VirtualBox

source: vbox/trunk/src/VBox/Runtime/r3/socket.cpp@ 99828

Last change on this file since 99828 was 98103, checked in by vboxsync, 2 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 96.3 KB
Line 
1/* $Id: socket.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */
2/** @file
3 * IPRT - Network Sockets.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * The contents of this file may alternatively be used under the terms
26 * of the Common Development and Distribution License Version 1.0
27 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
28 * in the VirtualBox distribution, in which case the provisions of the
29 * CDDL are applicable instead of those of the GPL.
30 *
31 * You may elect to license modified versions of this file under the
32 * terms and conditions of either the GPL or the CDDL or both.
33 *
34 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
35 */
36
37
38/*********************************************************************************************************************************
39* Header Files *
40*********************************************************************************************************************************/
41#ifdef RT_OS_WINDOWS
42# include <iprt/win/winsock2.h>
43# include <iprt/win/ws2tcpip.h>
44#else /* !RT_OS_WINDOWS */
45# include <errno.h>
46# include <sys/select.h>
47# include <sys/stat.h>
48# include <sys/socket.h>
49# include <netinet/in.h>
50# include <netinet/tcp.h>
51# include <arpa/inet.h>
52# ifdef IPRT_WITH_TCPIP_V6
53# include <netinet6/in6.h>
54# endif
55# include <sys/un.h>
56# include <netdb.h>
57# include <unistd.h>
58# include <fcntl.h>
59# include <sys/uio.h>
60# ifndef AF_LOCAL
61# define AF_LOCAL AF_UNIX
62# endif
63#endif /* !RT_OS_WINDOWS */
64#include <limits.h>
65
66#include "internal/iprt.h"
67#include <iprt/socket.h>
68
69#include <iprt/alloca.h>
70#include <iprt/asm.h>
71#include <iprt/assert.h>
72#include <iprt/ctype.h>
73#include <iprt/err.h>
74#include <iprt/mempool.h>
75#include <iprt/poll.h>
76#include <iprt/string.h>
77#include <iprt/thread.h>
78#include <iprt/time.h>
79#include <iprt/mem.h>
80#include <iprt/sg.h>
81#include <iprt/log.h>
82
83#include "internal/magics.h"
84#include "internal/socket.h"
85#include "internal/string.h"
86#ifdef RT_OS_WINDOWS
87# include "win/internal-r3-win.h"
88#endif
89
90
91/*********************************************************************************************************************************
92* Defined Constants And Macros *
93*********************************************************************************************************************************/
94/* non-standard linux stuff (it seems). */
95#ifndef MSG_NOSIGNAL
96# define MSG_NOSIGNAL 0
97#endif
98
99/* Windows has different names for SHUT_XXX. */
100#ifndef SHUT_RDWR
101# ifdef SD_BOTH
102# define SHUT_RDWR SD_BOTH
103# else
104# define SHUT_RDWR 2
105# endif
106#endif
107#ifndef SHUT_WR
108# ifdef SD_SEND
109# define SHUT_WR SD_SEND
110# else
111# define SHUT_WR 1
112# endif
113#endif
114#ifndef SHUT_RD
115# ifdef SD_RECEIVE
116# define SHUT_RD SD_RECEIVE
117# else
118# define SHUT_RD 0
119# endif
120#endif
121
122/* fixup backlevel OSes. */
123#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS)
124# define socklen_t int
125#endif
126
127/** How many pending connection. */
128#define RTTCP_SERVER_BACKLOG 10
129
130/* Limit read and write sizes on Windows and OS/2. */
131#ifdef RT_OS_WINDOWS
132# define RTSOCKET_MAX_WRITE (INT_MAX / 2)
133# define RTSOCKET_MAX_READ (INT_MAX / 2)
134#elif defined(RT_OS_OS2)
135# define RTSOCKET_MAX_WRITE 0x10000
136# define RTSOCKET_MAX_READ 0x10000
137#endif
138
139
140/*********************************************************************************************************************************
141* Structures and Typedefs *
142*********************************************************************************************************************************/
143/**
144 * Socket handle data.
145 *
146 * This is mainly required for implementing RTPollSet on Windows.
147 */
148typedef struct RTSOCKETINT
149{
150 /** Magic number (RTSOCKET_MAGIC). */
151 uint32_t u32Magic;
152 /** Exclusive user count.
153 * This is used to prevent two threads from accessing the handle concurrently.
154 * It can be higher than 1 if this handle is reference multiple times in a
155 * polling set (Windows). */
156 uint32_t volatile cUsers;
157 /** The native socket handle. */
158 RTSOCKETNATIVE hNative;
159 /** Indicates whether the handle has been closed or not. */
160 bool volatile fClosed;
161 /** Indicates whether the socket is operating in blocking or non-blocking mode
162 * currently. */
163 bool fBlocking;
164 /** Whether to leave the native socket open rather than closing it (for
165 * RTHandleGetStandard). */
166 bool fLeaveOpen;
167#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
168 /** The pollset currently polling this socket. This is NIL if no one is
169 * polling. */
170 RTPOLLSET hPollSet;
171#endif
172#ifdef RT_OS_WINDOWS
173 /** The event semaphore we've associated with the socket handle.
174 * This is WSA_INVALID_EVENT if not done. */
175 WSAEVENT hEvent;
176 /** The events we're polling for. */
177 uint32_t fPollEvts;
178 /** The events we're currently subscribing to with WSAEventSelect.
179 * This is ZERO if we're currently not subscribing to anything. */
180 uint32_t fSubscribedEvts;
181 /** Saved events which are only posted once and events harvested for
182 * sockets entered multiple times into to a poll set. Imagine a scenario where
183 * you have a RTPOLL_EVT_READ entry and RTPOLL_EVT_ERROR entry. The READ
184 * condition can be triggered between checking the READ entry and the ERROR
185 * entry, and we don't want to drop the READ, so we store it here and make sure
186 * the event is signalled.
187 *
188 * The RTPOLL_EVT_ERROR is inconsistenly sticky at the momemnt... */
189 uint32_t fEventsSaved;
190 /** Set if fEventsSaved contains harvested events (used to avoid multiple
191 * calls to rtSocketPollCheck on the same socket during rtSocketPollDone). */
192 bool fHarvestedEvents;
193 /** Set if we're using the polling fallback. */
194 bool fPollFallback;
195 /** Set if the fallback polling is active (event not set). */
196 bool volatile fPollFallbackActive;
197 /** Set to shut down the fallback polling thread. */
198 bool volatile fPollFallbackShutdown;
199 /** Socket use to wake up the select thread. */
200 RTSOCKETNATIVE hPollFallbackNotifyW;
201 /** Socket the select thread always waits on. */
202 RTSOCKETNATIVE hPollFallbackNotifyR;
203 /** The fallback polling thread. */
204 RTTHREAD hPollFallbackThread;
205#endif /* RT_OS_WINDOWS */
206} RTSOCKETINT;
207
208
209/**
210 * Address union used internally for things like getpeername and getsockname.
211 */
212typedef union RTSOCKADDRUNION
213{
214 struct sockaddr Addr;
215 struct sockaddr_in IPv4;
216#ifdef IPRT_WITH_TCPIP_V6
217 struct sockaddr_in6 IPv6;
218#endif
219} RTSOCKADDRUNION;
220
221
222/*********************************************************************************************************************************
223* Global Variables *
224*********************************************************************************************************************************/
225#ifdef RT_OS_WINDOWS
226/** Indicates that we've successfully initialized winsock. */
227static uint32_t volatile g_uWinSockInitedVersion = 0;
228#endif
229
230
231/*********************************************************************************************************************************
232* Internal Functions *
233*********************************************************************************************************************************/
234#ifdef RT_OS_WINDOWS
235static void rtSocketPokePollFallbackThread(RTSOCKETINT *pThis);
236#endif
237
238
239
240#ifdef RT_OS_WINDOWS
241/**
242 * Initializes winsock for the process.
243 *
244 * @returns IPRT status code.
245 */
246static int rtSocketInitWinsock(void)
247{
248 if (g_uWinSockInitedVersion != 0)
249 return VINF_SUCCESS;
250
251 if ( !g_pfnWSAGetLastError
252 || !g_pfnWSAStartup
253 || !g_pfnsocket
254 || !g_pfnclosesocket)
255 return VERR_NET_INIT_FAILED;
256
257 /*
258 * Initialize winsock. Try with 2.2 and back down till we get something that works.
259 */
260 static const WORD s_awVersions[] =
261 {
262 MAKEWORD(2, 2),
263 MAKEWORD(2, 1),
264 MAKEWORD(2, 0),
265 MAKEWORD(1, 1),
266 MAKEWORD(1, 0),
267 };
268 for (uint32_t i = 0; i < RT_ELEMENTS(s_awVersions); i++)
269 {
270 WSADATA wsaData;
271 RT_ZERO(wsaData);
272 int rcWsa = g_pfnWSAStartup(s_awVersions[i], &wsaData);
273 if (rcWsa == 0)
274 {
275 /* AssertMsg(wsaData.wVersion >= s_awVersions[i]); - triggers with winsock 1.1 */
276 ASMAtomicWriteU32(&g_uWinSockInitedVersion, wsaData.wVersion);
277 return VINF_SUCCESS;
278 }
279 AssertLogRelMsg(rcWsa == WSAVERNOTSUPPORTED, ("rcWsa=%d (winsock version %#x)\n", rcWsa, s_awVersions[i]));
280 }
281 LogRel(("Failed to init winsock!\n"));
282 return VERR_NET_INIT_FAILED;
283}
284#endif
285
286
287/**
288 * Get the last error as an iprt status code.
289 *
290 * @returns IPRT status code.
291 */
292DECLINLINE(int) rtSocketError(void)
293{
294#ifdef RT_OS_WINDOWS
295 if (g_pfnWSAGetLastError)
296 return RTErrConvertFromWin32(g_pfnWSAGetLastError());
297 return VERR_NET_IO_ERROR;
298#else
299 return RTErrConvertFromErrno(errno);
300#endif
301}
302
303
304/**
305 * Resets the last error.
306 */
307DECLINLINE(void) rtSocketErrorReset(void)
308{
309#ifdef RT_OS_WINDOWS
310 if (g_pfnWSASetLastError)
311 g_pfnWSASetLastError(0);
312#else
313 errno = 0;
314#endif
315}
316
317
318/**
319 * Get the last resolver error as an iprt status code.
320 *
321 * @returns iprt status code.
322 */
323DECLHIDDEN(int) rtSocketResolverError(void)
324{
325#ifdef RT_OS_WINDOWS
326 if (g_pfnWSAGetLastError)
327 return RTErrConvertFromWin32(g_pfnWSAGetLastError());
328 return VERR_UNRESOLVED_ERROR;
329#else
330 switch (h_errno)
331 {
332 case HOST_NOT_FOUND:
333 return VERR_NET_HOST_NOT_FOUND;
334 case NO_DATA:
335 return VERR_NET_ADDRESS_NOT_AVAILABLE;
336 case NO_RECOVERY:
337 return VERR_IO_GEN_FAILURE;
338 case TRY_AGAIN:
339 return VERR_TRY_AGAIN;
340
341 default:
342 AssertLogRelMsgFailed(("Unhandled error %u\n", h_errno));
343 return VERR_UNRESOLVED_ERROR;
344 }
345#endif
346}
347
348
349/**
350 * Converts from a native socket address to a generic IPRT network address.
351 *
352 * @returns IPRT status code.
353 * @param pSrc The source address.
354 * @param cbSrc The size of the source address.
355 * @param pAddr Where to return the generic IPRT network
356 * address.
357 */
358static int rtSocketNetAddrFromAddr(RTSOCKADDRUNION const *pSrc, size_t cbSrc, PRTNETADDR pAddr)
359{
360 /*
361 * Convert the address.
362 */
363 if ( cbSrc == sizeof(struct sockaddr_in)
364 && pSrc->Addr.sa_family == AF_INET)
365 {
366 RT_ZERO(*pAddr);
367 pAddr->enmType = RTNETADDRTYPE_IPV4;
368 pAddr->uPort = RT_N2H_U16(pSrc->IPv4.sin_port);
369 pAddr->uAddr.IPv4.u = pSrc->IPv4.sin_addr.s_addr;
370 }
371#ifdef IPRT_WITH_TCPIP_V6
372 else if ( cbSrc == sizeof(struct sockaddr_in6)
373 && pSrc->Addr.sa_family == AF_INET6)
374 {
375 RT_ZERO(*pAddr);
376 pAddr->enmType = RTNETADDRTYPE_IPV6;
377 pAddr->uPort = RT_N2H_U16(pSrc->IPv6.sin6_port);
378 pAddr->uAddr.IPv6.au32[0] = pSrc->IPv6.sin6_addr.s6_addr32[0];
379 pAddr->uAddr.IPv6.au32[1] = pSrc->IPv6.sin6_addr.s6_addr32[1];
380 pAddr->uAddr.IPv6.au32[2] = pSrc->IPv6.sin6_addr.s6_addr32[2];
381 pAddr->uAddr.IPv6.au32[3] = pSrc->IPv6.sin6_addr.s6_addr32[3];
382 }
383#endif
384 else
385 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
386 return VINF_SUCCESS;
387}
388
389
390/**
391 * Converts from a generic IPRT network address to a native socket address.
392 *
393 * @returns IPRT status code.
394 * @param pAddr Pointer to the generic IPRT network address.
395 * @param pDst The source address.
396 * @param cbDst The size of the source address.
397 * @param pcbAddr Where to store the size of the returned address.
398 * Optional
399 */
400static int rtSocketAddrFromNetAddr(PCRTNETADDR pAddr, RTSOCKADDRUNION *pDst, size_t cbDst, int *pcbAddr)
401{
402 RT_BZERO(pDst, cbDst);
403 if (pAddr->enmType == RTNETADDRTYPE_IPV4)
404 {
405 if (cbDst < sizeof(struct sockaddr_in))
406 return VERR_BUFFER_OVERFLOW;
407
408 pDst->Addr.sa_family = AF_INET;
409 pDst->IPv4.sin_port = RT_H2N_U16(pAddr->uPort);
410 pDst->IPv4.sin_addr.s_addr = pAddr->uAddr.IPv4.u;
411 if (pcbAddr)
412 *pcbAddr = sizeof(pDst->IPv4);
413 }
414#ifdef IPRT_WITH_TCPIP_V6
415 else if (pAddr->enmType == RTNETADDRTYPE_IPV6)
416 {
417 if (cbDst < sizeof(struct sockaddr_in6))
418 return VERR_BUFFER_OVERFLOW;
419
420 pDst->Addr.sa_family = AF_INET6;
421 pDst->IPv6.sin6_port = RT_H2N_U16(pAddr->uPort);
422 pSrc->IPv6.sin6_addr.s6_addr32[0] = pAddr->uAddr.IPv6.au32[0];
423 pSrc->IPv6.sin6_addr.s6_addr32[1] = pAddr->uAddr.IPv6.au32[1];
424 pSrc->IPv6.sin6_addr.s6_addr32[2] = pAddr->uAddr.IPv6.au32[2];
425 pSrc->IPv6.sin6_addr.s6_addr32[3] = pAddr->uAddr.IPv6.au32[3];
426 if (pcbAddr)
427 *pcbAddr = sizeof(pDst->IPv6);
428 }
429#endif
430 else
431 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
432 return VINF_SUCCESS;
433}
434
435
436/**
437 * Tries to lock the socket for exclusive usage by the calling thread.
438 *
439 * Call rtSocketUnlock() to unlock.
440 *
441 * @returns @c true if locked, @c false if not.
442 * @param pThis The socket structure.
443 */
444DECLINLINE(bool) rtSocketTryLock(RTSOCKETINT *pThis)
445{
446 return ASMAtomicCmpXchgU32(&pThis->cUsers, 1, 0);
447}
448
449
450/**
451 * Unlocks the socket.
452 *
453 * @param pThis The socket structure.
454 */
455DECLINLINE(void) rtSocketUnlock(RTSOCKETINT *pThis)
456{
457 ASMAtomicCmpXchgU32(&pThis->cUsers, 0, 1);
458}
459
460
461/**
462 * The slow path of rtSocketSwitchBlockingMode that does the actual switching.
463 *
464 * @returns IPRT status code.
465 * @param pThis The socket structure.
466 * @param fBlocking The desired mode of operation.
467 * @remarks Do not call directly.
468 */
469static int rtSocketSwitchBlockingModeSlow(RTSOCKETINT *pThis, bool fBlocking)
470{
471#ifdef RT_OS_WINDOWS
472 AssertReturn(g_pfnioctlsocket, VERR_NET_NOT_UNSUPPORTED);
473 u_long uBlocking = fBlocking ? 0 : 1;
474 if (g_pfnioctlsocket(pThis->hNative, FIONBIO, &uBlocking))
475 return rtSocketError();
476
477#else
478 int fFlags = fcntl(pThis->hNative, F_GETFL, 0);
479 if (fFlags == -1)
480 return rtSocketError();
481
482 if (fBlocking)
483 fFlags &= ~O_NONBLOCK;
484 else
485 fFlags |= O_NONBLOCK;
486 if (fcntl(pThis->hNative, F_SETFL, fFlags) == -1)
487 return rtSocketError();
488#endif
489
490 pThis->fBlocking = fBlocking;
491 return VINF_SUCCESS;
492}
493
494
495/**
496 * Switches the socket to the desired blocking mode if necessary.
497 *
498 * The socket must be locked.
499 *
500 * @returns IPRT status code.
501 * @param pThis The socket structure.
502 * @param fBlocking The desired mode of operation.
503 */
504DECLINLINE(int) rtSocketSwitchBlockingMode(RTSOCKETINT *pThis, bool fBlocking)
505{
506 if (pThis->fBlocking != fBlocking)
507 return rtSocketSwitchBlockingModeSlow(pThis, fBlocking);
508 return VINF_SUCCESS;
509}
510
511
512/**
513 * Creates an IPRT socket handle for a native one.
514 *
515 * @returns IPRT status code.
516 * @param ppSocket Where to return the IPRT socket handle.
517 * @param hNative The native handle.
518 * @param fLeaveOpen Whether to leave the native socket handle open when
519 * closed.
520 */
521DECLHIDDEN(int) rtSocketCreateForNative(RTSOCKETINT **ppSocket, RTSOCKETNATIVE hNative, bool fLeaveOpen)
522{
523 RTSOCKETINT *pThis = (RTSOCKETINT *)RTMemPoolAlloc(RTMEMPOOL_DEFAULT, sizeof(*pThis));
524 if (!pThis)
525 return VERR_NO_MEMORY;
526 pThis->u32Magic = RTSOCKET_MAGIC;
527 pThis->cUsers = 0;
528 pThis->hNative = hNative;
529 pThis->fClosed = false;
530 pThis->fLeaveOpen = fLeaveOpen;
531 pThis->fBlocking = true;
532#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
533 pThis->hPollSet = NIL_RTPOLLSET;
534#endif
535#ifdef RT_OS_WINDOWS
536 pThis->hEvent = WSA_INVALID_EVENT;
537 pThis->fPollEvts = 0;
538 pThis->fSubscribedEvts = 0;
539 pThis->fEventsSaved = 0;
540 pThis->fHarvestedEvents = false;
541 pThis->fPollFallback = g_uWinSockInitedVersion < MAKEWORD(2, 0)
542 || g_pfnWSACreateEvent == NULL
543 || g_pfnWSACloseEvent == NULL
544 || g_pfnWSAEventSelect == NULL
545 || g_pfnWSAEnumNetworkEvents == NULL;
546 pThis->fPollFallbackActive = false;
547 pThis->fPollFallbackShutdown = false;
548 pThis->hPollFallbackNotifyR = NIL_RTSOCKETNATIVE;
549 pThis->hPollFallbackNotifyW = NIL_RTSOCKETNATIVE;
550 pThis->hPollFallbackThread = NIL_RTTHREAD;
551#endif
552 *ppSocket = pThis;
553 return VINF_SUCCESS;
554}
555
556
557RTDECL(int) RTSocketFromNative(PRTSOCKET phSocket, RTHCINTPTR uNative)
558{
559 AssertReturn(uNative != NIL_RTSOCKETNATIVE, VERR_INVALID_PARAMETER);
560#ifndef RT_OS_WINDOWS
561 AssertReturn(uNative >= 0, VERR_INVALID_PARAMETER);
562#endif
563 AssertPtrReturn(phSocket, VERR_INVALID_POINTER);
564 return rtSocketCreateForNative(phSocket, uNative, false /*fLeaveOpen*/);
565}
566
567
568/**
569 * Wrapper around socket().
570 *
571 * @returns IPRT status code.
572 * @param phSocket Where to store the handle to the socket on
573 * success.
574 * @param iDomain The protocol family (PF_XXX).
575 * @param iType The socket type (SOCK_XXX).
576 * @param iProtocol Socket parameter, usually 0.
577 * @param fInheritable Set to true if the socket should be inherted by
578 * child processes, false if not inheritable.
579 */
580DECLHIDDEN(int) rtSocketCreate(PRTSOCKET phSocket, int iDomain, int iType, int iProtocol, bool fInheritable)
581{
582#ifdef RT_OS_WINDOWS
583 AssertReturn(g_pfnsocket, VERR_NET_NOT_UNSUPPORTED);
584 AssertReturn(g_pfnclosesocket, VERR_NET_NOT_UNSUPPORTED);
585
586 /* Initialize WinSock. */
587 int rc2 = rtSocketInitWinsock();
588 if (RT_FAILURE(rc2))
589 return rc2;
590#endif
591
592 /*
593 * Create the socket.
594 *
595 * The RTSocketSetInheritance operation isn't necessarily reliable on windows,
596 * so try use WSA_FLAG_NO_HANDLE_INHERIT with WSASocketW when possible.
597 */
598#ifdef RT_OS_WINDOWS
599 bool fCallSetInheritance = true;
600 RTSOCKETNATIVE hNative;
601 if (g_pfnWSASocketW)
602 {
603 DWORD fWsaFlags = WSA_FLAG_OVERLAPPED | (!fInheritable ? WSA_FLAG_NO_HANDLE_INHERIT : 0);
604 hNative = g_pfnWSASocketW(iDomain, iType, iProtocol, NULL, 0 /*Group*/, fWsaFlags);
605 if (hNative != NIL_RTSOCKETNATIVE)
606 fCallSetInheritance = false;
607 else
608 {
609 if (!fInheritable)
610 hNative = g_pfnsocket(iDomain, iType, iProtocol);
611 if (hNative == NIL_RTSOCKETNATIVE)
612 return rtSocketError();
613 }
614 }
615 else
616 {
617 hNative = g_pfnsocket(iDomain, iType, iProtocol);
618 if (hNative == NIL_RTSOCKETNATIVE)
619 return rtSocketError();
620 }
621#else
622 RTSOCKETNATIVE hNative = socket(iDomain, iType, iProtocol);
623 if (hNative == NIL_RTSOCKETNATIVE)
624 return rtSocketError();
625#endif
626
627 /*
628 * Wrap it.
629 */
630 int rc = rtSocketCreateForNative(phSocket, hNative, false /*fLeaveOpen*/);
631 if (RT_SUCCESS(rc))
632 {
633#ifdef RT_OS_WINDOWS
634 if (fCallSetInheritance)
635#endif
636 RTSocketSetInheritance(*phSocket, fInheritable);
637 }
638 else
639 {
640#ifdef RT_OS_WINDOWS
641 g_pfnclosesocket(hNative);
642#else
643 close(hNative);
644#endif
645 }
646 return rc;
647}
648
649
650/**
651 * Wrapper around socketpair() for creating a local TCP connection.
652 *
653 * @returns IPRT status code.
654 * @param phServer Where to return the first native socket.
655 * @param phClient Where to return the second native socket.
656 */
657static int rtSocketCreateNativeTcpPair(RTSOCKETNATIVE *phServer, RTSOCKETNATIVE *phClient)
658{
659#ifdef RT_OS_WINDOWS
660 /*
661 * Initialize WinSock and make sure we got the necessary APIs.
662 */
663 int rc = rtSocketInitWinsock();
664 if (RT_FAILURE(rc))
665 return rc;
666 AssertReturn(g_pfnsocket, VERR_NET_NOT_UNSUPPORTED);
667 AssertReturn(g_pfnclosesocket, VERR_NET_NOT_UNSUPPORTED);
668 AssertReturn(g_pfnsetsockopt, VERR_NET_NOT_UNSUPPORTED);
669 AssertReturn(g_pfnbind, VERR_NET_NOT_UNSUPPORTED);
670 AssertReturn(g_pfngetsockname, VERR_NET_NOT_UNSUPPORTED);
671 AssertReturn(g_pfnlisten, VERR_NET_NOT_UNSUPPORTED);
672 AssertReturn(g_pfnaccept, VERR_NET_NOT_UNSUPPORTED);
673 AssertReturn(g_pfnconnect, VERR_NET_NOT_UNSUPPORTED);
674
675 /*
676 * Create the "server" listen socket and the "client" socket.
677 */
678 RTSOCKETNATIVE hListener = g_pfnsocket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
679 if (hListener == NIL_RTSOCKETNATIVE)
680 return rtSocketError();
681 RTSOCKETNATIVE hClient = g_pfnsocket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
682 if (hClient != NIL_RTSOCKETNATIVE)
683 {
684
685 /*
686 * We let WinSock choose a port number when we bind.
687 */
688 union
689 {
690 struct sockaddr_in Ip;
691 struct sockaddr Generic;
692 } uAddr;
693 RT_ZERO(uAddr);
694 uAddr.Ip.sin_family = AF_INET;
695 uAddr.Ip.sin_addr.s_addr = RT_H2N_U32_C(INADDR_LOOPBACK);
696 //uAddr.Ip.sin_port = 0;
697 int fReuse = 1;
698 rc = g_pfnsetsockopt(hListener, SOL_SOCKET, SO_REUSEADDR, (const char *)&fReuse, sizeof(fReuse));
699 if (rc == 0)
700 {
701 rc = g_pfnbind(hListener, &uAddr.Generic, sizeof(uAddr.Ip));
702 if (rc == 0)
703 {
704 /*
705 * Get the address the client should connect to. According to the docs,
706 * we cannot assume that getsockname sets the IP and family.
707 */
708 RT_ZERO(uAddr);
709 int cbAddr = sizeof(uAddr.Ip);
710 rc = g_pfngetsockname(hListener, &uAddr.Generic, &cbAddr);
711 if (rc == 0)
712 {
713 uAddr.Ip.sin_family = AF_INET;
714 uAddr.Ip.sin_addr.s_addr = RT_H2N_U32_C(INADDR_LOOPBACK);
715
716 /*
717 * Listen, connect and accept.
718 */
719 rc = g_pfnlisten(hListener, 1 /*cBacklog*/);
720 if (rc == 0)
721 {
722 rc = g_pfnconnect(hClient, &uAddr.Generic, sizeof(uAddr.Ip));
723 if (rc == 0)
724 {
725 RTSOCKETNATIVE hServer = g_pfnaccept(hListener, NULL, NULL);
726 if (hServer != NIL_RTSOCKETNATIVE)
727 {
728 g_pfnclosesocket(hListener);
729
730 /*
731 * Done!
732 */
733 *phServer = hServer;
734 *phClient = hClient;
735 return VINF_SUCCESS;
736 }
737 }
738 }
739 }
740 }
741 }
742 rc = rtSocketError();
743 g_pfnclosesocket(hClient);
744 }
745 else
746 rc = rtSocketError();
747 g_pfnclosesocket(hListener);
748 return rc;
749
750#else
751 /*
752 * Got socket pair, so use it.
753 * Note! This isn't TCP per se, but it should fool the users.
754 */
755 int aSockets[2] = { -1, -1 };
756 if (socketpair(AF_LOCAL, SOCK_STREAM, 0, aSockets) == 0)
757 {
758 *phServer = aSockets[0];
759 *phClient = aSockets[1];
760 return VINF_SUCCESS;
761 }
762 return rtSocketError();
763#endif
764}
765
766
767/**
768 * Worker for RTTcpCreatePair.
769 *
770 * @returns IPRT status code.
771 * @param phServer Where to return the "server" side of the pair.
772 * @param phClient Where to return the "client" side of the pair.
773 * @note There is no server or client side, but we gotta call it something.
774 */
775DECLHIDDEN(int) rtSocketCreateTcpPair(RTSOCKET *phServer, RTSOCKET *phClient)
776{
777 RTSOCKETNATIVE hServer = NIL_RTSOCKETNATIVE;
778 RTSOCKETNATIVE hClient = NIL_RTSOCKETNATIVE;
779 int rc = rtSocketCreateNativeTcpPair(&hServer, &hClient);
780 if (RT_SUCCESS(rc))
781 {
782 rc = rtSocketCreateForNative(phServer, hServer, false /*fLeaveOpen*/);
783 if (RT_SUCCESS(rc))
784 {
785 rc = rtSocketCreateForNative(phClient, hClient, false /*fLeaveOpen*/);
786 if (RT_SUCCESS(rc))
787 return VINF_SUCCESS;
788 RTSocketRelease(*phServer);
789 }
790 else
791 {
792#ifdef RT_OS_WINDOWS
793 g_pfnclosesocket(hServer);
794#else
795 close(hServer);
796#endif
797 }
798#ifdef RT_OS_WINDOWS
799 g_pfnclosesocket(hClient);
800#else
801 close(hClient);
802#endif
803 }
804
805 *phServer = NIL_RTSOCKET;
806 *phClient = NIL_RTSOCKET;
807 return rc;
808}
809
810
811RTDECL(uint32_t) RTSocketRetain(RTSOCKET hSocket)
812{
813 RTSOCKETINT *pThis = hSocket;
814 AssertPtrReturn(pThis, UINT32_MAX);
815 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
816 return RTMemPoolRetain(pThis);
817}
818
819
820/**
821 * Worker for RTSocketRelease and RTSocketClose.
822 *
823 * @returns IPRT status code.
824 * @param pThis The socket handle instance data.
825 * @param fDestroy Whether we're reaching ref count zero.
826 */
827static int rtSocketCloseIt(RTSOCKETINT *pThis, bool fDestroy)
828{
829 /*
830 * Invalidate the handle structure on destroy.
831 */
832 if (fDestroy)
833 {
834 Assert(ASMAtomicReadU32(&pThis->u32Magic) == RTSOCKET_MAGIC);
835 ASMAtomicWriteU32(&pThis->u32Magic, RTSOCKET_MAGIC_DEAD);
836 }
837
838 int rc = VINF_SUCCESS;
839 if (ASMAtomicCmpXchgBool(&pThis->fClosed, true, false))
840 {
841#ifdef RT_OS_WINDOWS
842 /*
843 * Poke the polling thread if active and give it a small chance to stop.
844 */
845 if ( pThis->fPollFallback
846 && pThis->hPollFallbackThread != NIL_RTTHREAD)
847 {
848 ASMAtomicWriteBool(&pThis->fPollFallbackShutdown, true);
849 rtSocketPokePollFallbackThread(pThis);
850 int rc2 = RTThreadWait(pThis->hPollFallbackThread, RT_MS_1SEC, NULL);
851 if (RT_SUCCESS(rc2))
852 pThis->hPollFallbackThread = NIL_RTTHREAD;
853 }
854#endif
855
856 /*
857 * Close the native handle.
858 */
859 RTSOCKETNATIVE hNative = pThis->hNative;
860 if (hNative != NIL_RTSOCKETNATIVE)
861 {
862 pThis->hNative = NIL_RTSOCKETNATIVE;
863
864 if (!pThis->fLeaveOpen)
865 {
866#ifdef RT_OS_WINDOWS
867 AssertReturn(g_pfnclosesocket, VERR_NET_NOT_UNSUPPORTED);
868 if (g_pfnclosesocket(hNative))
869#else
870 if (close(hNative))
871#endif
872 {
873 rc = rtSocketError();
874#ifdef RT_OS_WINDOWS
875 AssertMsgFailed(("closesocket(%p) -> %Rrc\n", (uintptr_t)hNative, rc));
876#else
877 AssertMsgFailed(("close(%d) -> %Rrc\n", hNative, rc));
878#endif
879 }
880 }
881 }
882
883#ifdef RT_OS_WINDOWS
884 /*
885 * Windows specific polling cleanup.
886 */
887 WSAEVENT hEvent = pThis->hEvent;
888 if (hEvent != WSA_INVALID_EVENT)
889 {
890 pThis->hEvent = WSA_INVALID_EVENT;
891 if (!pThis->fPollFallback)
892 {
893 Assert(g_pfnWSACloseEvent);
894 if (g_pfnWSACloseEvent)
895 g_pfnWSACloseEvent(hEvent);
896 }
897 else
898 CloseHandle(hEvent);
899 }
900
901 if (pThis->fPollFallback)
902 {
903 if (pThis->hPollFallbackNotifyW != NIL_RTSOCKETNATIVE)
904 {
905 g_pfnclosesocket(pThis->hPollFallbackNotifyW);
906 pThis->hPollFallbackNotifyW = NIL_RTSOCKETNATIVE;
907 }
908
909 if (pThis->hPollFallbackThread != NIL_RTTHREAD)
910 {
911 int rc2 = RTThreadWait(pThis->hPollFallbackThread, RT_MS_1MIN / 2, NULL);
912 AssertRC(rc2);
913 pThis->hPollFallbackThread = NIL_RTTHREAD;
914 }
915
916 if (pThis->hPollFallbackNotifyR != NIL_RTSOCKETNATIVE)
917 {
918 g_pfnclosesocket(pThis->hPollFallbackNotifyR);
919 pThis->hPollFallbackNotifyR = NIL_RTSOCKETNATIVE;
920 }
921 }
922#endif
923 }
924
925 return rc;
926}
927
928
929RTDECL(uint32_t) RTSocketRelease(RTSOCKET hSocket)
930{
931 RTSOCKETINT *pThis = hSocket;
932 if (pThis == NIL_RTSOCKET)
933 return 0;
934 AssertPtrReturn(pThis, UINT32_MAX);
935 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
936
937 /* get the refcount without killing it... */
938 uint32_t cRefs = RTMemPoolRefCount(pThis);
939 AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
940 if (cRefs == 1)
941 rtSocketCloseIt(pThis, true);
942
943 return RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
944}
945
946
947RTDECL(int) RTSocketClose(RTSOCKET hSocket)
948{
949 RTSOCKETINT *pThis = hSocket;
950 if (pThis == NIL_RTSOCKET)
951 return VINF_SUCCESS;
952 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
953 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
954
955 uint32_t cRefs = RTMemPoolRefCount(pThis);
956 AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
957
958 int rc = rtSocketCloseIt(pThis, cRefs == 1);
959
960 RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
961 return rc;
962}
963
964
965RTDECL(RTHCUINTPTR) RTSocketToNative(RTSOCKET hSocket)
966{
967 RTSOCKETINT *pThis = hSocket;
968 AssertPtrReturn(pThis, RTHCUINTPTR_MAX);
969 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, RTHCUINTPTR_MAX);
970 return (RTHCUINTPTR)pThis->hNative;
971}
972
973
974RTDECL(int) RTSocketSetInheritance(RTSOCKET hSocket, bool fInheritable)
975{
976 RTSOCKETINT *pThis = hSocket;
977 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
978 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
979 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
980
981#ifndef RT_OS_WINDOWS
982 if (fcntl(pThis->hNative, F_SETFD, fInheritable ? 0 : FD_CLOEXEC) < 0)
983 return RTErrConvertFromErrno(errno);
984 return VINF_SUCCESS;
985#else
986 /* Windows is more complicated as sockets are complicated wrt inheritance
987 (see stackoverflow for details). In general, though we cannot hope to
988 make a socket really non-inheritable before vista as other layers in
989 the winsock maze may have additional handles associated with the socket. */
990 if (g_pfnGetHandleInformation)
991 {
992 /* Check if the handle is already in what seems to be the right state
993 before we try doing anything. */
994 DWORD fFlags;
995 if (g_pfnGetHandleInformation((HANDLE)pThis->hNative, &fFlags))
996 {
997 if (RT_BOOL(fFlags & HANDLE_FLAG_INHERIT) == fInheritable)
998 return VINF_SUCCESS;
999 }
1000 }
1001
1002 if (!g_pfnSetHandleInformation)
1003 return VERR_NET_NOT_UNSUPPORTED;
1004
1005 if (!g_pfnSetHandleInformation((HANDLE)pThis->hNative, HANDLE_FLAG_INHERIT, fInheritable ? HANDLE_FLAG_INHERIT : 0))
1006 return RTErrConvertFromWin32(GetLastError());
1007 /** @todo Need we do something related to WS_SIO_ASSOCIATE_HANDLE or
1008 * WS_SIO_TRANSLATE_HANDLE? Or what other handles could be associated
1009 * with the socket? that we need to modify? */
1010
1011 return VINF_SUCCESS;
1012#endif
1013}
1014
1015
1016static bool rtSocketIsIPv4Numerical(const char *pszAddress, PRTNETADDRIPV4 pAddr)
1017{
1018
1019 /* Empty address resolves to the INADDR_ANY address (good for bind). */
1020 if (!pszAddress || !*pszAddress)
1021 {
1022 pAddr->u = INADDR_ANY;
1023 return true;
1024 }
1025
1026 /* Four quads? */
1027 char *psz = (char *)pszAddress;
1028 for (int i = 0; i < 4; i++)
1029 {
1030 uint8_t u8;
1031 int rc = RTStrToUInt8Ex(psz, &psz, 0, &u8);
1032 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS)
1033 return false;
1034 if (*psz != (i < 3 ? '.' : '\0'))
1035 return false;
1036 psz++;
1037
1038 pAddr->au8[i] = u8; /* big endian */
1039 }
1040
1041 return true;
1042}
1043
1044RTDECL(int) RTSocketParseInetAddress(const char *pszAddress, unsigned uPort, PRTNETADDR pAddr)
1045{
1046 int rc;
1047
1048 /*
1049 * Validate input.
1050 */
1051 AssertReturn(uPort > 0, VERR_INVALID_PARAMETER);
1052 AssertPtrNullReturn(pszAddress, VERR_INVALID_POINTER);
1053
1054 /*
1055 * Resolve the address. Pretty crude at the moment, but we have to make
1056 * sure to not ask the NT 4 gethostbyname about an IPv4 address as it may
1057 * give a wrong answer.
1058 */
1059 /** @todo this only supports IPv4, and IPv6 support needs to be added.
1060 * It probably needs to be converted to getaddrinfo(). */
1061 RTNETADDRIPV4 IPv4Quad;
1062 if (rtSocketIsIPv4Numerical(pszAddress, &IPv4Quad))
1063 {
1064 Log3(("rtSocketIsIPv4Numerical: %s -> %#x (%RTnaipv4)\n", pszAddress, IPv4Quad.u, IPv4Quad));
1065 RT_ZERO(*pAddr);
1066 pAddr->enmType = RTNETADDRTYPE_IPV4;
1067 pAddr->uPort = uPort;
1068 pAddr->uAddr.IPv4 = IPv4Quad;
1069 return VINF_SUCCESS;
1070 }
1071
1072#ifdef RT_OS_WINDOWS
1073 /* Initialize WinSock and check version before we call gethostbyname. */
1074 if (!g_pfngethostbyname)
1075 return VERR_NET_NOT_UNSUPPORTED;
1076
1077 int rc2 = rtSocketInitWinsock();
1078 if (RT_FAILURE(rc2))
1079 return rc2;
1080
1081# define gethostbyname g_pfngethostbyname
1082#endif
1083
1084 struct hostent *pHostEnt;
1085 pHostEnt = gethostbyname(pszAddress);
1086 if (!pHostEnt)
1087 {
1088 rc = rtSocketResolverError();
1089 AssertMsg(rc == VERR_NET_HOST_NOT_FOUND,
1090 ("Could not resolve '%s', rc=%Rrc\n", pszAddress, rc));
1091 return rc;
1092 }
1093
1094 if (pHostEnt->h_addrtype == AF_INET)
1095 {
1096 RT_ZERO(*pAddr);
1097 pAddr->enmType = RTNETADDRTYPE_IPV4;
1098 pAddr->uPort = uPort;
1099 pAddr->uAddr.IPv4.u = ((struct in_addr *)pHostEnt->h_addr)->s_addr;
1100 Log3(("gethostbyname: %s -> %#x (%RTnaipv4)\n", pszAddress, pAddr->uAddr.IPv4.u, pAddr->uAddr.IPv4));
1101 }
1102 else
1103 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
1104
1105#ifdef RT_OS_WINDOWS
1106# undef gethostbyname
1107#endif
1108 return VINF_SUCCESS;
1109}
1110
1111
1112/*
1113 * New function to allow both ipv4 and ipv6 addresses to be resolved.
1114 * Breaks compatibility with windows before 2000.
1115 */
1116RTDECL(int) RTSocketQueryAddressStr(const char *pszHost, char *pszResult, size_t *pcbResult, PRTNETADDRTYPE penmAddrType)
1117{
1118 AssertPtrReturn(pszHost, VERR_INVALID_POINTER);
1119 AssertPtrReturn(pcbResult, VERR_INVALID_POINTER);
1120 AssertPtrNullReturn(penmAddrType, VERR_INVALID_POINTER);
1121 AssertPtrNullReturn(pszResult, VERR_INVALID_POINTER);
1122
1123#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) /** @todo dynamically resolve the APIs not present in NT4! */
1124 return VERR_NOT_SUPPORTED;
1125
1126#else
1127 int rc;
1128 if (*pcbResult < 16)
1129 return VERR_NET_ADDRESS_NOT_AVAILABLE;
1130
1131 /* Setup the hint. */
1132 struct addrinfo grHints;
1133 RT_ZERO(grHints);
1134 grHints.ai_socktype = 0;
1135 grHints.ai_flags = 0;
1136 grHints.ai_protocol = 0;
1137 grHints.ai_family = AF_UNSPEC;
1138 if (penmAddrType)
1139 {
1140 switch (*penmAddrType)
1141 {
1142 case RTNETADDRTYPE_INVALID:
1143 /*grHints.ai_family = AF_UNSPEC;*/
1144 break;
1145 case RTNETADDRTYPE_IPV4:
1146 grHints.ai_family = AF_INET;
1147 break;
1148 case RTNETADDRTYPE_IPV6:
1149 grHints.ai_family = AF_INET6;
1150 break;
1151 default:
1152 AssertFailedReturn(VERR_INVALID_PARAMETER);
1153 }
1154 }
1155
1156# ifdef RT_OS_WINDOWS
1157 /*
1158 * Winsock2 init
1159 */
1160 if ( !g_pfngetaddrinfo
1161 || !g_pfnfreeaddrinfo)
1162 return VERR_NET_NOT_UNSUPPORTED;
1163
1164 int rc2 = rtSocketInitWinsock();
1165 if (RT_FAILURE(rc2))
1166 return rc2;
1167
1168# define getaddrinfo g_pfngetaddrinfo
1169# define freeaddrinfo g_pfnfreeaddrinfo
1170# endif
1171
1172 /** @todo r=bird: getaddrinfo and freeaddrinfo breaks the additions on NT4. */
1173 struct addrinfo *pgrResults = NULL;
1174 rc = getaddrinfo(pszHost, "", &grHints, &pgrResults);
1175 if (rc != 0)
1176 return VERR_NET_ADDRESS_NOT_AVAILABLE;
1177
1178 // return data
1179 // on multiple matches return only the first one
1180
1181 if (!pgrResults)
1182 return VERR_NET_ADDRESS_NOT_AVAILABLE;
1183
1184 struct addrinfo const *pgrResult = pgrResults->ai_next;
1185 if (!pgrResult)
1186 {
1187 freeaddrinfo(pgrResults);
1188 return VERR_NET_ADDRESS_NOT_AVAILABLE;
1189 }
1190
1191 RTNETADDRTYPE enmAddrType = RTNETADDRTYPE_INVALID;
1192 size_t cchIpAddress;
1193 char szIpAddress[48];
1194 if (pgrResult->ai_family == AF_INET)
1195 {
1196 struct sockaddr_in const *pgrSa = (struct sockaddr_in const *)pgrResult->ai_addr;
1197 cchIpAddress = RTStrPrintf(szIpAddress, sizeof(szIpAddress),
1198 "%RTnaipv4", pgrSa->sin_addr.s_addr);
1199 Assert(cchIpAddress >= 7 && cchIpAddress < sizeof(szIpAddress) - 1);
1200 enmAddrType = RTNETADDRTYPE_IPV4;
1201 rc = VINF_SUCCESS;
1202 }
1203 else if (pgrResult->ai_family == AF_INET6)
1204 {
1205 struct sockaddr_in6 const *pgrSa6 = (struct sockaddr_in6 const *)pgrResult->ai_addr;
1206 cchIpAddress = RTStrPrintf(szIpAddress, sizeof(szIpAddress),
1207 "%RTnaipv6", (PRTNETADDRIPV6)&pgrSa6->sin6_addr);
1208 enmAddrType = RTNETADDRTYPE_IPV6;
1209 rc = VINF_SUCCESS;
1210 }
1211 else
1212 {
1213 rc = VERR_NET_ADDRESS_NOT_AVAILABLE;
1214 szIpAddress[0] = '\0';
1215 cchIpAddress = 0;
1216 }
1217 freeaddrinfo(pgrResults);
1218
1219 /*
1220 * Copy out the result.
1221 */
1222 size_t const cbResult = *pcbResult;
1223 *pcbResult = cchIpAddress + 1;
1224 if (cchIpAddress < cbResult)
1225 memcpy(pszResult, szIpAddress, cchIpAddress + 1);
1226 else
1227 {
1228 RT_BZERO(pszResult, cbResult);
1229 if (RT_SUCCESS(rc))
1230 rc = VERR_BUFFER_OVERFLOW;
1231 }
1232 if (penmAddrType && RT_SUCCESS(rc))
1233 *penmAddrType = enmAddrType;
1234 return rc;
1235
1236# ifdef RT_OS_WINDOWS
1237# undef getaddrinfo
1238# undef freeaddrinfo
1239# endif
1240#endif /* !RT_OS_OS2 */
1241}
1242
1243
1244RTDECL(int) RTSocketRead(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
1245{
1246 /*
1247 * Validate input.
1248 */
1249 RTSOCKETINT *pThis = hSocket;
1250 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1251 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1252 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
1253 AssertPtr(pvBuffer);
1254#ifdef RT_OS_WINDOWS
1255 AssertReturn(g_pfnrecv, VERR_NET_NOT_UNSUPPORTED);
1256# define recv g_pfnrecv
1257#endif
1258 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1259
1260 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1261 if (RT_FAILURE(rc))
1262 return rc;
1263
1264 /*
1265 * Read loop.
1266 * If pcbRead is NULL we have to fill the entire buffer!
1267 */
1268 size_t cbRead = 0;
1269 size_t cbToRead = cbBuffer;
1270 for (;;)
1271 {
1272 rtSocketErrorReset();
1273#ifdef RTSOCKET_MAX_READ
1274 int cbNow = cbToRead >= RTSOCKET_MAX_READ ? RTSOCKET_MAX_READ : (int)cbToRead;
1275#else
1276 size_t cbNow = cbToRead;
1277#endif
1278 ssize_t cbBytesRead = recv(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL);
1279 if (cbBytesRead <= 0)
1280 {
1281 rc = rtSocketError();
1282 Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
1283 if (RT_SUCCESS_NP(rc))
1284 {
1285 if (!pcbRead)
1286 rc = VERR_NET_SHUTDOWN;
1287 else
1288 {
1289 *pcbRead = 0;
1290 rc = VINF_SUCCESS;
1291 }
1292 }
1293 break;
1294 }
1295 if (pcbRead)
1296 {
1297 /* return partial data */
1298 *pcbRead = cbBytesRead;
1299 break;
1300 }
1301
1302 /* read more? */
1303 cbRead += cbBytesRead;
1304 if (cbRead == cbBuffer)
1305 break;
1306
1307 /* next */
1308 cbToRead = cbBuffer - cbRead;
1309 }
1310
1311 rtSocketUnlock(pThis);
1312#ifdef RT_OS_WINDOWS
1313# undef recv
1314#endif
1315 return rc;
1316}
1317
1318
1319RTDECL(int) RTSocketReadFrom(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead, PRTNETADDR pSrcAddr)
1320{
1321 /*
1322 * Validate input.
1323 */
1324 RTSOCKETINT *pThis = hSocket;
1325 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1326 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1327 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
1328 AssertPtr(pvBuffer);
1329 AssertPtr(pcbRead);
1330#ifdef RT_OS_WINDOWS
1331 AssertReturn(g_pfnrecvfrom, VERR_NET_NOT_UNSUPPORTED);
1332# define recvfrom g_pfnrecvfrom
1333#endif
1334 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1335
1336 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1337 if (RT_FAILURE(rc))
1338 return rc;
1339
1340 /*
1341 * Read data.
1342 */
1343 size_t cbRead = 0;
1344 size_t cbToRead = cbBuffer;
1345 rtSocketErrorReset();
1346 RTSOCKADDRUNION u;
1347#ifdef RTSOCKET_MAX_READ
1348 int cbNow = cbToRead >= RTSOCKET_MAX_READ ? RTSOCKET_MAX_READ : (int)cbToRead;
1349 int cbAddr = sizeof(u);
1350#else
1351 size_t cbNow = cbToRead;
1352 socklen_t cbAddr = sizeof(u);
1353#endif
1354 ssize_t cbBytesRead = recvfrom(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL, &u.Addr, &cbAddr);
1355 if (cbBytesRead <= 0)
1356 {
1357 rc = rtSocketError();
1358 Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
1359 if (RT_SUCCESS_NP(rc))
1360 {
1361 *pcbRead = 0;
1362 rc = VINF_SUCCESS;
1363 }
1364 }
1365 else
1366 {
1367 if (pSrcAddr)
1368 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pSrcAddr);
1369 *pcbRead = cbBytesRead;
1370 }
1371
1372 rtSocketUnlock(pThis);
1373#ifdef RT_OS_WINDOWS
1374# undef recvfrom
1375#endif
1376 return rc;
1377}
1378
1379
1380RTDECL(int) RTSocketWrite(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer)
1381{
1382 /*
1383 * Validate input.
1384 */
1385 RTSOCKETINT *pThis = hSocket;
1386 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1387 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1388#ifdef RT_OS_WINDOWS
1389 AssertReturn(g_pfnsend, VERR_NET_NOT_UNSUPPORTED);
1390# define send g_pfnsend
1391#endif
1392 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1393
1394 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1395 if (RT_FAILURE(rc))
1396 return rc;
1397
1398 /*
1399 * Try write all at once.
1400 */
1401#ifdef RTSOCKET_MAX_WRITE
1402 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1403#else
1404 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1405#endif
1406 ssize_t cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1407 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
1408 rc = VINF_SUCCESS;
1409 else if (cbWritten < 0)
1410 rc = rtSocketError();
1411 else
1412 {
1413 /*
1414 * Unfinished business, write the remainder of the request. Must ignore
1415 * VERR_INTERRUPTED here if we've managed to send something.
1416 */
1417 size_t cbSentSoFar = 0;
1418 for (;;)
1419 {
1420 /* advance */
1421 cbBuffer -= (size_t)cbWritten;
1422 if (!cbBuffer)
1423 break;
1424 cbSentSoFar += (size_t)cbWritten;
1425 pvBuffer = (char const *)pvBuffer + cbWritten;
1426
1427 /* send */
1428#ifdef RTSOCKET_MAX_WRITE
1429 cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1430#else
1431 cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1432#endif
1433 cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1434 if (cbWritten >= 0)
1435 AssertMsg(cbBuffer >= (size_t)cbWritten, ("Wrote more than we requested!!! cbWritten=%zu cbBuffer=%zu rtSocketError()=%d\n",
1436 cbWritten, cbBuffer, rtSocketError()));
1437 else
1438 {
1439 rc = rtSocketError();
1440 if (rc != VERR_INTERNAL_ERROR || cbSentSoFar == 0)
1441 break;
1442 cbWritten = 0;
1443 rc = VINF_SUCCESS;
1444 }
1445 }
1446 }
1447
1448 rtSocketUnlock(pThis);
1449#ifdef RT_OS_WINDOWS
1450# undef send
1451#endif
1452 return rc;
1453}
1454
1455
1456RTDECL(int) RTSocketWriteTo(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, PCRTNETADDR pAddr)
1457{
1458 /*
1459 * Validate input.
1460 */
1461 RTSOCKETINT *pThis = hSocket;
1462 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1463 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1464#ifdef RT_OS_WINDOWS
1465 AssertReturn(g_pfnsendto, VERR_NET_NOT_UNSUPPORTED);
1466# define sendto g_pfnsendto
1467#endif
1468
1469 /* no locking since UDP reads may be done concurrently to writes, and
1470 * this is the normal use case of this code. */
1471
1472 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1473 if (RT_FAILURE(rc))
1474 return rc;
1475
1476 /* Figure out destination address. */
1477 struct sockaddr *pSA = NULL;
1478#ifdef RT_OS_WINDOWS
1479 int cbSA = 0;
1480#else
1481 socklen_t cbSA = 0;
1482#endif
1483 RTSOCKADDRUNION u;
1484 if (pAddr)
1485 {
1486 rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), NULL);
1487 if (RT_FAILURE(rc))
1488 return rc;
1489 pSA = &u.Addr;
1490 cbSA = sizeof(u);
1491 }
1492
1493 /*
1494 * Must write all at once, otherwise it is a failure.
1495 */
1496#ifdef RT_OS_WINDOWS
1497 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1498#else
1499 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1500#endif
1501 ssize_t cbWritten = sendto(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL, pSA, cbSA);
1502 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
1503 rc = VINF_SUCCESS;
1504 else if (cbWritten < 0)
1505 rc = rtSocketError();
1506 else
1507 rc = VERR_TOO_MUCH_DATA;
1508
1509 /// @todo rtSocketUnlock(pThis);
1510#ifdef RT_OS_WINDOWS
1511# undef sendto
1512#endif
1513 return rc;
1514}
1515
1516
1517RTDECL(int) RTSocketWriteToNB(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, PCRTNETADDR pAddr)
1518{
1519 /*
1520 * Validate input.
1521 */
1522 RTSOCKETINT *pThis = hSocket;
1523 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1524 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1525#ifdef RT_OS_WINDOWS
1526 AssertReturn(g_pfnsendto, VERR_NET_NOT_UNSUPPORTED);
1527# define sendto g_pfnsendto
1528#endif
1529
1530 /* no locking since UDP reads may be done concurrently to writes, and
1531 * this is the normal use case of this code. */
1532
1533 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1534 if (RT_FAILURE(rc))
1535 return rc;
1536
1537 /* Figure out destination address. */
1538 struct sockaddr *pSA = NULL;
1539#ifdef RT_OS_WINDOWS
1540 int cbSA = 0;
1541#else
1542 socklen_t cbSA = 0;
1543#endif
1544 RTSOCKADDRUNION u;
1545 if (pAddr)
1546 {
1547 rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), NULL);
1548 if (RT_FAILURE(rc))
1549 return rc;
1550 pSA = &u.Addr;
1551 cbSA = sizeof(u);
1552 }
1553
1554 /*
1555 * Must write all at once, otherwise it is a failure.
1556 */
1557#ifdef RT_OS_WINDOWS
1558 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1559#else
1560 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1561#endif
1562 ssize_t cbWritten = sendto(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL, pSA, cbSA);
1563 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
1564 rc = VINF_SUCCESS;
1565 else if (cbWritten < 0)
1566 rc = rtSocketError();
1567 else
1568 rc = VERR_TOO_MUCH_DATA;
1569
1570 /// @todo rtSocketUnlock(pThis);
1571#ifdef RT_OS_WINDOWS
1572# undef sendto
1573#endif
1574 return rc;
1575}
1576
1577
1578RTDECL(int) RTSocketSgWrite(RTSOCKET hSocket, PCRTSGBUF pSgBuf)
1579{
1580 /*
1581 * Validate input.
1582 */
1583 RTSOCKETINT *pThis = hSocket;
1584 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1585 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1586 AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
1587 AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
1588 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1589
1590 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1591 if (RT_FAILURE(rc))
1592 return rc;
1593
1594 /*
1595 * Construct message descriptor (translate pSgBuf) and send it.
1596 */
1597 rc = VERR_NO_TMP_MEMORY;
1598#ifdef RT_OS_WINDOWS
1599 if (g_pfnWSASend)
1600 {
1601 AssertCompileSize(WSABUF, sizeof(RTSGSEG));
1602 AssertCompileMemberSize(WSABUF, buf, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
1603
1604 LPWSABUF paMsg = (LPWSABUF)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(WSABUF));
1605 if (paMsg)
1606 {
1607 for (unsigned i = 0; i < pSgBuf->cSegs; i++)
1608 {
1609 paMsg[i].buf = (char *)pSgBuf->paSegs[i].pvSeg;
1610 paMsg[i].len = (u_long)pSgBuf->paSegs[i].cbSeg;
1611 }
1612
1613 DWORD dwSent;
1614 int hrc = g_pfnWSASend(pThis->hNative, paMsg, pSgBuf->cSegs, &dwSent, MSG_NOSIGNAL, NULL, NULL);
1615 if (!hrc)
1616 rc = VINF_SUCCESS;
1617 /** @todo check for incomplete writes */
1618 else
1619 rc = rtSocketError();
1620
1621 RTMemTmpFree(paMsg);
1622 }
1623 }
1624 else if (g_pfnsend)
1625 {
1626 rc = VINF_SUCCESS;
1627 for (uint32_t iSeg = 0; iSeg < pSgBuf->cSegs; iSeg++)
1628 {
1629 uint8_t const *pbSeg = (uint8_t const *)pSgBuf->paSegs[iSeg].pvSeg;
1630 size_t cbSeg = pSgBuf->paSegs[iSeg].cbSeg;
1631 int cbNow;
1632 ssize_t cbWritten;
1633 for (;;)
1634 {
1635 cbNow = cbSeg >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbSeg;
1636 cbWritten = g_pfnsend(pThis->hNative, (const char *)pbSeg, cbNow, MSG_NOSIGNAL);
1637 if ((size_t)cbWritten >= cbSeg || cbWritten < 0)
1638 break;
1639 pbSeg += cbWritten;
1640 cbSeg -= cbWritten;
1641 }
1642 if (cbWritten < 0)
1643 {
1644 rc = rtSocketError();
1645 break;
1646 }
1647 }
1648 }
1649 else
1650 rc = VERR_NET_NOT_UNSUPPORTED;
1651
1652#else /* !RT_OS_WINDOWS */
1653 AssertCompileSize(struct iovec, sizeof(RTSGSEG));
1654 AssertCompileMemberSize(struct iovec, iov_base, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
1655 AssertCompileMemberSize(struct iovec, iov_len, RT_SIZEOFMEMB(RTSGSEG, cbSeg));
1656
1657 struct iovec *paMsg = (struct iovec *)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(struct iovec));
1658 if (paMsg)
1659 {
1660 for (unsigned i = 0; i < pSgBuf->cSegs; i++)
1661 {
1662 paMsg[i].iov_base = pSgBuf->paSegs[i].pvSeg;
1663 paMsg[i].iov_len = pSgBuf->paSegs[i].cbSeg;
1664 }
1665
1666 struct msghdr msgHdr;
1667 RT_ZERO(msgHdr);
1668 msgHdr.msg_iov = paMsg;
1669 msgHdr.msg_iovlen = pSgBuf->cSegs;
1670 ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
1671 if (RT_LIKELY(cbWritten >= 0))
1672 rc = VINF_SUCCESS;
1673/** @todo check for incomplete writes */
1674 else
1675 rc = rtSocketError();
1676
1677 RTMemTmpFree(paMsg);
1678 }
1679#endif /* !RT_OS_WINDOWS */
1680
1681 rtSocketUnlock(pThis);
1682 return rc;
1683}
1684
1685
1686RTDECL(int) RTSocketSgWriteL(RTSOCKET hSocket, size_t cSegs, ...)
1687{
1688 va_list va;
1689 va_start(va, cSegs);
1690 int rc = RTSocketSgWriteLV(hSocket, cSegs, va);
1691 va_end(va);
1692 return rc;
1693}
1694
1695
1696RTDECL(int) RTSocketSgWriteLV(RTSOCKET hSocket, size_t cSegs, va_list va)
1697{
1698 /*
1699 * Set up a S/G segment array + buffer on the stack and pass it
1700 * on to RTSocketSgWrite.
1701 */
1702 Assert(cSegs <= 16);
1703 PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
1704 AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
1705 for (size_t i = 0; i < cSegs; i++)
1706 {
1707 paSegs[i].pvSeg = va_arg(va, void *);
1708 paSegs[i].cbSeg = va_arg(va, size_t);
1709 }
1710
1711 RTSGBUF SgBuf;
1712 RTSgBufInit(&SgBuf, paSegs, cSegs);
1713 return RTSocketSgWrite(hSocket, &SgBuf);
1714}
1715
1716
1717RTDECL(int) RTSocketReadNB(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
1718{
1719 /*
1720 * Validate input.
1721 */
1722 RTSOCKETINT *pThis = hSocket;
1723 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1724 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1725 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
1726 AssertPtr(pvBuffer);
1727 AssertPtrReturn(pcbRead, VERR_INVALID_PARAMETER);
1728#ifdef RT_OS_WINDOWS
1729 AssertReturn(g_pfnrecv, VERR_NET_NOT_UNSUPPORTED);
1730#endif
1731 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1732
1733 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1734 if (RT_FAILURE(rc))
1735 return rc;
1736
1737 rtSocketErrorReset();
1738#ifdef RTSOCKET_MAX_READ
1739 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1740#else
1741 size_t cbNow = cbBuffer;
1742#endif
1743
1744#ifdef RT_OS_WINDOWS
1745 int cbRead = g_pfnrecv(pThis->hNative, (char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1746 if (cbRead >= 0)
1747 {
1748 *pcbRead = cbRead;
1749 rc = VINF_SUCCESS;
1750 }
1751 else
1752 {
1753 rc = rtSocketError();
1754 if (rc == VERR_TRY_AGAIN)
1755 {
1756 *pcbRead = 0;
1757 rc = VINF_TRY_AGAIN;
1758 }
1759 }
1760
1761#else
1762 ssize_t cbRead = recv(pThis->hNative, pvBuffer, cbNow, MSG_NOSIGNAL);
1763 if (cbRead >= 0)
1764 *pcbRead = cbRead;
1765 else if ( errno == EAGAIN
1766# ifdef EWOULDBLOCK
1767# if EWOULDBLOCK != EAGAIN
1768 || errno == EWOULDBLOCK
1769# endif
1770# endif
1771 )
1772 {
1773 *pcbRead = 0;
1774 rc = VINF_TRY_AGAIN;
1775 }
1776 else
1777 rc = rtSocketError();
1778#endif
1779
1780 rtSocketUnlock(pThis);
1781 return rc;
1782}
1783
1784
1785RTDECL(int) RTSocketWriteNB(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, size_t *pcbWritten)
1786{
1787 /*
1788 * Validate input.
1789 */
1790 RTSOCKETINT *pThis = hSocket;
1791 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1792 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1793 AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
1794#ifdef RT_OS_WINDOWS
1795 AssertReturn(g_pfnsend, VERR_NET_NOT_UNSUPPORTED);
1796#endif
1797 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1798
1799 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1800 if (RT_FAILURE(rc))
1801 return rc;
1802
1803 rtSocketErrorReset();
1804#ifdef RT_OS_WINDOWS
1805# ifdef RTSOCKET_MAX_WRITE
1806 int cbNow = cbBuffer >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbBuffer;
1807# else
1808 size_t cbNow = cbBuffer;
1809# endif
1810 int cbWritten = g_pfnsend(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1811 if (cbWritten >= 0)
1812 {
1813 *pcbWritten = cbWritten;
1814 rc = VINF_SUCCESS;
1815 }
1816 else
1817 {
1818 rc = rtSocketError();
1819 if (rc == VERR_TRY_AGAIN)
1820 {
1821 *pcbWritten = 0;
1822 rc = VINF_TRY_AGAIN;
1823 }
1824 }
1825#else
1826 ssize_t cbWritten = send(pThis->hNative, pvBuffer, cbBuffer, MSG_NOSIGNAL);
1827 if (cbWritten >= 0)
1828 *pcbWritten = cbWritten;
1829 else if ( errno == EAGAIN
1830# ifdef EWOULDBLOCK
1831# if EWOULDBLOCK != EAGAIN
1832 || errno == EWOULDBLOCK
1833# endif
1834# endif
1835 )
1836 {
1837 *pcbWritten = 0;
1838 rc = VINF_TRY_AGAIN;
1839 }
1840 else
1841 rc = rtSocketError();
1842#endif
1843
1844 rtSocketUnlock(pThis);
1845 return rc;
1846}
1847
1848
1849RTDECL(int) RTSocketSgWriteNB(RTSOCKET hSocket, PCRTSGBUF pSgBuf, size_t *pcbWritten)
1850{
1851 /*
1852 * Validate input.
1853 */
1854 RTSOCKETINT *pThis = hSocket;
1855 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1856 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1857 AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
1858 AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
1859 AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
1860 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1861
1862 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1863 if (RT_FAILURE(rc))
1864 return rc;
1865
1866 unsigned cSegsToSend = 0;
1867 rc = VERR_NO_TMP_MEMORY;
1868#ifdef RT_OS_WINDOWS
1869 if (g_pfnWSASend)
1870 {
1871 LPWSABUF paMsg = NULL;
1872 RTSgBufMapToNative(paMsg, pSgBuf, WSABUF, buf, char *, len, u_long, cSegsToSend);
1873 if (paMsg)
1874 {
1875 DWORD dwSent = 0;
1876 int hrc = g_pfnWSASend(pThis->hNative, paMsg, cSegsToSend, &dwSent, MSG_NOSIGNAL, NULL, NULL);
1877 if (!hrc)
1878 rc = VINF_SUCCESS;
1879 else
1880 rc = rtSocketError();
1881
1882 *pcbWritten = dwSent;
1883
1884 RTMemTmpFree(paMsg);
1885 }
1886 }
1887 else if (g_pfnsend)
1888 {
1889 size_t cbWrittenTotal = 0;
1890 rc = VINF_SUCCESS;
1891 for (uint32_t iSeg = 0; iSeg < pSgBuf->cSegs; iSeg++)
1892 {
1893 uint8_t const *pbSeg = (uint8_t const *)pSgBuf->paSegs[iSeg].pvSeg;
1894 size_t cbSeg = pSgBuf->paSegs[iSeg].cbSeg;
1895 int cbNow;
1896 ssize_t cbWritten;
1897 for (;;)
1898 {
1899 cbNow = cbSeg >= RTSOCKET_MAX_WRITE ? RTSOCKET_MAX_WRITE : (int)cbSeg;
1900 cbWritten = g_pfnsend(pThis->hNative, (const char *)pbSeg, cbNow, MSG_NOSIGNAL);
1901 if ((size_t)cbWritten >= cbSeg || cbWritten < 0)
1902 break;
1903 cbWrittenTotal += cbWrittenTotal;
1904 pbSeg += cbWritten;
1905 cbSeg -= cbWritten;
1906 }
1907 if (cbWritten < 0)
1908 {
1909 rc = rtSocketError();
1910 break;
1911 }
1912 if (cbWritten != cbNow)
1913 break;
1914 }
1915 *pcbWritten = cbWrittenTotal;
1916 }
1917 else
1918 rc = VERR_NET_NOT_UNSUPPORTED;
1919
1920#else /* !RT_OS_WINDOWS */
1921 struct iovec *paMsg = NULL;
1922
1923 RTSgBufMapToNative(paMsg, pSgBuf, struct iovec, iov_base, void *, iov_len, size_t, cSegsToSend);
1924 if (paMsg)
1925 {
1926 struct msghdr msgHdr;
1927 RT_ZERO(msgHdr);
1928 msgHdr.msg_iov = paMsg;
1929 msgHdr.msg_iovlen = cSegsToSend;
1930 ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
1931 if (RT_LIKELY(cbWritten >= 0))
1932 {
1933 rc = VINF_SUCCESS;
1934 *pcbWritten = cbWritten;
1935 }
1936 else
1937 rc = rtSocketError();
1938
1939 RTMemTmpFree(paMsg);
1940 }
1941#endif /* !RT_OS_WINDOWS */
1942
1943 rtSocketUnlock(pThis);
1944 return rc;
1945}
1946
1947
1948RTDECL(int) RTSocketSgWriteLNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, ...)
1949{
1950 va_list va;
1951 va_start(va, pcbWritten);
1952 int rc = RTSocketSgWriteLVNB(hSocket, cSegs, pcbWritten, va);
1953 va_end(va);
1954 return rc;
1955}
1956
1957
1958RTDECL(int) RTSocketSgWriteLVNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, va_list va)
1959{
1960 /*
1961 * Set up a S/G segment array + buffer on the stack and pass it
1962 * on to RTSocketSgWrite.
1963 */
1964 Assert(cSegs <= 16);
1965 PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
1966 AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
1967 for (size_t i = 0; i < cSegs; i++)
1968 {
1969 paSegs[i].pvSeg = va_arg(va, void *);
1970 paSegs[i].cbSeg = va_arg(va, size_t);
1971 }
1972
1973 RTSGBUF SgBuf;
1974 RTSgBufInit(&SgBuf, paSegs, cSegs);
1975 return RTSocketSgWriteNB(hSocket, &SgBuf, pcbWritten);
1976}
1977
1978
1979RTDECL(int) RTSocketSelectOne(RTSOCKET hSocket, RTMSINTERVAL cMillies)
1980{
1981 /*
1982 * Validate input.
1983 */
1984 RTSOCKETINT *pThis = hSocket;
1985 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1986 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1987 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1988 int const fdMax = (int)pThis->hNative + 1;
1989 AssertReturn((RTSOCKETNATIVE)(fdMax - 1) == pThis->hNative, VERR_INTERNAL_ERROR_5);
1990#ifdef RT_OS_WINDOWS
1991 AssertReturn(g_pfnselect, VERR_NET_NOT_UNSUPPORTED);
1992# define select g_pfnselect
1993#endif
1994
1995 /*
1996 * Set up the file descriptor sets and do the select.
1997 */
1998 fd_set fdsetR;
1999 FD_ZERO(&fdsetR);
2000 FD_SET(pThis->hNative, &fdsetR);
2001
2002 fd_set fdsetE = fdsetR;
2003
2004 int rc;
2005 if (cMillies == RT_INDEFINITE_WAIT)
2006 rc = select(fdMax, &fdsetR, NULL, &fdsetE, NULL);
2007 else
2008 {
2009 struct timeval timeout;
2010 timeout.tv_sec = cMillies / 1000;
2011 timeout.tv_usec = (cMillies % 1000) * 1000;
2012 rc = select(fdMax, &fdsetR, NULL, &fdsetE, &timeout);
2013 }
2014 if (rc > 0)
2015 rc = VINF_SUCCESS;
2016 else if (rc == 0)
2017 rc = VERR_TIMEOUT;
2018 else
2019 rc = rtSocketError();
2020
2021#ifdef RT_OS_WINDOWS
2022# undef select
2023#endif
2024 return rc;
2025}
2026
2027
2028/**
2029 * Internal worker for RTSocketSelectOneEx and rtSocketPollCheck (fallback)
2030 *
2031 * @returns IPRT status code
2032 * @param pThis The socket (valid).
2033 * @param fEvents The events to select for.
2034 * @param pfEvents Where to return the events.
2035 * @param cMillies How long to select for, in milliseconds.
2036 */
2037static int rtSocketSelectOneEx(RTSOCKET pThis, uint32_t fEvents, uint32_t *pfEvents, RTMSINTERVAL cMillies)
2038{
2039 RTSOCKETNATIVE hNative = pThis->hNative;
2040 if (hNative == NIL_RTSOCKETNATIVE)
2041 {
2042 /* Socket is already closed? Possible we raced someone calling rtSocketCloseIt.
2043 Should we return a different status code? */
2044 *pfEvents = RTSOCKET_EVT_ERROR;
2045 return VINF_SUCCESS;
2046 }
2047
2048 int const fdMax = (int)hNative + 1;
2049 AssertReturn((RTSOCKETNATIVE)(fdMax - 1) == hNative, VERR_INTERNAL_ERROR_5);
2050#ifdef RT_OS_WINDOWS
2051 AssertReturn(g_pfnselect, VERR_NET_NOT_UNSUPPORTED);
2052 AssertReturn(g_pfn__WSAFDIsSet, VERR_NET_NOT_UNSUPPORTED);
2053# define select g_pfnselect
2054# define __WSAFDIsSet g_pfn__WSAFDIsSet
2055#endif
2056
2057 *pfEvents = 0;
2058
2059 /*
2060 * Set up the file descriptor sets and do the select.
2061 */
2062 fd_set fdsetR;
2063 fd_set fdsetW;
2064 fd_set fdsetE;
2065 FD_ZERO(&fdsetR);
2066 FD_ZERO(&fdsetW);
2067 FD_ZERO(&fdsetE);
2068
2069 if (fEvents & RTSOCKET_EVT_READ)
2070 FD_SET(hNative, &fdsetR);
2071 if (fEvents & RTSOCKET_EVT_WRITE)
2072 FD_SET(hNative, &fdsetW);
2073 if (fEvents & RTSOCKET_EVT_ERROR)
2074 FD_SET(hNative, &fdsetE);
2075
2076 int rc;
2077 if (cMillies == RT_INDEFINITE_WAIT)
2078 rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, NULL);
2079 else
2080 {
2081 struct timeval timeout;
2082 timeout.tv_sec = cMillies / 1000;
2083 timeout.tv_usec = (cMillies % 1000) * 1000;
2084 rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, &timeout);
2085 }
2086 if (rc > 0)
2087 {
2088 if (pThis->hNative == hNative)
2089 {
2090 if (FD_ISSET(hNative, &fdsetR))
2091 *pfEvents |= RTSOCKET_EVT_READ;
2092 if (FD_ISSET(hNative, &fdsetW))
2093 *pfEvents |= RTSOCKET_EVT_WRITE;
2094 if (FD_ISSET(hNative, &fdsetE))
2095 *pfEvents |= RTSOCKET_EVT_ERROR;
2096 rc = VINF_SUCCESS;
2097 }
2098 else
2099 {
2100 /* Socket was closed while we waited (rtSocketCloseIt). Different status code? */
2101 *pfEvents = RTSOCKET_EVT_ERROR;
2102 rc = VINF_SUCCESS;
2103 }
2104 }
2105 else if (rc == 0)
2106 rc = VERR_TIMEOUT;
2107 else
2108 rc = rtSocketError();
2109
2110#ifdef RT_OS_WINDOWS
2111# undef select
2112# undef __WSAFDIsSet
2113#endif
2114 return rc;
2115}
2116
2117
2118RTDECL(int) RTSocketSelectOneEx(RTSOCKET hSocket, uint32_t fEvents, uint32_t *pfEvents, RTMSINTERVAL cMillies)
2119{
2120 /*
2121 * Validate input.
2122 */
2123 RTSOCKETINT *pThis = hSocket;
2124 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2125 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2126 AssertPtrReturn(pfEvents, VERR_INVALID_PARAMETER);
2127 AssertReturn(!(fEvents & ~RTSOCKET_EVT_VALID_MASK), VERR_INVALID_PARAMETER);
2128 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
2129
2130 return rtSocketSelectOneEx(pThis, fEvents, pfEvents, cMillies);
2131}
2132
2133
2134RTDECL(int) RTSocketShutdown(RTSOCKET hSocket, bool fRead, bool fWrite)
2135{
2136 /*
2137 * Validate input, don't lock it because we might want to interrupt a call
2138 * active on a different thread.
2139 */
2140 RTSOCKETINT *pThis = hSocket;
2141 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2142 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2143 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
2144 AssertReturn(fRead || fWrite, VERR_INVALID_PARAMETER);
2145#ifdef RT_OS_WINDOWS
2146 AssertReturn(g_pfnshutdown, VERR_NET_NOT_UNSUPPORTED);
2147# define shutdown g_pfnshutdown
2148#endif
2149
2150 /*
2151 * Do the job.
2152 */
2153 int rc = VINF_SUCCESS;
2154 int fHow;
2155 if (fRead && fWrite)
2156 fHow = SHUT_RDWR;
2157 else if (fRead)
2158 fHow = SHUT_RD;
2159 else
2160 fHow = SHUT_WR;
2161 if (shutdown(pThis->hNative, fHow) == -1)
2162 rc = rtSocketError();
2163
2164#ifdef RT_OS_WINDOWS
2165# undef shutdown
2166#endif
2167 return rc;
2168}
2169
2170
2171RTDECL(int) RTSocketGetLocalAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
2172{
2173 /*
2174 * Validate input.
2175 */
2176 RTSOCKETINT *pThis = hSocket;
2177 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2178 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2179 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
2180#ifdef RT_OS_WINDOWS
2181 AssertReturn(g_pfngetsockname, VERR_NET_NOT_UNSUPPORTED);
2182# define getsockname g_pfngetsockname
2183#endif
2184
2185 /*
2186 * Get the address and convert it.
2187 */
2188 int rc;
2189 RTSOCKADDRUNION u;
2190#ifdef RT_OS_WINDOWS
2191 int cbAddr = sizeof(u);
2192#else
2193 socklen_t cbAddr = sizeof(u);
2194#endif
2195 RT_ZERO(u);
2196 if (getsockname(pThis->hNative, &u.Addr, &cbAddr) == 0)
2197 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
2198 else
2199 rc = rtSocketError();
2200
2201#ifdef RT_OS_WINDOWS
2202# undef getsockname
2203#endif
2204 return rc;
2205}
2206
2207
2208RTDECL(int) RTSocketGetPeerAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
2209{
2210 /*
2211 * Validate input.
2212 */
2213 RTSOCKETINT *pThis = hSocket;
2214 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2215 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2216 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
2217#ifdef RT_OS_WINDOWS
2218 AssertReturn(g_pfngetpeername, VERR_NET_NOT_UNSUPPORTED);
2219# define getpeername g_pfngetpeername
2220#endif
2221
2222 /*
2223 * Get the address and convert it.
2224 */
2225 int rc;
2226 RTSOCKADDRUNION u;
2227#ifdef RT_OS_WINDOWS
2228 int cbAddr = sizeof(u);
2229#else
2230 socklen_t cbAddr = sizeof(u);
2231#endif
2232 RT_ZERO(u);
2233 if (getpeername(pThis->hNative, &u.Addr, &cbAddr) == 0)
2234 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
2235 else
2236 rc = rtSocketError();
2237
2238#ifdef RT_OS_WINDOWS
2239# undef getpeername
2240#endif
2241 return rc;
2242}
2243
2244
2245
2246/**
2247 * Wrapper around bind.
2248 *
2249 * @returns IPRT status code.
2250 * @param hSocket The socket handle.
2251 * @param pAddr The address to bind to.
2252 */
2253DECLHIDDEN(int) rtSocketBind(RTSOCKET hSocket, PCRTNETADDR pAddr)
2254{
2255 RTSOCKADDRUNION u;
2256 int cbAddr;
2257 int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
2258 if (RT_SUCCESS(rc))
2259 rc = rtSocketBindRawAddr(hSocket, &u.Addr, cbAddr);
2260 return rc;
2261}
2262
2263
2264/**
2265 * Very thin wrapper around bind.
2266 *
2267 * @returns IPRT status code.
2268 * @param hSocket The socket handle.
2269 * @param pvAddr The address to bind to (struct sockaddr and
2270 * friends).
2271 * @param cbAddr The size of the address.
2272 */
2273DECLHIDDEN(int) rtSocketBindRawAddr(RTSOCKET hSocket, void const *pvAddr, size_t cbAddr)
2274{
2275 /*
2276 * Validate input.
2277 */
2278 RTSOCKETINT *pThis = hSocket;
2279 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2280 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2281 AssertPtrReturn(pvAddr, VERR_INVALID_POINTER);
2282#ifdef RT_OS_WINDOWS
2283 AssertReturn(g_pfnbind, VERR_NET_NOT_UNSUPPORTED);
2284# define bind g_pfnbind
2285#endif
2286 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2287
2288 int rc;
2289 if (bind(pThis->hNative, (struct sockaddr const *)pvAddr, (int)cbAddr) == 0)
2290 rc = VINF_SUCCESS;
2291 else
2292 rc = rtSocketError();
2293
2294 rtSocketUnlock(pThis);
2295#ifdef RT_OS_WINDOWS
2296# undef bind
2297#endif
2298 return rc;
2299}
2300
2301
2302
2303/**
2304 * Wrapper around listen.
2305 *
2306 * @returns IPRT status code.
2307 * @param hSocket The socket handle.
2308 * @param cMaxPending The max number of pending connections.
2309 */
2310DECLHIDDEN(int) rtSocketListen(RTSOCKET hSocket, int cMaxPending)
2311{
2312 /*
2313 * Validate input.
2314 */
2315 RTSOCKETINT *pThis = hSocket;
2316 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2317 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2318#ifdef RT_OS_WINDOWS
2319 AssertReturn(g_pfnlisten, VERR_NET_NOT_UNSUPPORTED);
2320# define listen g_pfnlisten
2321#endif
2322 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2323
2324 int rc = VINF_SUCCESS;
2325 if (listen(pThis->hNative, cMaxPending) != 0)
2326 rc = rtSocketError();
2327
2328 rtSocketUnlock(pThis);
2329#ifdef RT_OS_WINDOWS
2330# undef listen
2331#endif
2332 return rc;
2333}
2334
2335
2336/**
2337 * Wrapper around accept.
2338 *
2339 * @returns IPRT status code.
2340 * @param hSocket The socket handle.
2341 * @param phClient Where to return the client socket handle on
2342 * success.
2343 * @param pAddr Where to return the client address.
2344 * @param pcbAddr On input this gives the size buffer size of what
2345 * @a pAddr point to. On return this contains the
2346 * size of what's stored at @a pAddr.
2347 */
2348DECLHIDDEN(int) rtSocketAccept(RTSOCKET hSocket, PRTSOCKET phClient, struct sockaddr *pAddr, size_t *pcbAddr)
2349{
2350 /*
2351 * Validate input.
2352 * Only lock the socket temporarily while we get the native handle, so that
2353 * we can safely shutdown and destroy the socket from a different thread.
2354 */
2355 RTSOCKETINT *pThis = hSocket;
2356 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2357 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2358#ifdef RT_OS_WINDOWS
2359 AssertReturn(g_pfnaccept, VERR_NET_NOT_UNSUPPORTED);
2360 AssertReturn(g_pfnclosesocket, VERR_NET_NOT_UNSUPPORTED);
2361# define accept g_pfnaccept
2362#endif
2363 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2364
2365 /*
2366 * Call accept().
2367 */
2368 rtSocketErrorReset();
2369 int rc = VINF_SUCCESS;
2370#ifdef RT_OS_WINDOWS
2371 int cbAddr = (int)*pcbAddr;
2372#else
2373 socklen_t cbAddr = *pcbAddr;
2374#endif
2375 RTSOCKETNATIVE hNativeClient = accept(pThis->hNative, pAddr, &cbAddr);
2376 if (hNativeClient != NIL_RTSOCKETNATIVE)
2377 {
2378 *pcbAddr = cbAddr;
2379
2380 /*
2381 * Wrap the client socket.
2382 */
2383 rc = rtSocketCreateForNative(phClient, hNativeClient, false /*fLeaveOpen*/);
2384 if (RT_FAILURE(rc))
2385 {
2386#ifdef RT_OS_WINDOWS
2387 g_pfnclosesocket(hNativeClient);
2388#else
2389 close(hNativeClient);
2390#endif
2391 }
2392 }
2393 else
2394 rc = rtSocketError();
2395
2396 rtSocketUnlock(pThis);
2397#ifdef RT_OS_WINDOWS
2398# undef accept
2399#endif
2400 return rc;
2401}
2402
2403
2404/**
2405 * Wrapper around connect.
2406 *
2407 * @returns IPRT status code.
2408 * @param hSocket The socket handle.
2409 * @param pAddr The socket address to connect to.
2410 * @param cMillies Number of milliseconds to wait for the connect attempt to complete.
2411 * Use RT_INDEFINITE_WAIT to wait for ever.
2412 * Use RT_TCPCLIENTCONNECT_DEFAULT_WAIT to wait for the default time
2413 * configured on the running system.
2414 */
2415DECLHIDDEN(int) rtSocketConnect(RTSOCKET hSocket, PCRTNETADDR pAddr, RTMSINTERVAL cMillies)
2416{
2417 /*
2418 * Validate input.
2419 */
2420 RTSOCKETINT *pThis = hSocket;
2421 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2422 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2423#ifdef RT_OS_WINDOWS
2424 AssertReturn(g_pfnconnect, VERR_NET_NOT_UNSUPPORTED);
2425 AssertReturn(g_pfnselect, VERR_NET_NOT_UNSUPPORTED);
2426 AssertReturn(g_pfngetsockopt, VERR_NET_NOT_UNSUPPORTED);
2427# define connect g_pfnconnect
2428# define select g_pfnselect
2429# define getsockopt g_pfngetsockopt
2430#endif
2431 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2432
2433 RTSOCKADDRUNION u;
2434 int cbAddr;
2435 int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
2436 if (RT_SUCCESS(rc))
2437 {
2438 if (cMillies == RT_SOCKETCONNECT_DEFAULT_WAIT)
2439 {
2440 if (connect(pThis->hNative, &u.Addr, cbAddr) != 0)
2441 rc = rtSocketError();
2442 }
2443 else
2444 {
2445 /*
2446 * Switch the socket to nonblocking mode, initiate the connect
2447 * and wait for the socket to become writable or until the timeout
2448 * expires.
2449 */
2450 rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
2451 if (RT_SUCCESS(rc))
2452 {
2453 if (connect(pThis->hNative, &u.Addr, cbAddr) != 0)
2454 {
2455 rc = rtSocketError();
2456 if (rc == VERR_TRY_AGAIN || rc == VERR_NET_IN_PROGRESS)
2457 {
2458 int rcSock = 0;
2459 fd_set FdSetWriteable;
2460 struct timeval TvTimeout;
2461
2462 TvTimeout.tv_sec = cMillies / RT_MS_1SEC;
2463 TvTimeout.tv_usec = (cMillies % RT_MS_1SEC) * RT_US_1MS;
2464
2465 FD_ZERO(&FdSetWriteable);
2466 FD_SET(pThis->hNative, &FdSetWriteable);
2467 do
2468 {
2469 rcSock = select(pThis->hNative + 1, NULL, &FdSetWriteable, NULL,
2470 cMillies == RT_INDEFINITE_WAIT || cMillies >= INT_MAX
2471 ? NULL
2472 : &TvTimeout);
2473 if (rcSock > 0)
2474 {
2475 int iSockError = 0;
2476 socklen_t cbSockOpt = sizeof(iSockError);
2477 rcSock = getsockopt(pThis->hNative, SOL_SOCKET, SO_ERROR, (char *)&iSockError, &cbSockOpt);
2478 if (rcSock == 0)
2479 {
2480 if (iSockError == 0)
2481 rc = VINF_SUCCESS;
2482 else
2483 {
2484#ifdef RT_OS_WINDOWS
2485 rc = RTErrConvertFromWin32(iSockError);
2486#else
2487 rc = RTErrConvertFromErrno(iSockError);
2488#endif
2489 }
2490 }
2491 else
2492 rc = rtSocketError();
2493 }
2494 else if (rcSock == 0)
2495 rc = VERR_TIMEOUT;
2496 else
2497 rc = rtSocketError();
2498 } while (rc == VERR_INTERRUPTED);
2499 }
2500 }
2501
2502 rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
2503 }
2504 }
2505 }
2506
2507 rtSocketUnlock(pThis);
2508#ifdef RT_OS_WINDOWS
2509# undef connect
2510# undef select
2511# undef getsockopt
2512#endif
2513 return rc;
2514}
2515
2516
2517/**
2518 * Wrapper around connect, raw address, no timeout.
2519 *
2520 * @returns IPRT status code.
2521 * @param hSocket The socket handle.
2522 * @param pvAddr The raw socket address to connect to.
2523 * @param cbAddr The size of the raw address.
2524 */
2525DECLHIDDEN(int) rtSocketConnectRaw(RTSOCKET hSocket, void const *pvAddr, size_t cbAddr)
2526{
2527 /*
2528 * Validate input.
2529 */
2530 RTSOCKETINT *pThis = hSocket;
2531 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2532 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2533#ifdef RT_OS_WINDOWS
2534 AssertReturn(g_pfnconnect, VERR_NET_NOT_UNSUPPORTED);
2535# define connect g_pfnconnect
2536#endif
2537 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2538
2539 int rc;
2540 if (connect(pThis->hNative, (const struct sockaddr *)pvAddr, (int)cbAddr) == 0)
2541 rc = VINF_SUCCESS;
2542 else
2543 rc = rtSocketError();
2544
2545 rtSocketUnlock(pThis);
2546#ifdef RT_OS_WINDOWS
2547# undef connect
2548#endif
2549 return rc;
2550}
2551
2552
2553/**
2554 * Wrapper around setsockopt.
2555 *
2556 * @returns IPRT status code.
2557 * @param hSocket The socket handle.
2558 * @param iLevel The protocol level, e.g. IPPORTO_TCP.
2559 * @param iOption The option, e.g. TCP_NODELAY.
2560 * @param pvValue The value buffer.
2561 * @param cbValue The size of the value pointed to by pvValue.
2562 */
2563DECLHIDDEN(int) rtSocketSetOpt(RTSOCKET hSocket, int iLevel, int iOption, void const *pvValue, int cbValue)
2564{
2565 /*
2566 * Validate input.
2567 */
2568 RTSOCKETINT *pThis = hSocket;
2569 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2570 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2571#ifdef RT_OS_WINDOWS
2572 AssertReturn(g_pfnsetsockopt, VERR_NET_NOT_UNSUPPORTED);
2573# define setsockopt g_pfnsetsockopt
2574#endif
2575 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2576
2577 int rc = VINF_SUCCESS;
2578 if (setsockopt(pThis->hNative, iLevel, iOption, (const char *)pvValue, cbValue) != 0)
2579 rc = rtSocketError();
2580
2581 rtSocketUnlock(pThis);
2582#ifdef RT_OS_WINDOWS
2583# undef setsockopt
2584#endif
2585 return rc;
2586}
2587
2588
2589/**
2590 * Internal RTPollSetAdd helper that returns the handle that should be added to
2591 * the pollset.
2592 *
2593 * @returns Valid handle on success, INVALID_HANDLE_VALUE on failure.
2594 * @param hSocket The socket handle.
2595 * @param fEvents The events we're polling for.
2596 * @param phNative Where to put the primary handle.
2597 */
2598DECLHIDDEN(int) rtSocketPollGetHandle(RTSOCKET hSocket, uint32_t fEvents, PRTHCINTPTR phNative)
2599{
2600 RTSOCKETINT *pThis = hSocket;
2601 RT_NOREF_PV(fEvents);
2602 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
2603 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
2604#ifdef RT_OS_WINDOWS
2605 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
2606
2607 int rc = VINF_SUCCESS;
2608 if (pThis->hEvent != WSA_INVALID_EVENT)
2609 *phNative = (RTHCINTPTR)pThis->hEvent;
2610 else if (g_pfnWSACreateEvent)
2611 {
2612 pThis->hEvent = g_pfnWSACreateEvent();
2613 *phNative = (RTHCINTPTR)pThis->hEvent;
2614 if (pThis->hEvent == WSA_INVALID_EVENT)
2615 rc = rtSocketError();
2616 }
2617 else
2618 {
2619 AssertCompile(WSA_INVALID_EVENT == (WSAEVENT)NULL);
2620 pThis->hEvent = CreateEventW(NULL, TRUE /*fManualReset*/, FALSE /*fInitialState*/, NULL /*pwszName*/);
2621 *phNative = (RTHCINTPTR)pThis->hEvent;
2622 if (pThis->hEvent == WSA_INVALID_EVENT)
2623 rc = RTErrConvertFromWin32(GetLastError());
2624 }
2625
2626 rtSocketUnlock(pThis);
2627 return rc;
2628
2629#else /* !RT_OS_WINDOWS */
2630 *phNative = (RTHCUINTPTR)pThis->hNative;
2631 return VINF_SUCCESS;
2632#endif /* !RT_OS_WINDOWS */
2633}
2634
2635#ifdef RT_OS_WINDOWS
2636
2637/**
2638 * Fallback poller thread.
2639 *
2640 * @returns VINF_SUCCESS.
2641 * @param hSelf The thread handle.
2642 * @param pvUser Socket instance data.
2643 */
2644static DECLCALLBACK(int) rtSocketPollFallbackThreadProc(RTTHREAD hSelf, void *pvUser)
2645{
2646 RTSOCKETINT *pThis = (RTSOCKETINT *)pvUser;
2647 RT_NOREF(hSelf);
2648# define __WSAFDIsSet g_pfn__WSAFDIsSet
2649
2650 /*
2651 * The execution loop.
2652 */
2653 while (!ASMAtomicReadBool(&pThis->fPollFallbackShutdown))
2654 {
2655 /*
2656 * Do the selecting (with a 15 second timeout because that seems like a good idea).
2657 */
2658 struct fd_set SetRead;
2659 struct fd_set SetWrite;
2660 struct fd_set SetXcpt;
2661
2662 FD_ZERO(&SetRead);
2663 FD_ZERO(&SetWrite);
2664 FD_ZERO(&SetXcpt);
2665
2666 FD_SET(pThis->hPollFallbackNotifyR, &SetRead);
2667 FD_SET(pThis->hPollFallbackNotifyR, &SetXcpt);
2668
2669 bool fActive = ASMAtomicReadBool(&pThis->fPollFallbackActive);
2670 uint32_t fEvents;
2671 if (!fActive)
2672 fEvents = 0;
2673 else
2674 {
2675 fEvents = ASMAtomicReadU32(&pThis->fSubscribedEvts);
2676 if (fEvents & RTPOLL_EVT_READ)
2677 FD_SET(pThis->hNative, &SetRead);
2678 if (fEvents & RTPOLL_EVT_WRITE)
2679 FD_SET(pThis->hNative, &SetWrite);
2680 if (fEvents & RTPOLL_EVT_ERROR)
2681 FD_SET(pThis->hNative, &SetXcpt);
2682 }
2683
2684 struct timeval Timeout;
2685 Timeout.tv_sec = 15;
2686 Timeout.tv_usec = 0;
2687 int rc = g_pfnselect(INT_MAX /*ignored*/, &SetRead, &SetWrite, &SetXcpt, &Timeout);
2688
2689 /* Stop immediately if told to shut down. */
2690 if (ASMAtomicReadBool(&pThis->fPollFallbackShutdown))
2691 break;
2692
2693 /*
2694 * Process the result.
2695 */
2696 if (rc > 0)
2697 {
2698 /* First the socket we're listening on. */
2699 if ( fEvents
2700 && ( FD_ISSET(pThis->hNative, &SetRead)
2701 || FD_ISSET(pThis->hNative, &SetWrite)
2702 || FD_ISSET(pThis->hNative, &SetXcpt)) )
2703 {
2704 ASMAtomicWriteBool(&pThis->fPollFallbackActive, false);
2705 SetEvent(pThis->hEvent);
2706 }
2707
2708 /* Then maintain the notification pipe. (We only read one byte here
2709 because we're overly paranoid wrt socket switching to blocking mode.) */
2710 if (FD_ISSET(pThis->hPollFallbackNotifyR, &SetRead))
2711 {
2712 char chIgnored;
2713 g_pfnrecv(pThis->hPollFallbackNotifyR, &chIgnored, sizeof(chIgnored), MSG_NOSIGNAL);
2714 }
2715 }
2716 else
2717 AssertMsg(rc == 0, ("%Rrc\n", rtSocketError()));
2718 }
2719
2720# undef __WSAFDIsSet
2721 return VINF_SUCCESS;
2722}
2723
2724
2725/**
2726 * Pokes the fallback thread, making sure it gets out of whatever it's stuck in.
2727 *
2728 * @param pThis The socket handle.
2729 */
2730static void rtSocketPokePollFallbackThread(RTSOCKETINT *pThis)
2731{
2732 Assert(pThis->fPollFallback);
2733 if (pThis->hPollFallbackThread != NIL_RTTHREAD)
2734 {
2735 int cbWritten = g_pfnsend(pThis->hPollFallbackNotifyW, "!", 1, MSG_NOSIGNAL);
2736 AssertMsg(cbWritten == 1, ("cbWritten=%d err=%Rrc\n", rtSocketError()));
2737 RT_NOREF_PV(cbWritten);
2738 }
2739}
2740
2741
2742/**
2743 * Called by rtSocketPollStart to make the thread start selecting on the socket.
2744 *
2745 * @returns 0 on success, RTPOLL_EVT_ERROR on failure.
2746 * @param pThis The socket handle.
2747 */
2748static uint32_t rtSocketPollFallbackStart(RTSOCKETINT *pThis)
2749{
2750 /*
2751 * Reset the event and tell the thread to start selecting on the socket.
2752 */
2753 ResetEvent(pThis->hEvent);
2754 ASMAtomicWriteBool(&pThis->fPollFallbackActive, true);
2755
2756 /*
2757 * Wake up the thread the thread.
2758 */
2759 if (pThis->hPollFallbackThread != NIL_RTTHREAD)
2760 rtSocketPokePollFallbackThread(pThis);
2761 else
2762 {
2763 /*
2764 * Not running, need to set it up and start it.
2765 */
2766 AssertLogRelReturn(pThis->hEvent != NULL && pThis->hEvent != INVALID_HANDLE_VALUE, RTPOLL_EVT_ERROR);
2767
2768 /* Create the notification socket pair. */
2769 int rc;
2770 if (pThis->hPollFallbackNotifyR == NIL_RTSOCKETNATIVE)
2771 {
2772 rc = rtSocketCreateNativeTcpPair(&pThis->hPollFallbackNotifyW, &pThis->hPollFallbackNotifyR);
2773 AssertLogRelRCReturn(rc, RTPOLL_EVT_ERROR);
2774
2775 /* Make the read end non-blocking (not fatal). */
2776 u_long fNonBlocking = 1;
2777 rc = g_pfnioctlsocket(pThis->hPollFallbackNotifyR, FIONBIO, &fNonBlocking);
2778 AssertLogRelMsg(rc == 0, ("rc=%#x %Rrc\n", rc, rtSocketError()));
2779 }
2780
2781 /* Finally, start the thread. ASSUME we don't need too much stack. */
2782 rc = RTThreadCreate(&pThis->hPollFallbackThread, rtSocketPollFallbackThreadProc, pThis,
2783 _128K, RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "sockpoll");
2784 AssertLogRelRCReturn(rc, RTPOLL_EVT_ERROR);
2785 }
2786 return 0;
2787}
2788
2789
2790/**
2791 * Undos the harm done by WSAEventSelect.
2792 *
2793 * @returns IPRT status code.
2794 * @param pThis The socket handle.
2795 */
2796static int rtSocketPollClearEventAndRestoreBlocking(RTSOCKETINT *pThis)
2797{
2798 int rc = VINF_SUCCESS;
2799 if (pThis->fSubscribedEvts)
2800 {
2801 if (!pThis->fPollFallback)
2802 {
2803 Assert(g_pfnWSAEventSelect && g_pfnioctlsocket);
2804 if (g_pfnWSAEventSelect && g_pfnioctlsocket)
2805 {
2806 if (g_pfnWSAEventSelect(pThis->hNative, WSA_INVALID_EVENT, 0) == 0)
2807 {
2808 pThis->fSubscribedEvts = 0;
2809
2810 /*
2811 * Switch back to blocking mode if that was the state before the
2812 * operation.
2813 */
2814 if (pThis->fBlocking)
2815 {
2816 u_long fNonBlocking = 0;
2817 int rc2 = g_pfnioctlsocket(pThis->hNative, FIONBIO, &fNonBlocking);
2818 if (rc2 != 0)
2819 {
2820 rc = rtSocketError();
2821 AssertMsgFailed(("%Rrc; rc2=%d\n", rc, rc2));
2822 }
2823 }
2824 }
2825 else
2826 {
2827 rc = rtSocketError();
2828 AssertMsgFailed(("%Rrc\n", rc));
2829 }
2830 }
2831 else
2832 {
2833 Assert(pThis->fPollFallback);
2834 rc = VINF_SUCCESS;
2835 }
2836 }
2837 /*
2838 * Just clear the event mask as we never started waiting if we get here.
2839 */
2840 else
2841 ASMAtomicWriteU32(&pThis->fSubscribedEvts, 0);
2842 }
2843 return rc;
2844}
2845
2846
2847/**
2848 * Updates the mask of events we're subscribing to.
2849 *
2850 * @returns IPRT status code.
2851 * @param pThis The socket handle.
2852 * @param fEvents The events we want to subscribe to.
2853 */
2854static int rtSocketPollUpdateEvents(RTSOCKETINT *pThis, uint32_t fEvents)
2855{
2856 if (!pThis->fPollFallback)
2857 {
2858 LONG fNetworkEvents = 0;
2859 if (fEvents & RTPOLL_EVT_READ)
2860 fNetworkEvents |= FD_READ;
2861 if (fEvents & RTPOLL_EVT_WRITE)
2862 fNetworkEvents |= FD_WRITE;
2863 if (fEvents & RTPOLL_EVT_ERROR)
2864 fNetworkEvents |= FD_CLOSE;
2865 LogFlowFunc(("fNetworkEvents=%#x\n", fNetworkEvents));
2866
2867 if (g_pfnWSAEventSelect(pThis->hNative, pThis->hEvent, fNetworkEvents) == 0)
2868 {
2869 pThis->fSubscribedEvts = fEvents;
2870 return VINF_SUCCESS;
2871 }
2872
2873 int rc = rtSocketError();
2874 AssertMsgFailed(("fNetworkEvents=%#x rc=%Rrc\n", fNetworkEvents, rtSocketError()));
2875 return rc;
2876 }
2877
2878 /*
2879 * Update the events we're waiting for. Caller will poke/start the thread. later
2880 */
2881 ASMAtomicWriteU32(&pThis->fSubscribedEvts, fEvents);
2882 return VINF_SUCCESS;
2883}
2884
2885#endif /* RT_OS_WINDOWS */
2886
2887
2888#if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2)
2889
2890/**
2891 * Checks for pending events.
2892 *
2893 * @returns Event mask or 0.
2894 * @param pThis The socket handle.
2895 * @param fEvents The desired events.
2896 */
2897static uint32_t rtSocketPollCheck(RTSOCKETINT *pThis, uint32_t fEvents)
2898{
2899 uint32_t fRetEvents = 0;
2900
2901 LogFlowFunc(("pThis=%#p fEvents=%#x\n", pThis, fEvents));
2902
2903# ifdef RT_OS_WINDOWS
2904 /* Make sure WSAEnumNetworkEvents returns what we want. */
2905 int rc = VINF_SUCCESS;
2906 if ((pThis->fSubscribedEvts & fEvents) != fEvents)
2907 rc = rtSocketPollUpdateEvents(pThis, pThis->fSubscribedEvts | fEvents);
2908
2909 if (!pThis->fPollFallback)
2910 {
2911 /* Atomically get pending events and reset the event semaphore. */
2912 Assert(g_pfnWSAEnumNetworkEvents);
2913 WSANETWORKEVENTS NetEvts;
2914 RT_ZERO(NetEvts);
2915 if (g_pfnWSAEnumNetworkEvents(pThis->hNative, pThis->hEvent, &NetEvts) == 0)
2916 {
2917 if ( (NetEvts.lNetworkEvents & FD_READ)
2918 && NetEvts.iErrorCode[FD_READ_BIT] == 0)
2919 fRetEvents |= RTPOLL_EVT_READ;
2920
2921 if ( (NetEvts.lNetworkEvents & FD_WRITE)
2922 && NetEvts.iErrorCode[FD_WRITE_BIT] == 0)
2923 fRetEvents |= RTPOLL_EVT_WRITE;
2924
2925 if (NetEvts.lNetworkEvents & FD_CLOSE)
2926 fRetEvents |= RTPOLL_EVT_ERROR;
2927 else
2928 for (uint32_t i = 0; i < FD_MAX_EVENTS; i++)
2929 if ( (NetEvts.lNetworkEvents & (1L << i))
2930 && NetEvts.iErrorCode[i] != 0)
2931 fRetEvents |= RTPOLL_EVT_ERROR;
2932
2933 pThis->fEventsSaved = fRetEvents |= pThis->fEventsSaved;
2934 fRetEvents &= fEvents | RTPOLL_EVT_ERROR;
2935 }
2936 else
2937 rc = rtSocketError();
2938 }
2939
2940 /* Fall back on select if we hit an error above or is using fallback polling. */
2941 if (pThis->fPollFallback || RT_FAILURE(rc))
2942 {
2943 rc = rtSocketSelectOneEx(pThis, fEvents & RTPOLL_EVT_ERROR ? fEvents | RTPOLL_EVT_READ : fEvents, &fRetEvents, 0);
2944 if (RT_SUCCESS(rc))
2945 {
2946 /* rtSocketSelectOneEx may return RTPOLL_EVT_READ on disconnect. Use
2947 getpeername to fix this. */
2948 if ((fRetEvents & (RTPOLL_EVT_READ | RTPOLL_EVT_ERROR)) == RTPOLL_EVT_READ)
2949 {
2950# if 0 /* doens't work */
2951 rtSocketErrorReset();
2952 char chIgn;
2953 rc = g_pfnrecv(pThis->hNative, &chIgn, 0, MSG_NOSIGNAL);
2954 rc = rtSocketError();
2955 if (RT_FAILURE(rc))
2956 fRetEvents |= RTPOLL_EVT_ERROR;
2957
2958 rc = g_pfnsend(pThis->hNative, &chIgn, 0, MSG_NOSIGNAL);
2959 rc = rtSocketError();
2960 if (RT_FAILURE(rc))
2961 fRetEvents |= RTPOLL_EVT_ERROR;
2962
2963 RTSOCKADDRUNION u;
2964 int cbAddr = sizeof(u);
2965 if (g_pfngetpeername(pThis->hNative, &u.Addr, &cbAddr) == SOCKET_ERROR)
2966 fRetEvents |= RTPOLL_EVT_ERROR;
2967# endif
2968 /* If no bytes are available, assume error condition. */
2969 u_long cbAvail = 0;
2970 rc = g_pfnioctlsocket(pThis->hNative, FIONREAD, &cbAvail);
2971 if (rc == 0 && cbAvail == 0)
2972 fRetEvents |= RTPOLL_EVT_ERROR;
2973 }
2974 fRetEvents &= fEvents | RTPOLL_EVT_ERROR;
2975 }
2976 else if (rc == VERR_TIMEOUT)
2977 fRetEvents = 0;
2978 else
2979 fRetEvents |= RTPOLL_EVT_ERROR;
2980 }
2981
2982# else /* RT_OS_OS2 */
2983 int aFds[4] = { pThis->hNative, pThis->hNative, pThis->hNative, -1 };
2984 int rc = os2_select(aFds, 1, 1, 1, 0);
2985 if (rc > 0)
2986 {
2987 if (aFds[0] == pThis->hNative)
2988 fRetEvents |= RTPOLL_EVT_READ;
2989 if (aFds[1] == pThis->hNative)
2990 fRetEvents |= RTPOLL_EVT_WRITE;
2991 if (aFds[2] == pThis->hNative)
2992 fRetEvents |= RTPOLL_EVT_ERROR;
2993 fRetEvents &= fEvents;
2994 }
2995# endif /* RT_OS_OS2 */
2996
2997 LogFlowFunc(("fRetEvents=%#x\n", fRetEvents));
2998 return fRetEvents;
2999}
3000
3001
3002/**
3003 * Internal RTPoll helper that polls the socket handle and, if @a fNoWait is
3004 * clear, starts whatever actions we've got running during the poll call.
3005 *
3006 * @returns 0 if no pending events, actions initiated if @a fNoWait is clear.
3007 * Event mask (in @a fEvents) and no actions if the handle is ready
3008 * already.
3009 * UINT32_MAX (asserted) if the socket handle is busy in I/O or a
3010 * different poll set.
3011 *
3012 * @param hSocket The socket handle.
3013 * @param hPollSet The poll set handle (for access checks).
3014 * @param fEvents The events we're polling for.
3015 * @param fFinalEntry Set if this is the final entry for this handle
3016 * in this poll set. This can be used for dealing
3017 * with duplicate entries.
3018 * @param fNoWait Set if it's a zero-wait poll call. Clear if
3019 * we'll wait for an event to occur.
3020 *
3021 * @remarks There is a potential race wrt duplicate handles when @a fNoWait is
3022 * @c true, we don't currently care about that oddity...
3023 */
3024DECLHIDDEN(uint32_t) rtSocketPollStart(RTSOCKET hSocket, RTPOLLSET hPollSet, uint32_t fEvents, bool fFinalEntry, bool fNoWait)
3025{
3026 RTSOCKETINT *pThis = hSocket;
3027 AssertPtrReturn(pThis, UINT32_MAX);
3028 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
3029 /** @todo This isn't quite sane. Replace by critsect and open up concurrent
3030 * reads and writes! */
3031 if (rtSocketTryLock(pThis))
3032 pThis->hPollSet = hPollSet;
3033 else
3034 {
3035 AssertReturn(pThis->hPollSet == hPollSet, UINT32_MAX);
3036 ASMAtomicIncU32(&pThis->cUsers);
3037 }
3038
3039 /* (rtSocketPollCheck will reset the event object). */
3040# ifdef RT_OS_WINDOWS
3041 uint32_t fRetEvents = pThis->fEventsSaved;
3042 pThis->fEventsSaved = 0; /* Reset */
3043 fRetEvents |= rtSocketPollCheck(pThis, fEvents);
3044
3045 if ( !fRetEvents
3046 && !fNoWait)
3047 {
3048 pThis->fPollEvts |= fEvents;
3049 if (fFinalEntry)
3050 {
3051 if (pThis->fSubscribedEvts != pThis->fPollEvts)
3052 {
3053 /** @todo seems like there might be a call to many here and that fPollEvts is
3054 * totally unnecessary... (bird) */
3055 int rc = rtSocketPollUpdateEvents(pThis, pThis->fPollEvts);
3056 if (RT_FAILURE(rc))
3057 {
3058 pThis->fPollEvts = 0;
3059 fRetEvents = UINT32_MAX;
3060 }
3061 }
3062
3063 /* Make sure we don't block when there are events pending relevant to an earlier poll set entry. */
3064 if (pThis->fEventsSaved && !pThis->fPollFallback && g_pfnWSASetEvent && fRetEvents == 0)
3065 g_pfnWSASetEvent(pThis->hEvent);
3066 }
3067 }
3068# else
3069 uint32_t fRetEvents = rtSocketPollCheck(pThis, fEvents);
3070# endif
3071
3072 if (fRetEvents || fNoWait)
3073 {
3074 if (pThis->cUsers == 1)
3075 {
3076# ifdef RT_OS_WINDOWS
3077 pThis->fEventsSaved &= RTPOLL_EVT_ERROR;
3078 pThis->fHarvestedEvents = false;
3079 rtSocketPollClearEventAndRestoreBlocking(pThis);
3080# endif
3081 pThis->hPollSet = NIL_RTPOLLSET;
3082 }
3083# ifdef RT_OS_WINDOWS
3084 else
3085 pThis->fHarvestedEvents = true;
3086# endif
3087 ASMAtomicDecU32(&pThis->cUsers);
3088 }
3089# ifdef RT_OS_WINDOWS
3090 /*
3091 * Kick the poller thread on if this is the final entry and we're in
3092 * winsock 1.x fallback mode.
3093 */
3094 else if (pThis->fPollFallback && fFinalEntry)
3095 fRetEvents = rtSocketPollFallbackStart(pThis);
3096# endif
3097
3098 return fRetEvents;
3099}
3100
3101
3102/**
3103 * Called after a WaitForMultipleObjects returned in order to check for pending
3104 * events and stop whatever actions that rtSocketPollStart() initiated.
3105 *
3106 * @returns Event mask or 0.
3107 *
3108 * @param hSocket The socket handle.
3109 * @param fEvents The events we're polling for.
3110 * @param fFinalEntry Set if this is the final entry for this handle
3111 * in this poll set. This can be used for dealing
3112 * with duplicate entries. Only keep in mind that
3113 * this method is called in reverse order, so the
3114 * first call will have this set (when the entire
3115 * set was processed).
3116 * @param fHarvestEvents Set if we should check for pending events.
3117 */
3118DECLHIDDEN(uint32_t) rtSocketPollDone(RTSOCKET hSocket, uint32_t fEvents, bool fFinalEntry, bool fHarvestEvents)
3119{
3120 RTSOCKETINT *pThis = hSocket;
3121 AssertPtrReturn(pThis, 0);
3122 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, 0);
3123 Assert(pThis->cUsers > 0);
3124 Assert(pThis->hPollSet != NIL_RTPOLLSET);
3125 RT_NOREF_PV(fFinalEntry);
3126
3127# ifdef RT_OS_WINDOWS
3128 /*
3129 * Deactivate the poll thread if we're in winsock 1.x fallback poll mode.
3130 */
3131 if ( pThis->fPollFallback
3132 && pThis->hPollFallbackThread != NIL_RTTHREAD)
3133 {
3134 ASMAtomicWriteU32(&pThis->fSubscribedEvts, 0);
3135 if (ASMAtomicXchgBool(&pThis->fPollFallbackActive, false))
3136 rtSocketPokePollFallbackThread(pThis);
3137 }
3138# endif
3139
3140 /*
3141 * Harvest events and clear the event mask for the next round of polling.
3142 */
3143 uint32_t fRetEvents;
3144# ifdef RT_OS_WINDOWS
3145 if (!pThis->fPollFallback)
3146 {
3147 if (!pThis->fHarvestedEvents)
3148 {
3149 fRetEvents = rtSocketPollCheck(pThis, fEvents);
3150 pThis->fHarvestedEvents = true;
3151 }
3152 else
3153 fRetEvents = pThis->fEventsSaved;
3154 if (fHarvestEvents)
3155 fRetEvents &= fEvents;
3156 else
3157 fRetEvents = 0;
3158 pThis->fPollEvts = 0;
3159 }
3160 else
3161# endif
3162 {
3163 if (fHarvestEvents)
3164 fRetEvents = rtSocketPollCheck(pThis, fEvents);
3165 else
3166 fRetEvents = 0;
3167 }
3168
3169 /*
3170 * Make the socket blocking again and unlock the handle.
3171 */
3172 if (pThis->cUsers == 1)
3173 {
3174# ifdef RT_OS_WINDOWS
3175 pThis->fEventsSaved &= RTPOLL_EVT_ERROR;
3176 pThis->fHarvestedEvents = false;
3177 rtSocketPollClearEventAndRestoreBlocking(pThis);
3178# endif
3179 pThis->hPollSet = NIL_RTPOLLSET;
3180 }
3181 ASMAtomicDecU32(&pThis->cUsers);
3182 return fRetEvents;
3183}
3184
3185#endif /* RT_OS_WINDOWS || RT_OS_OS2 */
3186
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette