
866 return rc;
867}
868
869
870RTDECL(uint32_t) RTSocketRelease(RTSOCKET hSocket)
871{
872 RTSOCKETINT *pThis = hSocket;
873 if (pThis == NIL_RTSOCKET)
874 return 0;
875 AssertPtrReturn(pThis, UINT32_MAX);
876 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
877
878 /* get the refcount without killing it... */
879 uint32_t cRefs = RTMemPoolRefCount(pThis);
880 AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
881 if (cRefs == 1)
882 rtSocketCloseIt(pThis, true);
883
884 return RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
885}
886
887
888RTDECL(int) RTSocketClose(RTSOCKET hSocket)
889{
890 RTSOCKETINT *pThis = hSocket;
891 if (pThis == NIL_RTSOCKET)
892 return VINF_SUCCESS;
893 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
894 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
895
896 uint32_t cRefs = RTMemPoolRefCount(pThis);
897 AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
898
899 int rc = rtSocketCloseIt(pThis, cRefs == 1);
900
901 RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
902 return rc;
903}
904
905
906RTDECL(RTHCUINTPTR) RTSocketToNative(RTSOCKET hSocket)
907{
908 RTSOCKETINT *pThis = hSocket;
909 AssertPtrReturn(pThis, RTHCUINTPTR_MAX);
910 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, RTHCUINTPTR_MAX);
911 return (RTHCUINTPTR)pThis->hNative;
912}
913
914
915RTDECL(int) RTSocketSetInheritance(RTSOCKET hSocket, bool fInheritable)
916{
917 RTSOCKETINT *pThis = hSocket;
918 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
919 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
920 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
921
922 int rc = VINF_SUCCESS;
923#ifdef RT_OS_WINDOWS
924 if (!SetHandleInformation((HANDLE)pThis->hNative, HANDLE_FLAG_INHERIT, fInheritable ? HANDLE_FLAG_INHERIT : 0))
925 rc = RTErrConvertFromWin32(GetLastError());
926#else
927 if (fcntl(pThis->hNative, F_SETFD, fInheritable ? 0 : FD_CLOEXEC) < 0)
928 rc = RTErrConvertFromErrno(errno);
929#endif
930
931 return rc;
932}
933
934
935static bool rtSocketIsIPv4Numerical(const char *pszAddress, PRTNETADDRIPV4 pAddr)
936{
937
938 /* Empty address resolves to the INADDR_ANY address (good for bind). */
939 if (!pszAddress || !*pszAddress)
940 {
941 pAddr->u = INADDR_ANY;
942 return true;
943 }
944
945 /* Four quads? */
946 char *psz = (char *)pszAddress;
947 for (int i = 0; i < 4; i++)
948 {
949 uint8_t u8;
950 int rc = RTStrToUInt8Ex(psz, &psz, 0, &u8);
951 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS)
952 return false;
953 if (*psz != (i < 3 ? '.' : '\0'))
954 return false;
955 psz++;
956
957 pAddr->au8[i] = u8; /* big endian */
958 }
959
960 return true;
961}
962
963RTDECL(int) RTSocketParseInetAddress(const char *pszAddress, unsigned uPort, PRTNETADDR pAddr)
964{
965 int rc;
966
967 /*
968 * Validate input.
969 */
970 AssertReturn(uPort > 0, VERR_INVALID_PARAMETER);
971 AssertPtrNullReturn(pszAddress, VERR_INVALID_POINTER);
972
973 /*
974 * Resolve the address. Pretty crude at the moment, but we have to make
975 * sure to not ask the NT 4 gethostbyname about an IPv4 address as it may
976 * give a wrong answer.
977 */
978 /** @todo this only supports IPv4, and IPv6 support needs to be added.
979 * It probably needs to be converted to getaddrinfo(). */
980 RTNETADDRIPV4 IPv4Quad;
981 if (rtSocketIsIPv4Numerical(pszAddress, &IPv4Quad))
982 {
983 Log3(("rtSocketIsIPv4Numerical: %s -> %#x (%RTnaipv4)\n", pszAddress, IPv4Quad.u, IPv4Quad));
984 RT_ZERO(*pAddr);
985 pAddr->enmType = RTNETADDRTYPE_IPV4;
986 pAddr->uPort = uPort;
987 pAddr->uAddr.IPv4 = IPv4Quad;
988 return VINF_SUCCESS;
989 }
990
991#ifdef RT_OS_WINDOWS
992 /* Initialize WinSock and check version before we call gethostbyname. */
993 if (!g_pfngethostbyname)
994 return VERR_NET_NOT_UNSUPPORTED;
995
996 int rc2 = rtSocketInitWinsock();
997 if (RT_FAILURE(rc2))
998 return rc2;
999
1000# define gethostbyname g_pfngethostbyname
1001#endif
1002
1003 struct hostent *pHostEnt;
1004 pHostEnt = gethostbyname(pszAddress);
1005 if (!pHostEnt)
1006 {
1007 rc = rtSocketResolverError();
1008 AssertMsgFailed(("Could not resolve '%s', rc=%Rrc\n", pszAddress, rc));
1009 return rc;
1010 }
1011
1012 if (pHostEnt->h_addrtype == AF_INET)
1013 {
1014 RT_ZERO(*pAddr);
1015 pAddr->enmType = RTNETADDRTYPE_IPV4;
1016 pAddr->uPort = uPort;
1017 pAddr->uAddr.IPv4.u = ((struct in_addr *)pHostEnt->h_addr)->s_addr;
1018 Log3(("gethostbyname: %s -> %#x (%RTnaipv4)\n", pszAddress, pAddr->uAddr.IPv4.u, pAddr->uAddr.IPv4));
1019 }
1020 else
1021 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
1022
1023#ifdef RT_OS_WINDOWS
1024# undef gethostbyname
1025#endif
1026 return VINF_SUCCESS;
1027}
1028
1029
1030/*
1031 * New function to allow both ipv4 and ipv6 addresses to be resolved.
1032 * Breaks compatibility with windows before 2000.
1033 */
1034RTDECL(int) RTSocketQueryAddressStr(const char *pszHost, char *pszResult, size_t *pcbResult, PRTNETADDRTYPE penmAddrType)
1035{
1036 AssertPtrReturn(pszHost, VERR_INVALID_POINTER);
1037 AssertPtrReturn(pcbResult, VERR_INVALID_POINTER);
1038 AssertPtrNullReturn(penmAddrType, VERR_INVALID_POINTER);
1039 AssertPtrNullReturn(pszResult, VERR_INVALID_POINTER);
1040
1041#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) /** @todo dynamically resolve the APIs not present in NT4! */
1042 return VERR_NOT_SUPPORTED;
1043
1044#else
1045 int rc;
1046 if (*pcbResult < 16)
1047 return VERR_NET_ADDRESS_NOT_AVAILABLE;
1048
1049 /* Setup the hint. */
1050 struct addrinfo grHints;
1051 RT_ZERO(grHints);
1052 grHints.ai_socktype = 0;
1053 grHints.ai_flags = 0;
1054 grHints.ai_protocol = 0;
1055 grHints.ai_family = AF_UNSPEC;
1056 if (penmAddrType)
1057 {
1058 switch (*penmAddrType)
1059 {
1060 case RTNETADDRTYPE_INVALID:
1061 /*grHints.ai_family = AF_UNSPEC;*/
1062 break;
1063 case RTNETADDRTYPE_IPV4:
1064 grHints.ai_family = AF_INET;
1065 break;
1066 case RTNETADDRTYPE_IPV6:
1067 grHints.ai_family = AF_INET6;
1068 break;
1069 default:
1070 AssertFailedReturn(VERR_INVALID_PARAMETER);
1071 }
1072 }
1073
1074# ifdef RT_OS_WINDOWS
1075 /*
1076 * Winsock2 init
1077 */
1078 if ( !g_pfngetaddrinfo
1079 || !g_pfnfreeaddrinfo)
1080 return VERR_NET_NOT_UNSUPPORTED;
1081
1082 int rc2 = rtSocketInitWinsock();
1083 if (RT_FAILURE(rc2))
1084 return rc2;
1085
1086# define getaddrinfo g_pfngetaddrinfo
1087# define freeaddrinfo g_pfnfreeaddrinfo
1088# endif
1089
1090 /** @todo r=bird: getaddrinfo and freeaddrinfo breaks the additions on NT4. */
1091 struct addrinfo *pgrResults = NULL;
1092 rc = getaddrinfo(pszHost, "", &grHints, &pgrResults);
1093 if (rc != 0)
1094 return VERR_NET_ADDRESS_NOT_AVAILABLE;
1095
1096 // return data
1097 // on multiple matches return only the first one
1098
1099 if (!pgrResults)
1100 return VERR_NET_ADDRESS_NOT_AVAILABLE;
1101
1102 struct addrinfo const *pgrResult = pgrResults->ai_next;
1103 if (!pgrResult)
1104 {
1105 freeaddrinfo(pgrResults);
1106 return VERR_NET_ADDRESS_NOT_AVAILABLE;
1107 }
1108
1109 RTNETADDRTYPE enmAddrType = RTNETADDRTYPE_INVALID;
1110 size_t cchIpAddress;
1111 char szIpAddress[48];
1112 if (pgrResult->ai_family == AF_INET)
1113 {
1114 struct sockaddr_in const *pgrSa = (struct sockaddr_in const *)pgrResult->ai_addr;
1115 cchIpAddress = RTStrPrintf(szIpAddress, sizeof(szIpAddress),
1116 "%RTnaipv4", pgrSa->sin_addr.s_addr);
1117 Assert(cchIpAddress >= 7 && cchIpAddress < sizeof(szIpAddress) - 1);
1118 enmAddrType = RTNETADDRTYPE_IPV4;
1119 rc = VINF_SUCCESS;
1120 }
1121 else if (pgrResult->ai_family == AF_INET6)
1122 {
1123 struct sockaddr_in6 const *pgrSa6 = (struct sockaddr_in6 const *)pgrResult->ai_addr;
1124 cchIpAddress = RTStrPrintf(szIpAddress, sizeof(szIpAddress),
1125 "%RTnaipv6", (PRTNETADDRIPV6)&pgrSa6->sin6_addr);
1126 enmAddrType = RTNETADDRTYPE_IPV6;
1127 rc = VINF_SUCCESS;
1128 }
1129 else
1130 {
1131 rc = VERR_NET_ADDRESS_NOT_AVAILABLE;
1132 szIpAddress[0] = '\0';
1133 cchIpAddress = 0;
1134 }
1135 freeaddrinfo(pgrResults);
1136
1137 /*
1138 * Copy out the result.
1139 */
1140 size_t const cbResult = *pcbResult;
1141 *pcbResult = cchIpAddress + 1;
1142 if (cchIpAddress < cbResult)
1143 memcpy(pszResult, szIpAddress, cchIpAddress + 1);
1144 else
1145 {
1146 RT_BZERO(pszResult, cbResult);
1147 if (RT_SUCCESS(rc))
1148 rc = VERR_BUFFER_OVERFLOW;
1149 }
1150 if (penmAddrType && RT_SUCCESS(rc))
1151 *penmAddrType = enmAddrType;
1152 return rc;
1153
1154# ifdef RT_OS_WINDOWS
1155# undef getaddrinfo
1156# undef freeaddrinfo
1157# endif
1158#endif /* !RT_OS_OS2 */
1159}
1160
1161
1162RTDECL(int) RTSocketRead(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
1163{
1164 /*
1165 * Validate input.
1166 */
1167 RTSOCKETINT *pThis = hSocket;
1168 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1169 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1170 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
1171 AssertPtr(pvBuffer);
1172#ifdef RT_OS_WINDOWS
1173 AssertReturn(g_pfnrecv, VERR_NET_NOT_UNSUPPORTED);
1174# define recv g_pfnrecv
1175#endif
1176 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1177
1178 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1179 if (RT_FAILURE(rc))
1180 return rc;
1181
1182 /*
1183 * Read loop.
1184 * If pcbRead is NULL we have to fill the entire buffer!
1185 */
1186 size_t cbRead = 0;
1187 size_t cbToRead = cbBuffer;
1188 for (;;)
1189 {
1190 rtSocketErrorReset();
1191#ifdef RTSOCKET_MAX_READ
1192 int cbNow = cbToRead >= RTSOCKET_MAX_READ ? RTSOCKET_MAX_READ : (int)cbToRead;
1193#else
1194 size_t cbNow = cbToRead;
1195#endif
1196 ssize_t cbBytesRead = recv(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL);
1197 if (cbBytesRead <= 0)
1198 {
1199 rc = rtSocketError();
1200 Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
1201 if (RT_SUCCESS_NP(rc))
1202 {
1203 if (!pcbRead)
1204 rc = VERR_NET_SHUTDOWN;
1205 else
1206 {
1207 *pcbRead = 0;
1208 rc = VINF_SUCCESS;
1209 }
1210 }
1211 break;
1212 }
1213 if (pcbRead)
1214 {
1215 /* return partial data */
1216 *pcbRead = cbBytesRead;
1217 break;
1218 }
1219
1220 /* read more? */
1221 cbRead += cbBytesRead;
1222 if (cbRead == cbBuffer)
1223 break;
1224
1225 /* next */
1226 cbToRead = cbBuffer - cbRead;
1227 }
1228
1229 rtSocketUnlock(pThis);
1230#ifdef RT_OS_WINDOWS
1231# undef recv
1232#endif
1233 return rc;
1234}
1235
1236
1237RTDECL(int) RTSocketReadFrom(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead, PRTNETADDR pSrcAddr)
1238{
1239 /*
1240 * Validate input.
1241 */
1242 RTSOCKETINT *pThis = hSocket;
1243 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1244 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1245 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
1246 AssertPtr(pvBuffer);
1247 AssertPtr(pcbRead);
1248#ifdef RT_OS_WINDOWS
1249 AssertReturn(g_pfnrecvfrom, VERR_NET_NOT_UNSUPPORTED);
1250# define recvfrom g_pfnrecvfrom
1251#endif
1252 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1253
1254 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1255 if (RT_FAILURE(rc))
1256 return rc;
1257
1258 /*
1259 * Read data.
1260 */
1261 size_t cbRead = 0;
1262 size_t cbToRead = cbBuffer;
1263 rtSocketErrorReset();
1264 RTSOCKADDRUNION u;
1265#ifdef RTSOCKET_MAX_READ
1266 int cbNow = cbToRead >= RTSOCKET_MAX_READ ? RTSOCKET_MAX_READ : (int)cbToRead;
1267 int cbAddr = sizeof(u);
1268#else
1269 size_t cbNow = cbToRead;
1270 socklen_t cbAddr = sizeof(u);
1271#endif
1272 ssize_t cbBytesRead = recvfrom(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL, &u.Addr, &cbAddr);
1273 if (cbBytesRead <= 0)
1274 {
1275 rc = rtSocketError();
1276 Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
1277 if (RT_SUCCESS_NP(rc))
1278 {
1279 *pcbRead = 0;
1280 rc = VINF_SUCCESS;
1281 }
1282 }
1283 else
1284 {
1285 if (pSrcAddr)
1286 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pSrcAddr);
1287 *pcbRead = cbBytesRead;
1288 }
1289
1290 rtSocketUnlock(pThis);
1291#ifdef RT_OS_WINDOWS
1292# undef recvfrom
1293#endif
1294 return rc;
1295}
1296
1297
1298RTDECL(int) RTSocketWrite(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer)
1299{
1300 /*
1301 * Validate input.
1302 */
1303 RTSOCKETINT *pThis = hSocket;
1304 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1305 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1306#ifdef RT_OS_WINDOWS
1307 AssertReturn(g_pfnsend, VERR_NET_NOT_UNSUPPORTED);
1308# define send g_pfnsend
1309#endif
1310 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1311
1312 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1313 if (RT_FAILURE(rc))
1314 return rc;
1315
1316 /*
1317 * Try write all at once.
1318 */
1319#ifdef RTSOCKET_MAX_WRITE
1320 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1321#else
1322 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1323#endif
1324 ssize_t cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1325 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
1326 rc = VINF_SUCCESS;
1327 else if (cbWritten < 0)
1328 rc = rtSocketError();
1329 else
1330 {
1331 /*
1332 * Unfinished business, write the remainder of the request. Must ignore
1333 * VERR_INTERRUPTED here if we've managed to send something.
1334 */
1335 size_t cbSentSoFar = 0;
1336 for (;;)
1337 {
1338 /* advance */
1339 cbBuffer -= (size_t)cbWritten;
1340 if (!cbBuffer)
1341 break;
1342 cbSentSoFar += (size_t)cbWritten;
1343 pvBuffer = (char const *)pvBuffer + cbWritten;
1344
1345 /* send */
1346#ifdef RTSOCKET_MAX_WRITE
1347 cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1348#else
1349 cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1350#endif
1351 cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1352 if (cbWritten >= 0)
1353 AssertMsg(cbBuffer >= (size_t)cbWritten, ("Wrote more than we requested!!! cbWritten=%zu cbBuffer=%zu rtSocketError()=%d\n",
1354 cbWritten, cbBuffer, rtSocketError()));
1355 else
1356 {
1357 rc = rtSocketError();
1358 if (rc != VERR_INTERNAL_ERROR || cbSentSoFar == 0)
1359 break;
1360 cbWritten = 0;
1361 rc = VINF_SUCCESS;
1362 }
1363 }
1364 }
1365
1366 rtSocketUnlock(pThis);
1367#ifdef RT_OS_WINDOWS
1368# undef send
1369#endif
1370 return rc;
1371}
1372
1373
1374RTDECL(int) RTSocketWriteTo(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, PCRTNETADDR pAddr)
1375{
1376 /*
1377 * Validate input.
1378 */
1379 RTSOCKETINT *pThis = hSocket;
1380 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1381 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1382#ifdef RT_OS_WINDOWS
1383 AssertReturn(g_pfnsendto, VERR_NET_NOT_UNSUPPORTED);
1384# define sendto g_pfnsendto
1385#endif
1386
1387 /* no locking since UDP reads may be done concurrently to writes, and
1388 * this is the normal use case of this code. */
1389
1390 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1391 if (RT_FAILURE(rc))
1392 return rc;
1393
1394 /* Figure out destination address. */
1395 struct sockaddr *pSA = NULL;
1396#ifdef RT_OS_WINDOWS
1397 int cbSA = 0;
1398#else
1399 socklen_t cbSA = 0;
1400#endif
1401 RTSOCKADDRUNION u;
1402 if (pAddr)
1403 {
1404 rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), NULL);
1405 if (RT_FAILURE(rc))
1406 return rc;
1407 pSA = &u.Addr;
1408 cbSA = sizeof(u);
1409 }
1410
1411 /*
1412 * Must write all at once, otherwise it is a failure.
1413 */
1414#ifdef RT_OS_WINDOWS
1415 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1416#else
1417 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1418#endif
1419 ssize_t cbWritten = sendto(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL, pSA, cbSA);
1420 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
1421 rc = VINF_SUCCESS;
1422 else if (cbWritten < 0)
1423 rc = rtSocketError();
1424 else
1425 rc = VERR_TOO_MUCH_DATA;
1426
1427 /// @todo rtSocketUnlock(pThis);
1428#ifdef RT_OS_WINDOWS
1429# undef sendto
1430#endif
1431 return rc;
1432}
1433
1434
1435RTDECL(int) RTSocketWriteToNB(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, PCRTNETADDR pAddr)
1436{
1437 /*
1438 * Validate input.
1439 */
1440 RTSOCKETINT *pThis = hSocket;
1441 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1442 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1443#ifdef RT_OS_WINDOWS
1444 AssertReturn(g_pfnsendto, VERR_NET_NOT_UNSUPPORTED);
1445# define sendto g_pfnsendto
1446#endif
1447
1448 /* no locking since UDP reads may be done concurrently to writes, and
1449 * this is the normal use case of this code. */
1450
1451 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1452 if (RT_FAILURE(rc))
1453 return rc;
1454
1455 /* Figure out destination address. */
1456 struct sockaddr *pSA = NULL;
1457#ifdef RT_OS_WINDOWS
1458 int cbSA = 0;
1459#else
1460 socklen_t cbSA = 0;
1461#endif
1462 RTSOCKADDRUNION u;
1463 if (pAddr)
1464 {
1465 rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), NULL);
1466 if (RT_FAILURE(rc))
1467 return rc;
1468 pSA = &u.Addr;
1469 cbSA = sizeof(u);
1470 }
1471
1472 /*
1473 * Must write all at once, otherwise it is a failure.
1474 */
1475#ifdef RT_OS_WINDOWS
1476 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1477#else
1478 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1479#endif
1480 ssize_t cbWritten = sendto(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL, pSA, cbSA);
1481 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
1482 rc = VINF_SUCCESS;
1483 else if (cbWritten < 0)
1484 rc = rtSocketError();
1485 else
1486 rc = VERR_TOO_MUCH_DATA;
1487
1488 /// @todo rtSocketUnlock(pThis);
1489#ifdef RT_OS_WINDOWS
1490# undef sendto
1491#endif
1492 return rc;
1493}
1494
1495
1496RTDECL(int) RTSocketSgWrite(RTSOCKET hSocket, PCRTSGBUF pSgBuf)
1497{
1498 /*
1499 * Validate input.
1500 */
1501 RTSOCKETINT *pThis = hSocket;
1502 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1503 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1504 AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
1505 AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
1506 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1507
1508 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1509 if (RT_FAILURE(rc))
1510 return rc;
1511
1512 /*
1513 * Construct message descriptor (translate pSgBuf) and send it.
1514 */
1515 rc = VERR_NO_TMP_MEMORY;
1516#ifdef RT_OS_WINDOWS
1517 if (g_pfnWSASend)
1518 {
1519 AssertCompileSize(WSABUF, sizeof(RTSGSEG));
1520 AssertCompileMemberSize(WSABUF, buf, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
1521
1522 LPWSABUF paMsg = (LPWSABUF)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(WSABUF));
1523 if (paMsg)
1524 {
1525 for (unsigned i = 0; i < pSgBuf->cSegs; i++)
1526 {
1527 paMsg[i].buf = (char *)pSgBuf->paSegs[i].pvSeg;
1528 paMsg[i].len = (u_long)pSgBuf->paSegs[i].cbSeg;
1529 }
1530
1531 DWORD dwSent;
1532 int hrc = g_pfnWSASend(pThis->hNative, paMsg, pSgBuf->cSegs, &dwSent, MSG_NOSIGNAL, NULL, NULL);
1533 if (!hrc)
1534 rc = VINF_SUCCESS;
1535 /** @todo check for incomplete writes */
1536 else
1537 rc = rtSocketError();
1538
1539 RTMemTmpFree(paMsg);
1540 }
1541 }
1542 else if (g_pfnsend)
1543 {
1544 rc = VINF_SUCCESS;
1545 for (uint32_t iSeg = 0; iSeg < pSgBuf->cSegs; iSeg++)
1546 {
1547 uint8_t const *pbSeg = (uint8_t const *)pSgBuf->paSegs[iSeg].pvSeg;
1548 size_t cbSeg = pSgBuf->paSegs[iSeg].cbSeg;
1549 int cbNow;
1550 ssize_t cbWritten;
1551 for (;;)
1552 {
1553 cbNow = cbSeg >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbSeg;
1554 cbWritten = g_pfnsend(pThis->hNative, (const char *)pbSeg, cbNow, MSG_NOSIGNAL);
1555 if ((size_t)cbWritten >= cbSeg || cbWritten < 0)
1556 break;
1557 pbSeg += cbWritten;
1558 cbSeg -= cbWritten;
1559 }
1560 if (cbWritten < 0)
1561 {
1562 rc = rtSocketError();
1563 break;
1564 }
1565 }
1566 }
1567 else
1568 rc = VERR_NET_NOT_UNSUPPORTED;
1569
1570#else /* !RT_OS_WINDOWS */
1571 AssertCompileSize(struct iovec, sizeof(RTSGSEG));
1572 AssertCompileMemberSize(struct iovec, iov_base, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
1573 AssertCompileMemberSize(struct iovec, iov_len, RT_SIZEOFMEMB(RTSGSEG, cbSeg));
1574
1575 struct iovec *paMsg = (struct iovec *)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(struct iovec));
1576 if (paMsg)
1577 {
1578 for (unsigned i = 0; i < pSgBuf->cSegs; i++)
1579 {
1580 paMsg[i].iov_base = pSgBuf->paSegs[i].pvSeg;
1581 paMsg[i].iov_len = pSgBuf->paSegs[i].cbSeg;
1582 }
1583
1584 struct msghdr msgHdr;
1585 RT_ZERO(msgHdr);
1586 msgHdr.msg_iov = paMsg;
1587 msgHdr.msg_iovlen = pSgBuf->cSegs;
1588 ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
1589 if (RT_LIKELY(cbWritten >= 0))
1590 rc = VINF_SUCCESS;
1591/** @todo check for incomplete writes */
1592 else
1593 rc = rtSocketError();
1594
1595 RTMemTmpFree(paMsg);
1596 }
1597#endif /* !RT_OS_WINDOWS */
1598
1599 rtSocketUnlock(pThis);
1600 return rc;
1601}
1602
1603
1604RTDECL(int) RTSocketSgWriteL(RTSOCKET hSocket, size_t cSegs, ...)
1605{
1606 va_list va;
1607 va_start(va, cSegs);
1608 int rc = RTSocketSgWriteLV(hSocket, cSegs, va);
1609 va_end(va);
1610 return rc;
1611}
1612
1613
1614RTDECL(int) RTSocketSgWriteLV(RTSOCKET hSocket, size_t cSegs, va_list va)
1615{
1616 /*
1617 * Set up a S/G segment array + buffer on the stack and pass it
1618 * on to RTSocketSgWrite.
1619 */
1620 Assert(cSegs <= 16);
1621 PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
1622 AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
1623 for (size_t i = 0; i < cSegs; i++)
1624 {
1625 paSegs[i].pvSeg = va_arg(va, void *);
1626 paSegs[i].cbSeg = va_arg(va, size_t);
1627 }
1628
1629 RTSGBUF SgBuf;
1630 RTSgBufInit(&SgBuf, paSegs, cSegs);
1631 return RTSocketSgWrite(hSocket, &SgBuf);
1632}
1633
1634
1635RTDECL(int) RTSocketReadNB(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
1636{
1637 /*
1638 * Validate input.
1639 */
1640 RTSOCKETINT *pThis = hSocket;
1641 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1642 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1643 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
1644 AssertPtr(pvBuffer);
1645 AssertPtrReturn(pcbRead, VERR_INVALID_PARAMETER);
1646#ifdef RT_OS_WINDOWS
1647 AssertReturn(g_pfnrecv, VERR_NET_NOT_UNSUPPORTED);
1648#endif
1649 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1650
1651 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1652 if (RT_FAILURE(rc))
1653 return rc;
1654
1655 rtSocketErrorReset();
1656#ifdef RTSOCKET_MAX_READ
1657 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1658#else
1659 size_t cbNow = cbBuffer;
1660#endif
1661
1662#ifdef RT_OS_WINDOWS
1663 int cbRead = g_pfnrecv(pThis->hNative, (char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1664 if (cbRead >= 0)
1665 {
1666 *pcbRead = cbRead;
1667 rc = VINF_SUCCESS;
1668 }
1669 else
1670 {
1671 rc = rtSocketError();
1672 if (rc == VERR_TRY_AGAIN)
1673 {
1674 *pcbRead = 0;
1675 rc = VINF_TRY_AGAIN;
1676 }
1677 }
1678
1679#else
1680 ssize_t cbRead = recv(pThis->hNative, pvBuffer, cbNow, MSG_NOSIGNAL);
1681 if (cbRead >= 0)
1682 *pcbRead = cbRead;
1683 else if ( errno == EAGAIN
1684# ifdef EWOULDBLOCK
1685# if EWOULDBLOCK != EAGAIN
1686 || errno == EWOULDBLOCK
1687# endif
1688# endif
1689 )
1690 {
1691 *pcbRead = 0;
1692 rc = VINF_TRY_AGAIN;
1693 }
1694 else
1695 rc = rtSocketError();
1696#endif
1697
1698 rtSocketUnlock(pThis);
1699 return rc;
1700}
1701
1702
1703RTDECL(int) RTSocketWriteNB(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, size_t *pcbWritten)
1704{
1705 /*
1706 * Validate input.
1707 */
1708 RTSOCKETINT *pThis = hSocket;
1709 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1710 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1711 AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
1712#ifdef RT_OS_WINDOWS
1713 AssertReturn(g_pfnsend, VERR_NET_NOT_UNSUPPORTED);
1714#endif
1715 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1716
1717 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1718 if (RT_FAILURE(rc))
1719 return rc;
1720
1721 rtSocketErrorReset();
1722#ifdef RT_OS_WINDOWS
1723# ifdef RTSOCKET_MAX_WRITE
1724 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1725# else
1726 size_t cbNow = cbBuffer;
1727# endif
1728 int cbWritten = g_pfnsend(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1729 if (cbWritten >= 0)
1730 {
1731 *pcbWritten = cbWritten;
1732 rc = VINF_SUCCESS;
1733 }
1734 else
1735 {
1736 rc = rtSocketError();
1737 if (rc == VERR_TRY_AGAIN)
1738 {
1739 *pcbWritten = 0;
1740 rc = VINF_TRY_AGAIN;
1741 }
1742 }
1743#else
1744 ssize_t cbWritten = send(pThis->hNative, pvBuffer, cbBuffer, MSG_NOSIGNAL);
1745 if (cbWritten >= 0)
1746 *pcbWritten = cbWritten;
1747 else if ( errno == EAGAIN
1748# ifdef EWOULDBLOCK
1749# if EWOULDBLOCK != EAGAIN
1750 || errno == EWOULDBLOCK
1751# endif
1752# endif
1753 )
1754 {
1755 *pcbWritten = 0;
1756 rc = VINF_TRY_AGAIN;
1757 }
1758 else
1759 rc = rtSocketError();
1760#endif
1761
1762 rtSocketUnlock(pThis);
1763 return rc;
1764}
1765
1766
1767RTDECL(int) RTSocketSgWriteNB(RTSOCKET hSocket, PCRTSGBUF pSgBuf, size_t *pcbWritten)
1768{
1769 /*
1770 * Validate input.
1771 */
1772 RTSOCKETINT *pThis = hSocket;
1773 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1774 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1775 AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
1776 AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
1777 AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
1778 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1779
1780 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1781 if (RT_FAILURE(rc))
1782 return rc;
1783
1784 unsigned cSegsToSend = 0;
1785 rc = VERR_NO_TMP_MEMORY;
1786#ifdef RT_OS_WINDOWS
1787 if (g_pfnWSASend)
1788 {
1789 LPWSABUF paMsg = NULL;
1790 RTSgBufMapToNative(paMsg, pSgBuf, WSABUF, buf, char *, len, u_long, cSegsToSend);
1791 if (paMsg)
1792 {
1793 DWORD dwSent = 0;
1794 int hrc = g_pfnWSASend(pThis->hNative, paMsg, cSegsToSend, &dwSent, MSG_NOSIGNAL, NULL, NULL);
1795 if (!hrc)
1796 rc = VINF_SUCCESS;
1797 else
1798 rc = rtSocketError();
1799
1800 *pcbWritten = dwSent;
1801
1802 RTMemTmpFree(paMsg);
1803 }
1804 }
1805 else if (g_pfnsend)
1806 {
1807 size_t cbWrittenTotal = 0;
1808 rc = VINF_SUCCESS;
1809 for (uint32_t iSeg = 0; iSeg < pSgBuf->cSegs; iSeg++)
1810 {
1811 uint8_t const *pbSeg = (uint8_t const *)pSgBuf->paSegs[iSeg].pvSeg;
1812 size_t cbSeg = pSgBuf->paSegs[iSeg].cbSeg;
1813 int cbNow;
1814 ssize_t cbWritten;
1815 for (;;)
1816 {
1817 cbNow = cbSeg >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbSeg;
1818 cbWritten = g_pfnsend(pThis->hNative, (const char *)pbSeg, cbNow, MSG_NOSIGNAL);
1819 if ((size_t)cbWritten >= cbSeg || cbWritten < 0)
1820 break;
1821 cbWrittenTotal += cbWrittenTotal;
1822 pbSeg += cbWritten;
1823 cbSeg -= cbWritten;
1824 }
1825 if (cbWritten < 0)
1826 {
1827 rc = rtSocketError();
1828 break;
1829 }
1830 if (cbWritten != cbNow)
1831 break;
1832 }
1833 *pcbWritten = cbWrittenTotal;
1834 }
1835 else
1836 rc = VERR_NET_NOT_UNSUPPORTED;
1837
1838#else /* !RT_OS_WINDOWS */
1839 struct iovec *paMsg = NULL;
1840
1841 RTSgBufMapToNative(paMsg, pSgBuf, struct iovec, iov_base, void *, iov_len, size_t, cSegsToSend);
1842 if (paMsg)
1843 {
1844 struct msghdr msgHdr;
1845 RT_ZERO(msgHdr);
1846 msgHdr.msg_iov = paMsg;
1847 msgHdr.msg_iovlen = cSegsToSend;
1848 ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
1849 if (RT_LIKELY(cbWritten >= 0))
1850 {
1851 rc = VINF_SUCCESS;
1852 *pcbWritten = cbWritten;
1853 }
1854 else
1855 rc = rtSocketError();
1856
1857 RTMemTmpFree(paMsg);
1858 }
1859#endif /* !RT_OS_WINDOWS */
1860
1861 rtSocketUnlock(pThis);
1862 return rc;
1863}
1864
1865
1866RTDECL(int) RTSocketSgWriteLNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, ...)
1867{
1868 va_list va;
1869 va_start(va, pcbWritten);
1870 int rc = RTSocketSgWriteLVNB(hSocket, cSegs, pcbWritten, va);
1871 va_end(va);
1872 return rc;
1873}
1874
1875
1876RTDECL(int) RTSocketSgWriteLVNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, va_list va)
1877{
1878 /*
1879 * Set up a S/G segment array + buffer on the stack and pass it
1880 * on to RTSocketSgWrite.
1881 */
1882 Assert(cSegs <= 16);
1883 PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
1884 AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
1885 for (size_t i = 0; i < cSegs; i++)
1886 {
1887 paSegs[i].pvSeg = va_arg(va, void *);
1888 paSegs[i].cbSeg = va_arg(va, size_t);
1889 }
1890
1891 RTSGBUF SgBuf;
1892 RTSgBufInit(&SgBuf, paSegs, cSegs);
1893 return RTSocketSgWriteNB(hSocket, &SgBuf, pcbWritten);
1894}
1895
1896
1897RTDECL(int) RTSocketSelectOne(RTSOCKET hSocket, RTMSINTERVAL cMillies)
1898{
1899 /*
1900 * Validate input.
1901 */
1902 RTSOCKETINT *pThis = hSocket;
1903 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1904 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1905 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1906 int const fdMax = (int)pThis->hNative + 1;
1907 AssertReturn((RTSOCKETNATIVE)(fdMax - 1) == pThis->hNative, VERR_INTERNAL_ERROR_5);
1908#ifdef RT_OS_WINDOWS
1909 AssertReturn(g_pfnselect, VERR_NET_NOT_UNSUPPORTED);
1910# define select g_pfnselect
1911#endif
1912
1913 /*
1914 * Set up the file descriptor sets and do the select.
1915 */
1916 fd_set fdsetR;
1917 FD_ZERO(&fdsetR);
1918 FD_SET(pThis->hNative, &fdsetR);
1919
1920 fd_set fdsetE = fdsetR;
1921
1922 int rc;
1923 if (cMillies == RT_INDEFINITE_WAIT)
1924 rc = select(fdMax, &fdsetR, NULL, &fdsetE, NULL);
1925 else
1926 {
1927 struct timeval timeout;
1928 timeout.tv_sec = cMillies / 1000;
1929 timeout.tv_usec = (cMillies % 1000) * 1000;
1930 rc = select(fdMax, &fdsetR, NULL, &fdsetE, &timeout);
1931 }
1932 if (rc > 0)
1933 rc = VINF_SUCCESS;
1934 else if (rc == 0)
1935 rc = VERR_TIMEOUT;
1936 else
1937 rc = rtSocketError();
1938
1939#ifdef RT_OS_WINDOWS
1940# undef select
1941#endif
1942 return rc;
1943}
1944
1945
1946/**
1947 * Internal worker for RTSocketSelectOneEx and rtSocketPollCheck (fallback)
1948 *
1949 * @returns IPRT status code
1950 * @param pThis The socket (valid).
1951 * @param fEvents The events to select for.
1952 * @param pfEvents Where to return the events.
1953 * @param cMillies How long to select for, in milliseconds.
1954 */
1955static int rtSocketSelectOneEx(RTSOCKET pThis, uint32_t fEvents, uint32_t *pfEvents, RTMSINTERVAL cMillies)
1956{
1957 RTSOCKETNATIVE hNative = pThis->hNative;
1958 if (hNative == NIL_RTSOCKETNATIVE)
1959 {
1960 /* Socket is already closed? Possible we raced someone calling rtSocketCloseIt.
1961 Should we return a different status code? */
1962 *pfEvents = RTSOCKET_EVT_ERROR;
1963 return VINF_SUCCESS;
1964 }
1965
1966 int const fdMax = (int)hNative + 1;
1967 AssertReturn((RTSOCKETNATIVE)(fdMax - 1) == hNative, VERR_INTERNAL_ERROR_5);
1968#ifdef RT_OS_WINDOWS
1969 AssertReturn(g_pfnselect, VERR_NET_NOT_UNSUPPORTED);
1970 AssertReturn(g_pfn__WSAFDIsSet, VERR_NET_NOT_UNSUPPORTED);
1971# define select g_pfnselect
1972# define __WSAFDIsSet g_pfn__WSAFDIsSet
1973#endif
1974
1975 *pfEvents = 0;
1976
1977 /*
1978 * Set up the file descriptor sets and do the select.
1979 */
1980 fd_set fdsetR;
1981 fd_set fdsetW;
1982 fd_set fdsetE;
1983 FD_ZERO(&fdsetR);
1984 FD_ZERO(&fdsetW);
1985 FD_ZERO(&fdsetE);
1986
1987 if (fEvents & RTSOCKET_EVT_READ)
1988 FD_SET(hNative, &fdsetR);
1989 if (fEvents & RTSOCKET_EVT_WRITE)
1990 FD_SET(hNative, &fdsetW);
1991 if (fEvents & RTSOCKET_EVT_ERROR)
1992 FD_SET(hNative, &fdsetE);
1993
1994 int rc;
1995 if (cMillies == RT_INDEFINITE_WAIT)
1996 rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, NULL);
1997 else
1998 {
1999 struct timeval timeout;
2000 timeout.tv_sec = cMillies / 1000;
2001 timeout.tv_usec = (cMillies % 1000) * 1000;
2002 rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, &timeout);
2003 }
2004 if (rc > 0)
2005 {
2006 if (pThis->hNative == hNative)
2007 {
2008 if (FD_ISSET(hNative, &fdsetR))
2009 *pfEvents |= RTSOCKET_EVT_READ;
2010 if (FD_ISSET(hNative, &fdsetW))
2011 *pfEvents |= RTSOCKET_EVT_WRITE;
2012 if (FD_ISSET(hNative, &fdsetE))
2013 *pfEvents |= RTSOCKET_EVT_ERROR;
2014 rc = VINF_SUCCESS;
2015 }
2016 else
2017 {
2018 /* Socket was closed while we waited (rtSocketCloseIt). Different status code? */
2019 *pfEvents = RTSOCKET_EVT_ERROR;
2020 rc = VINF_SUCCESS;
2021 }
2022 }
2023 else if (rc == 0)
2024 rc = VERR_TIMEOUT;
2025 else
2026 rc = rtSocketError();
2027
2028#ifdef RT_OS_WINDOWS
2029# undef select
2030# undef __WSAFDIsSet
2031#endif
2032 return rc;
2033}
2034
2035
2036RTDECL(int) RTSocketSelectOneEx(RTSOCKET hSocket, uint32_t fEvents, uint32_t *pfEvents, RTMSINTERVAL cMillies)
2037{
2038 /*
2039 * Validate input.
2040 */
2041 RTSOCKETINT *pThis = hSocket;
2042 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2043 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2044 AssertPtrReturn(pfEvents, VERR_INVALID_PARAMETER);
2045 AssertReturn(!(fEvents & ~RTSOCKET_EVT_VALID_MASK), VERR_INVALID_PARAMETER);
2046 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
2047
2048 return rtSocketSelectOneEx(pThis, fEvents, pfEvents, cMillies);
2049}
2050
2051
2052RTDECL(int) RTSocketShutdown(RTSOCKET hSocket, bool fRead, bool fWrite)
2053{
2054 /*
2055 * Validate input, don't lock it because we might want to interrupt a call
2056 * active on a different thread.
2057 */
2058 RTSOCKETINT *pThis = hSocket;
2059 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2060 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2061 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
2062 AssertReturn(fRead || fWrite, VERR_INVALID_PARAMETER);
2063#ifdef RT_OS_WINDOWS
2064 AssertReturn(g_pfnshutdown, VERR_NET_NOT_UNSUPPORTED);
2065# define shutdown g_pfnshutdown
2066#endif
2067
2068 /*
2069 * Do the job.
2070 */
2071 int rc = VINF_SUCCESS;
2072 int fHow;
2073 if (fRead && fWrite)
2074 fHow = SHUT_RDWR;
2075 else if (fRead)
2076 fHow = SHUT_RD;
2077 else
2078 fHow = SHUT_WR;
2079 if (shutdown(pThis->hNative, fHow) == -1)
2080 rc = rtSocketError();
2081
2082#ifdef RT_OS_WINDOWS
2083# undef shutdown
2084#endif
2085 return rc;
2086}
2087
2088
2089RTDECL(int) RTSocketGetLocalAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
2090{
2091 /*
2092 * Validate input.
2093 */
2094 RTSOCKETINT *pThis = hSocket;
2095 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2096 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2097 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
2098#ifdef RT_OS_WINDOWS
2099 AssertReturn(g_pfngetsockname, VERR_NET_NOT_UNSUPPORTED);
2100# define getsockname g_pfngetsockname
2101#endif
2102
2103 /*
2104 * Get the address and convert it.
2105 */
2106 int rc;
2107 RTSOCKADDRUNION u;
2108#ifdef RT_OS_WINDOWS
2109 int cbAddr = sizeof(u);
2110#else
2111 socklen_t cbAddr = sizeof(u);
2112#endif
2113 RT_ZERO(u);
2114 if (getsockname(pThis->hNative, &u.Addr, &cbAddr) == 0)
2115 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
2116 else
2117 rc = rtSocketError();
2118
2119#ifdef RT_OS_WINDOWS
2120# undef getsockname
2121#endif
2122 return rc;
2123}
2124
2125
2126RTDECL(int) RTSocketGetPeerAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
2127{
2128 /*
2129 * Validate input.
2130 */
2131 RTSOCKETINT *pThis = hSocket;
2132 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2133 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2134 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
2135#ifdef RT_OS_WINDOWS
2136 AssertReturn(g_pfngetpeername, VERR_NET_NOT_UNSUPPORTED);
2137# define getpeername g_pfngetpeername
2138#endif
2139
2140 /*
2141 * Get the address and convert it.
2142 */
2143 int rc;
2144 RTSOCKADDRUNION u;
2145#ifdef RT_OS_WINDOWS
2146 int cbAddr = sizeof(u);
2147#else
2148 socklen_t cbAddr = sizeof(u);
2149#endif
2150 RT_ZERO(u);
2151 if (getpeername(pThis->hNative, &u.Addr, &cbAddr) == 0)
2152 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
2153 else
2154 rc = rtSocketError();
2155
2156#ifdef RT_OS_WINDOWS
2157# undef getpeername
2158#endif
2159 return rc;
2160}
2161
2162
2163
2164/**
2165 * Wrapper around bind.
2166 *
2167 * @returns IPRT status code.
2168 * @param hSocket The socket handle.
2169 * @param pAddr The address to bind to.
2170 */
2171DECLHIDDEN(int) rtSocketBind(RTSOCKET hSocket, PCRTNETADDR pAddr)
2172{
2173 RTSOCKADDRUNION u;
2174 int cbAddr;
2175 int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
2176 if (RT_SUCCESS(rc))
2177 rc = rtSocketBindRawAddr(hSocket, &u.Addr, cbAddr);
2178 return rc;
2179}
2180
2181
2182/**
2183 * Very thin wrapper around bind.
2184 *
2185 * @returns IPRT status code.
2186 * @param hSocket The socket handle.
2187 * @param pvAddr The address to bind to (struct sockaddr and
2188 * friends).
2189 * @param cbAddr The size of the address.
2190 */
2191DECLHIDDEN(int) rtSocketBindRawAddr(RTSOCKET hSocket, void const *pvAddr, size_t cbAddr)
2192{
2193 /*
2194 * Validate input.
2195 */
2196 RTSOCKETINT *pThis = hSocket;
2197 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2198 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2199 AssertPtrReturn(pvAddr, VERR_INVALID_POINTER);
2200#ifdef RT_OS_WINDOWS
2201 AssertReturn(g_pfnbind, VERR_NET_NOT_UNSUPPORTED);
2202# define bind g_pfnbind
2203#endif
2204 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2205
2206 int rc;
2207 if (bind(pThis->hNative, (struct sockaddr const *)pvAddr, (int)cbAddr) == 0)
2208 rc = VINF_SUCCESS;
2209 else
2210 rc = rtSocketError();
2211
2212 rtSocketUnlock(pThis);
2213#ifdef RT_OS_WINDOWS
2214# undef bind
2215#endif
2216 return rc;
2217}
2218
2219
2220
2221/**
2222 * Wrapper around listen.
2223 *
2224 * @returns IPRT status code.
2225 * @param hSocket The socket handle.
2226 * @param cMaxPending The max number of pending connections.
2227 */
2228DECLHIDDEN(int) rtSocketListen(RTSOCKET hSocket, int cMaxPending)
2229{
2230 /*
2231 * Validate input.
2232 */
2233 RTSOCKETINT *pThis = hSocket;
2234 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2235 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2236#ifdef RT_OS_WINDOWS
2237 AssertReturn(g_pfnlisten, VERR_NET_NOT_UNSUPPORTED);
2238# define listen g_pfnlisten
2239#endif
2240 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2241
2242 int rc = VINF_SUCCESS;
2243 if (listen(pThis->hNative, cMaxPending) != 0)
2244 rc = rtSocketError();
2245
2246 rtSocketUnlock(pThis);
2247#ifdef RT_OS_WINDOWS
2248# undef listen
2249#endif
2250 return rc;
2251}
2252
2253
2254/**
2255 * Wrapper around accept.
2256 *
2257 * @returns IPRT status code.
2258 * @param hSocket The socket handle.
2259 * @param phClient Where to return the client socket handle on
2260 * success.
2261 * @param pAddr Where to return the client address.
2262 * @param pcbAddr On input this gives the size buffer size of what
2263 * @a pAddr point to. On return this contains the
2264 * size of what's stored at @a pAddr.
2265 */
2266DECLHIDDEN(int) rtSocketAccept(RTSOCKET hSocket, PRTSOCKET phClient, struct sockaddr *pAddr, size_t *pcbAddr)
2267{
2268 /*
2269 * Validate input.
2270 * Only lock the socket temporarily while we get the native handle, so that
2271 * we can safely shutdown and destroy the socket from a different thread.
2272 */
2273 RTSOCKETINT *pThis = hSocket;
2274 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2275 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2276#ifdef RT_OS_WINDOWS
2277 AssertReturn(g_pfnaccept, VERR_NET_NOT_UNSUPPORTED);
2278 AssertReturn(g_pfnclosesocket, VERR_NET_NOT_UNSUPPORTED);
2279# define accept g_pfnaccept
2280#endif
2281 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2282
2283 /*
2284 * Call accept().
2285 */
2286 rtSocketErrorReset();
2287 int rc = VINF_SUCCESS;
2288#ifdef RT_OS_WINDOWS
2289 int cbAddr = (int)*pcbAddr;
2290#else
2291 socklen_t cbAddr = *pcbAddr;
2292#endif
2293 RTSOCKETNATIVE hNativeClient = accept(pThis->hNative, pAddr, &cbAddr);
2294 if (hNativeClient != NIL_RTSOCKETNATIVE)
2295 {
2296 *pcbAddr = cbAddr;
2297
2298 /*
2299 * Wrap the client socket.
2300 */
2301 rc = rtSocketCreateForNative(phClient, hNativeClient);
2302 if (RT_FAILURE(rc))
2303 {
2304#ifdef RT_OS_WINDOWS
2305 g_pfnclosesocket(hNativeClient);
2306#else
2307 close(hNativeClient);
2308#endif
2309 }
2310 }
2311 else
2312 rc = rtSocketError();
2313
2314 rtSocketUnlock(pThis);
2315#ifdef RT_OS_WINDOWS
2316# undef accept
2317#endif
2318 return rc;
2319}
2320
2321
2322/**
2323 * Wrapper around connect.
2324 *
2325 * @returns IPRT status code.
2326 * @param hSocket The socket handle.
2327 * @param pAddr The socket address to connect to.
2328 * @param cMillies Number of milliseconds to wait for the connect attempt to complete.
2329 * Use RT_INDEFINITE_WAIT to wait for ever.
2330 * Use RT_TCPCLIENTCONNECT_DEFAULT_WAIT to wait for the default time
2331 * configured on the running system.
2332 */
2333DECLHIDDEN(int) rtSocketConnect(RTSOCKET hSocket, PCRTNETADDR pAddr, RTMSINTERVAL cMillies)
2334{
2335 /*
2336 * Validate input.
2337 */
2338 RTSOCKETINT *pThis = hSocket;
2339 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2340 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2341#ifdef RT_OS_WINDOWS
2342 AssertReturn(g_pfnconnect, VERR_NET_NOT_UNSUPPORTED);
2343 AssertReturn(g_pfnselect, VERR_NET_NOT_UNSUPPORTED);
2344 AssertReturn(g_pfngetsockopt, VERR_NET_NOT_UNSUPPORTED);
2345# define connect g_pfnconnect
2346# define select g_pfnselect
2347# define getsockopt g_pfngetsockopt
2348#endif
2349 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2350
2351 RTSOCKADDRUNION u;
2352 int cbAddr;
2353 int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
2354 if (RT_SUCCESS(rc))
2355 {
2356 if (cMillies == RT_SOCKETCONNECT_DEFAULT_WAIT)
2357 {
2358 if (connect(pThis->hNative, &u.Addr, cbAddr) != 0)
2359 rc = rtSocketError();
2360 }
2361 else
2362 {
2363 /*
2364 * Switch the socket to nonblocking mode, initiate the connect
2365 * and wait for the socket to become writable or until the timeout
2366 * expires.
2367 */
2368 rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
2369 if (RT_SUCCESS(rc))
2370 {
2371 if (connect(pThis->hNative, &u.Addr, cbAddr) != 0)
2372 {
2373 rc = rtSocketError();
2374 if (rc == VERR_TRY_AGAIN || rc == VERR_NET_IN_PROGRESS)
2375 {
2376 int rcSock = 0;
2377 fd_set FdSetWriteable;
2378 struct timeval TvTimeout;
2379
2380 TvTimeout.tv_sec = cMillies / RT_MS_1SEC;
2381 TvTimeout.tv_usec = (cMillies % RT_MS_1SEC) * RT_US_1MS;
2382
2383 FD_ZERO(&FdSetWriteable);
2384 FD_SET(pThis->hNative, &FdSetWriteable);
2385 do
2386 {
2387 rcSock = select(pThis->hNative + 1, NULL, &FdSetWriteable, NULL,
2388 cMillies == RT_INDEFINITE_WAIT || cMillies >= INT_MAX
2389 ? NULL
2390 : &TvTimeout);
2391 if (rcSock > 0)
2392 {
2393 int iSockError = 0;
2394 socklen_t cbSockOpt = sizeof(iSockError);
2395 rcSock = getsockopt(pThis->hNative, SOL_SOCKET, SO_ERROR, (char *)&iSockError, &cbSockOpt);
2396 if (rcSock == 0)
2397 {
2398 if (iSockError == 0)
2399 rc = VINF_SUCCESS;
2400 else
2401 {
2402#ifdef RT_OS_WINDOWS
2403 rc = RTErrConvertFromWin32(iSockError);
2404#else
2405 rc = RTErrConvertFromErrno(iSockError);
2406#endif
2407 }
2408 }
2409 else
2410 rc = rtSocketError();
2411 }
2412 else if (rcSock == 0)
2413 rc = VERR_TIMEOUT;
2414 else
2415 rc = rtSocketError();
2416 } while (rc == VERR_INTERRUPTED);
2417 }
2418 }
2419
2420 rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
2421 }
2422 }
2423 }
2424
2425 rtSocketUnlock(pThis);
2426#ifdef RT_OS_WINDOWS
2427# undef connect
2428# undef select
2429# undef getsockopt
2430#endif
2431 return rc;
2432}
2433
2434
2435/**
2436 * Wrapper around connect, raw address, no timeout.
2437 *
2438 * @returns IPRT status code.
2439 * @param hSocket The socket handle.
2440 * @param pvAddr The raw socket address to connect to.
2441 * @param cbAddr The size of the raw address.
2442 */
2443DECLHIDDEN(int) rtSocketConnectRaw(RTSOCKET hSocket, void const *pvAddr, size_t cbAddr)
2444{
2445 /*
2446 * Validate input.
2447 */
2448 RTSOCKETINT *pThis = hSocket;
2449 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2450 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2451#ifdef RT_OS_WINDOWS
2452 AssertReturn(g_pfnconnect, VERR_NET_NOT_UNSUPPORTED);
2453# define connect g_pfnconnect
2454#endif
2455 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2456
2457 int rc;
2458 if (connect(pThis->hNative, (const struct sockaddr *)pvAddr, (int)cbAddr) == 0)
2459 rc = VINF_SUCCESS;
2460 else
2461 rc = rtSocketError();
2462
2463 rtSocketUnlock(pThis);
2464#ifdef RT_OS_WINDOWS
2465# undef connect
2466#endif
2467 return rc;
2468}
2469
2470
2471/**
2472 * Wrapper around setsockopt.
2473 *
2474 * @returns IPRT status code.
2475 * @param hSocket The socket handle.
2476 * @param iLevel The protocol level, e.g. IPPORTO_TCP.
2477 * @param iOption The option, e.g. TCP_NODELAY.
2478 * @param pvValue The value buffer.
2479 * @param cbValue The size of the value pointed to by pvValue.
2480 */
2481DECLHIDDEN(int) rtSocketSetOpt(RTSOCKET hSocket, int iLevel, int iOption, void const *pvValue, int cbValue)
2482{
2483 /*
2484 * Validate input.
2485 */
2486 RTSOCKETINT *pThis = hSocket;
2487 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2488 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2489#ifdef RT_OS_WINDOWS
2490 AssertReturn(g_pfnsetsockopt, VERR_NET_NOT_UNSUPPORTED);
2491# define setsockopt g_pfnsetsockopt
2492#endif
2493 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2494
2495 int rc = VINF_SUCCESS;
2496 if (setsockopt(pThis->hNative, iLevel, iOption, (const char *)pvValue, cbValue) != 0)
2497 rc = rtSocketError();
2498
2499 rtSocketUnlock(pThis);
2500#ifdef RT_OS_WINDOWS
2501# undef setsockopt
2502#endif
2503 return rc;
2504}
2505
2506
2507/**
2508 * Internal RTPollSetAdd helper that returns the handle that should be added to
2509 * the pollset.
2510 *
2511 * @returns Valid handle on success, INVALID_HANDLE_VALUE on failure.
2512 * @param hSocket The socket handle.
2513 * @param fEvents The events we're polling for.
2514 * @param phNative Where to put the primary handle.
2515 */
2516DECLHIDDEN(int) rtSocketPollGetHandle(RTSOCKET hSocket, uint32_t fEvents, PRTHCINTPTR phNative)
2517{
2518 RTSOCKETINT *pThis = hSocket;
2519 RT_NOREF_PV(fEvents);
2520 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2521 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2522#ifdef RT_OS_WINDOWS
2523 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2524
2525 int rc = VINF_SUCCESS;
2526 if (pThis->hEvent != WSA_INVALID_EVENT)
2527 *phNative = (RTHCINTPTR)pThis->hEvent;
2528 else if (g_pfnWSACreateEvent)
2529 {
2530 pThis->hEvent = g_pfnWSACreateEvent();
2531 *phNative = (RTHCINTPTR)pThis->hEvent;
2532 if (pThis->hEvent == WSA_INVALID_EVENT)
2533 rc = rtSocketError();
2534 }
2535 else
2536 {
2537 AssertCompile(WSA_INVALID_EVENT == (WSAEVENT)NULL);
2538 pThis->hEvent = CreateEventW(NULL, TRUE /*fManualReset*/, FALSE /*fInitialState*/, NULL /*pwszName*/);
2539 *phNative = (RTHCINTPTR)pThis->hEvent;
2540 if (pThis->hEvent == WSA_INVALID_EVENT)
2541 rc = RTErrConvertFromWin32(GetLastError());
2542 }
2543
2544 rtSocketUnlock(pThis);
2545 return rc;
2546
2547#else /* !RT_OS_WINDOWS */
2548 *phNative = (RTHCUINTPTR)pThis->hNative;
2549 return VINF_SUCCESS;
2550#endif /* !RT_OS_WINDOWS */
2551}
2552
2553#ifdef RT_OS_WINDOWS
2554
2555/**
2556 * Fallback poller thread.
2557 *
2558 * @returns VINF_SUCCESS.
2559 * @param hSelf The thread handle.
2560 * @param pvUser Socket instance data.
2561 */
2562static DECLCALLBACK(int) rtSocketPollFallbackThreadProc(RTTHREAD hSelf, void *pvUser)
2563{
2564 RTSOCKETINT *pThis = (RTSOCKETINT *)pvUser;
2565 RT_NOREF(hSelf);
2566# define __WSAFDIsSet g_pfn__WSAFDIsSet
2567
2568 /*
2569 * The execution loop.
2570 */
2571 while (!ASMAtomicReadBool(&pThis->fPollFallbackShutdown))
2572 {
2573 /*
2574 * Do the selecting (with a 15 second timeout because that seems like a good idea).
2575 */
2576 struct fd_set SetRead;
2577 struct fd_set SetWrite;
2578 struct fd_set SetXcpt;
2579
2580 FD_ZERO(&SetRead);
2581 FD_ZERO(&SetWrite);
2582 FD_ZERO(&SetXcpt);
2583
2584 FD_SET(pThis->hPollFallbackNotifyR, &SetRead);
2585 FD_SET(pThis->hPollFallbackNotifyR, &SetXcpt);
2586
2587 bool fActive = ASMAtomicReadBool(&pThis->fPollFallbackActive);
2588 uint32_t fEvents;
2589 if (!fActive)
2590 fEvents = 0;
2591 else
2592 {
2593 fEvents = ASMAtomicReadU32(&pThis->fSubscribedEvts);
2594 if (fEvents & RTPOLL_EVT_READ)
2595 FD_SET(pThis->hNative, &SetRead);
2596 if (fEvents & RTPOLL_EVT_WRITE)
2597 FD_SET(pThis->hNative, &SetWrite);
2598 if (fEvents & RTPOLL_EVT_ERROR)
2599 FD_SET(pThis->hNative, &SetXcpt);
2600 }
2601
2602 struct timeval Timeout;
2603 Timeout.tv_sec = 15;
2604 Timeout.tv_usec = 0;
2605 int rc = g_pfnselect(INT_MAX /*ignored*/, &SetRead, &SetWrite, &SetXcpt, &Timeout);
2606
2607 /* Stop immediately if told to shut down. */
2608 if (ASMAtomicReadBool(&pThis->fPollFallbackShutdown))
2609 break;
2610
2611 /*
2612 * Process the result.
2613 */
2614 if (rc > 0)
2615 {
2616 /* First the socket we're listening on. */
2617 if ( fEvents
2618 && ( FD_ISSET(pThis->hNative, &SetRead)
2619 || FD_ISSET(pThis->hNative, &SetWrite)
2620 || FD_ISSET(pThis->hNative, &SetXcpt)) )
2621 {
2622 ASMAtomicWriteBool(&pThis->fPollFallbackActive, false);
2623 SetEvent(pThis->hEvent);
2624 }
2625
2626 /* Then maintain the notification pipe. (We only read one byte here
2627 because we're overly paranoid wrt socket switching to blocking mode.) */
2628 if (FD_ISSET(pThis->hPollFallbackNotifyR, &SetRead))
2629 {
2630 char chIgnored;
2631 g_pfnrecv(pThis->hPollFallbackNotifyR, &chIgnored, sizeof(chIgnored), MSG_NOSIGNAL);
2632 }
2633 }
2634 else
2635 AssertMsg(rc == 0, ("%Rrc\n", rtSocketError()));
2636 }
2637
2638# undef __WSAFDIsSet
2639 return VINF_SUCCESS;
2640}
2641
2642
2643/**
2644 * Pokes the fallback thread, making sure it gets out of whatever it's stuck in.
2645 *
2646 * @param pThis The socket handle.
2647 */
2648static void rtSocketPokePollFallbackThread(RTSOCKETINT *pThis)
2649{
2650 Assert(pThis->fPollFallback);
2651 if (pThis->hPollFallbackThread != NIL_RTTHREAD)
2652 {
2653 int cbWritten = g_pfnsend(pThis->hPollFallbackNotifyW, "!", 1, MSG_NOSIGNAL);
2654 AssertMsg(cbWritten == 1, ("cbWritten=%d err=%Rrc\n", rtSocketError()));
2655 RT_NOREF_PV(cbWritten);
2656 }
2657}
2658
2659
2660/**
2661 * Called by rtSocketPollStart to make the thread start selecting on the socket.
2662 *
2663 * @returns 0 on success, RTPOLL_EVT_ERROR on failure.
2664 * @param pThis The socket handle.
2665 */
2666static uint32_t rtSocketPollFallbackStart(RTSOCKETINT *pThis)
2667{
2668 /*
2669 * Reset the event and tell the thread to start selecting on the socket.
2670 */
2671 ResetEvent(pThis->hEvent);
2672 ASMAtomicWriteBool(&pThis->fPollFallbackActive, true);
2673
2674 /*
2675 * Wake up the thread the thread.
2676 */
2677 if (pThis->hPollFallbackThread != NIL_RTTHREAD)
2678 rtSocketPokePollFallbackThread(pThis);
2679 else
2680 {
2681 /*
2682 * Not running, need to set it up and start it.
2683 */
2684 AssertLogRelReturn(pThis->hEvent != NULL && pThis->hEvent != INVALID_HANDLE_VALUE, RTPOLL_EVT_ERROR);
2685
2686 /* Create the notification socket pair. */
2687 int rc;
2688 if (pThis->hPollFallbackNotifyR == NIL_RTSOCKETNATIVE)
2689 {
2690 rc = rtSocketCreateNativeTcpPair(&pThis->hPollFallbackNotifyW, &pThis->hPollFallbackNotifyR);
2691 AssertLogRelRCReturn(rc, RTPOLL_EVT_ERROR);
2692
2693 /* Make the read end non-blocking (not fatal). */
2694 u_long fNonBlocking = 1;
2695 rc = g_pfnioctlsocket(pThis->hPollFallbackNotifyR, FIONBIO, &fNonBlocking);
2696 AssertLogRelMsg(rc == 0, ("rc=%#x %Rrc\n", rc, rtSocketError()));
2697 }
2698
2699 /* Finally, start the thread. ASSUME we don't need too much stack. */
2700 rc = RTThreadCreate(&pThis->hPollFallbackThread, rtSocketPollFallbackThreadProc, pThis,
2701 _128K, RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "sockpoll");
2702 AssertLogRelRCReturn(rc, RTPOLL_EVT_ERROR);
2703 }
2704 return 0;
2705}
2706
2707
2708/**
2709 * Undos the harm done by WSAEventSelect.
2710 *
2711 * @returns IPRT status code.
2712 * @param pThis The socket handle.
2713 */
2714static int rtSocketPollClearEventAndRestoreBlocking(RTSOCKETINT *pThis)
2715{
2716 int rc = VINF_SUCCESS;
2717 if (pThis->fSubscribedEvts)
2718 {
2719 if (!pThis->fPollFallback)
2720 {
2721 Assert(g_pfnWSAEventSelect && g_pfnioctlsocket);
2722 if (g_pfnWSAEventSelect && g_pfnioctlsocket)
2723 {
2724 if (g_pfnWSAEventSelect(pThis->hNative, WSA_INVALID_EVENT, 0) == 0)
2725 {
2726 pThis->fSubscribedEvts = 0;
2727
2728 /*
2729 * Switch back to blocking mode if that was the state before the
2730 * operation.
2731 */
2732 if (pThis->fBlocking)
2733 {
2734 u_long fNonBlocking = 0;
2735 int rc2 = g_pfnioctlsocket(pThis->hNative, FIONBIO, &fNonBlocking);
2736 if (rc2 != 0)
2737 {
2738 rc = rtSocketError();
2739 AssertMsgFailed(("%Rrc; rc2=%d\n", rc, rc2));
2740 }
2741 }
2742 }
2743 else
2744 {
2745 rc = rtSocketError();
2746 AssertMsgFailed(("%Rrc\n", rc));
2747 }
2748 }
2749 else
2750 {
2751 Assert(pThis->fPollFallback);
2752 rc = VINF_SUCCESS;
2753 }
2754 }
2755 /*
2756 * Just clear the event mask as we never started waiting if we get here.
2757 */
2758 else
2759 ASMAtomicWriteU32(&pThis->fSubscribedEvts, 0);
2760 }
2761 return rc;
2762}
2763
2764
2765/**
2766 * Updates the mask of events we're subscribing to.
2767 *
2768 * @returns IPRT status code.
2769 * @param pThis The socket handle.
2770 * @param fEvents The events we want to subscribe to.
2771 */
2772static int rtSocketPollUpdateEvents(RTSOCKETINT *pThis, uint32_t fEvents)
2773{
2774 if (!pThis->fPollFallback)
2775 {
2776 LONG fNetworkEvents = 0;
2777 if (fEvents & RTPOLL_EVT_READ)
2778 fNetworkEvents |= FD_READ;
2779 if (fEvents & RTPOLL_EVT_WRITE)
2780 fNetworkEvents |= FD_WRITE;
2781 if (fEvents & RTPOLL_EVT_ERROR)
2782 fNetworkEvents |= FD_CLOSE;
2783 LogFlowFunc(("fNetworkEvents=%#x\n", fNetworkEvents));
2784
2785 if (g_pfnWSAEventSelect(pThis->hNative, pThis->hEvent, fNetworkEvents) == 0)
2786 {
2787 pThis->fSubscribedEvts = fEvents;
2788 return VINF_SUCCESS;
2789 }
2790
2791 int rc = rtSocketError();
2792 AssertMsgFailed(("fNetworkEvents=%#x rc=%Rrc\n", fNetworkEvents, rtSocketError()));
2793 return rc;
2794 }
2795
2796 /*
2797 * Update the events we're waiting for. Caller will poke/start the thread. later
2798 */
2799 ASMAtomicWriteU32(&pThis->fSubscribedEvts, fEvents);
2800 return VINF_SUCCESS;
2801}
2802
2803#endif /* RT_OS_WINDOWS */
2804
2805
2806#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
2807
2808/**
2809 * Checks for pending events.
2810 *
2811 * @returns Event mask or 0.
2812 * @param pThis The socket handle.
2813 * @param fEvents The desired events.
2814 */
2815static uint32_t rtSocketPollCheck(RTSOCKETINT *pThis, uint32_t fEvents)
2816{
2817 uint32_t fRetEvents = 0;
2818
2819 LogFlowFunc(("pThis=%#p fEvents=%#x\n", pThis, fEvents));
2820
2821# ifdef RT_OS_WINDOWS
2822 /* Make sure WSAEnumNetworkEvents returns what we want. */
2823 int rc = VINF_SUCCESS;
2824 if ((pThis->fSubscribedEvts & fEvents) != fEvents)
2825 rc = rtSocketPollUpdateEvents(pThis, pThis->fSubscribedEvts | fEvents);
2826
2827 if (!pThis->fPollFallback)
2828 {
2829 /* Atomically get pending events and reset the event semaphore. */
2830 Assert(g_pfnWSAEnumNetworkEvents);
2831 WSANETWORKEVENTS NetEvts;
2832 RT_ZERO(NetEvts);
2833 if (g_pfnWSAEnumNetworkEvents(pThis->hNative, pThis->hEvent, &NetEvts) == 0)
2834 {
2835 if ( (NetEvts.lNetworkEvents & FD_READ)
2836 && NetEvts.iErrorCode[FD_READ_BIT] == 0)
2837 fRetEvents |= RTPOLL_EVT_READ;
2838
2839 if ( (NetEvts.lNetworkEvents & FD_WRITE)
2840 && NetEvts.iErrorCode[FD_WRITE_BIT] == 0)
2841 fRetEvents |= RTPOLL_EVT_WRITE;
2842
2843 if (NetEvts.lNetworkEvents & FD_CLOSE)
2844 fRetEvents |= RTPOLL_EVT_ERROR;
2845 else
2846 for (uint32_t i = 0; i < FD_MAX_EVENTS; i++)
2847 if ( (NetEvts.lNetworkEvents & (1L << i))
2848 && NetEvts.iErrorCode[i] != 0)
2849 fRetEvents |= RTPOLL_EVT_ERROR;
2850
2851 pThis->fEventsSaved = fRetEvents |= pThis->fEventsSaved;
2852 fRetEvents &= fEvents | RTPOLL_EVT_ERROR;
2853 }
2854 else
2855 rc = rtSocketError();
2856 }
2857
2858 /* Fall back on select if we hit an error above or is using fallback polling. */
2859 if (pThis->fPollFallback || RT_FAILURE(rc))
2860 {
2861 rc = rtSocketSelectOneEx(pThis, fEvents & RTPOLL_EVT_ERROR ? fEvents | RTPOLL_EVT_READ : fEvents, &fRetEvents, 0);
2862 if (RT_SUCCESS(rc))
2863 {
2864 /* rtSocketSelectOneEx may return RTPOLL_EVT_READ on disconnect. Use
2865 getpeername to fix this. */
2866 if ((fRetEvents & (RTPOLL_EVT_READ | RTPOLL_EVT_ERROR)) == RTPOLL_EVT_READ)
2867 {
2868# if 0 /* doens't work */
2869 rtSocketErrorReset();
2870 char chIgn;
2871 rc = g_pfnrecv(pThis->hNative, &chIgn, 0, MSG_NOSIGNAL);
2872 rc = rtSocketError();
2873 if (RT_FAILURE(rc))
2874 fRetEvents |= RTPOLL_EVT_ERROR;
2875
2876 rc = g_pfnsend(pThis->hNative, &chIgn, 0, MSG_NOSIGNAL);
2877 rc = rtSocketError();
2878 if (RT_FAILURE(rc))
2879 fRetEvents |= RTPOLL_EVT_ERROR;
2880
2881 RTSOCKADDRUNION u;
2882 int cbAddr = sizeof(u);
2883 if (g_pfngetpeername(pThis->hNative, &u.Addr, &cbAddr) == SOCKET_ERROR)
2884 fRetEvents |= RTPOLL_EVT_ERROR;
2885# endif
2886 /* If no bytes are available, assume error condition. */
2887 u_long cbAvail = 0;
2888 rc = g_pfnioctlsocket(pThis->hNative, FIONREAD, &cbAvail);
2889 if (rc == 0 && cbAvail == 0)
2890 fRetEvents |= RTPOLL_EVT_ERROR;
2891 }
2892 fRetEvents &= fEvents | RTPOLL_EVT_ERROR;
2893 }
2894 else if (rc == VERR_TIMEOUT)
2895 fRetEvents = 0;
2896 else
2897 fRetEvents |= RTPOLL_EVT_ERROR;
2898 }
2899
2900# else /* RT_OS_OS2 */
2901 int aFds[4] = { pThis->hNative, pThis->hNative, pThis->hNative, -1 };
2902 int rc = os2_select(aFds, 1, 1, 1, 0);
2903 if (rc > 0)
2904 {
2905 if (aFds[0] == pThis->hNative)
2906 fRetEvents |= RTPOLL_EVT_READ;
2907 if (aFds[1] == pThis->hNative)
2908 fRetEvents |= RTPOLL_EVT_WRITE;
2909 if (aFds[2] == pThis->hNative)
2910 fRetEvents |= RTPOLL_EVT_ERROR;
2911 fRetEvents &= fEvents;
2912 }
2913# endif /* RT_OS_OS2 */
2914
2915 LogFlowFunc(("fRetEvents=%#x\n", fRetEvents));
2916 return fRetEvents;
2917}
2918
2919
2920/**
2921 * Internal RTPoll helper that polls the socket handle and, if @a fNoWait is
2922 * clear, starts whatever actions we've got running during the poll call.
2923 *
2924 * @returns 0 if no pending events, actions initiated if @a fNoWait is clear.
2925 * Event mask (in @a fEvents) and no actions if the handle is ready
2926 * already.
2927 * UINT32_MAX (asserted) if the socket handle is busy in I/O or a
2928 * different poll set.
2929 *
2930 * @param hSocket The socket handle.
2931 * @param hPollSet The poll set handle (for access checks).
2932 * @param fEvents The events we're polling for.
2933 * @param fFinalEntry Set if this is the final entry for this handle
2934 * in this poll set. This can be used for dealing
2935 * with duplicate entries.
2936 * @param fNoWait Set if it's a zero-wait poll call. Clear if
2937 * we'll wait for an event to occur.
2938 *
2939 * @remarks There is a potential race wrt duplicate handles when @a fNoWait is
2940 * @c true, we don't currently care about that oddity...
2941 */
2942DECLHIDDEN(uint32_t) rtSocketPollStart(RTSOCKET hSocket, RTPOLLSET hPollSet, uint32_t fEvents, bool fFinalEntry, bool fNoWait)
2943{
2944 RTSOCKETINT *pThis = hSocket;
2945 AssertPtrReturn(pThis, UINT32_MAX);
2946 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
2947 /** @todo This isn't quite sane. Replace by critsect and open up concurrent
2948 * reads and writes! */
2949 if (rtSocketTryLock(pThis))
2950 pThis->hPollSet = hPollSet;
2951 else
2952 {
2953 AssertReturn(pThis->hPollSet == hPollSet, UINT32_MAX);
2954 ASMAtomicIncU32(&pThis->cUsers);
2955 }
2956
2957 /* (rtSocketPollCheck will reset the event object). */
2958# ifdef RT_OS_WINDOWS
2959 uint32_t fRetEvents = pThis->fEventsSaved;
2960 pThis->fEventsSaved = 0; /* Reset */
2961 fRetEvents |= rtSocketPollCheck(pThis, fEvents);
2962
2963 if ( !fRetEvents
2964 && !fNoWait)
2965 {
2966 pThis->fPollEvts |= fEvents;
2967 if (fFinalEntry)
2968 {
2969 if (pThis->fSubscribedEvts != pThis->fPollEvts)
2970 {
2971 /** @todo seems like there might be a call to many here and that fPollEvts is
2972 * totally unnecessary... (bird) */
2973 int rc = rtSocketPollUpdateEvents(pThis, pThis->fPollEvts);
2974 if (RT_FAILURE(rc))
2975 {
2976 pThis->fPollEvts = 0;
2977 fRetEvents = UINT32_MAX;
2978 }
2979 }
2980
2981 /* Make sure we don't block when there are events pending relevant to an earlier poll set entry. */
2982 if (pThis->fEventsSaved && !pThis->fPollFallback && g_pfnWSASetEvent && fRetEvents == 0)
2983 g_pfnWSASetEvent(pThis->hEvent);
2984 }
2985 }
2986# else
2987 uint32_t fRetEvents = rtSocketPollCheck(pThis, fEvents);
2988# endif
2989
2990 if (fRetEvents || fNoWait)
2991 {
2992 if (pThis->cUsers == 1)
2993 {
2994# ifdef RT_OS_WINDOWS
2995 pThis->fEventsSaved &= RTPOLL_EVT_ERROR;
2996 pThis->fHarvestedEvents = false;
2997 rtSocketPollClearEventAndRestoreBlocking(pThis);
2998# endif
2999 pThis->hPollSet = NIL_RTPOLLSET;
3000 }
3001# ifdef RT_OS_WINDOWS
3002 else
3003 pThis->fHarvestedEvents = true;
3004# endif
3005 ASMAtomicDecU32(&pThis->cUsers);
3006 }
3007# ifdef RT_OS_WINDOWS
3008 /*
3009 * Kick the poller thread on if this is the final entry and we're in
3010 * winsock 1.x fallback mode.
3011 */
3012 else if (pThis->fPollFallback && fFinalEntry)
3013 fRetEvents = rtSocketPollFallbackStart(pThis);
3014# endif
3015
3016 return fRetEvents;
3017}
3018
3019
3020/**
3021 * Called after a WaitForMultipleObjects returned in order to check for pending
3022 * events and stop whatever actions that rtSocketPollStart() initiated.
3023 *
3024 * @returns Event mask or 0.
3025 *
3026 * @param hSocket The socket handle.
3027 * @param fEvents The events we're polling for.
3028 * @param fFinalEntry Set if this is the final entry for this handle
3029 * in this poll set. This can be used for dealing
3030 * with duplicate entries. Only keep in mind that
3031 * this method is called in reverse order, so the
3032 * first call will have this set (when the entire
3033 * set was processed).
3034 * @param fHarvestEvents Set if we should check for pending events.
3035 */
3036DECLHIDDEN(uint32_t) rtSocketPollDone(RTSOCKET hSocket, uint32_t fEvents, bool fFinalEntry, bool fHarvestEvents)
3037{
3038 RTSOCKETINT *pThis = hSocket;
3039 AssertPtrReturn(pThis, 0);
3040 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, 0);
3041 Assert(pThis->cUsers > 0);
3042 Assert(pThis->hPollSet != NIL_RTPOLLSET);
3043 RT_NOREF_PV(fFinalEntry);
3044
3045# ifdef RT_OS_WINDOWS
3046 /*
3047 * Deactivate the poll thread if we're in winsock 1.x fallback poll mode.
3048 */
3049 if ( pThis->fPollFallback
3050 && pThis->hPollFallbackThread != NIL_RTTHREAD)
3051 {
3052 ASMAtomicWriteU32(&pThis->fSubscribedEvts, 0);
3053 if (ASMAtomicXchgBool(&pThis->fPollFallbackActive, false))
3054 rtSocketPokePollFallbackThread(pThis);
3055 }
3056# endif
3057
3058 /*
3059 * Harvest events and clear the event mask for the next round of polling.
3060 */
3061 uint32_t fRetEvents;
3062# ifdef RT_OS_WINDOWS
3063 if (!pThis->fPollFallback)
3064 {
3065 if (!pThis->fHarvestedEvents)
3066 {
3067 fRetEvents = rtSocketPollCheck(pThis, fEvents);
3068 pThis->fHarvestedEvents = true;
3069 }
3070 else
3071 fRetEvents = pThis->fEventsSaved;
3072 if (fHarvestEvents)
3073 fRetEvents &= fEvents;
3074 else
3075 fRetEvents = 0;
3076 pThis->fPollEvts = 0;
3077 }
3078 else
3079# endif
3080 {
3081 if (fHarvestEvents)
3082 fRetEvents = rtSocketPollCheck(pThis, fEvents);
3083 else
3084 fRetEvents = 0;
3085 }
3086
3087 /*
3088 * Make the socket blocking again and unlock the handle.
3089 */
3090 if (pThis->cUsers == 1)
3091 {
3092# ifdef RT_OS_WINDOWS
3093 pThis->fEventsSaved &= RTPOLL_EVT_ERROR;
3094 pThis->fHarvestedEvents = false;
3095 rtSocketPollClearEventAndRestoreBlocking(pThis);
3096# endif
3097 pThis->hPollSet = NIL_RTPOLLSET;
3098 }
3099 ASMAtomicDecU32(&pThis->cUsers);
3100 return fRetEvents;
3101}
3102
3103#endif /* RT_OS_WINDOWS || RT_OS_OS2 */
3104
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette