/* $Id: tstRTHeapOffset.cpp 93115 2022-01-01 11:31:46Z vboxsync $ */ /** @file * IPRT Testcase - Offset Based Heap. */ /* * Copyright (C) 2006-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include int main(int argc, char **argv) { RT_NOREF_PV(argc); RT_NOREF_PV(argv); /* * Init runtime. */ RTTEST hTest; int rc = RTTestInitAndCreate("tstRTHeapOffset", &hTest); if (rc) return rc; RTTestBanner(hTest); /* * Create a heap. */ RTTestSub(hTest, "Basics"); static uint8_t s_abMem[128*1024]; RTHEAPOFFSET Heap; RTTESTI_CHECK_RC(rc = RTHeapOffsetInit(&Heap, &s_abMem[1], sizeof(s_abMem) - 1), VINF_SUCCESS); if (RT_FAILURE(rc)) return RTTestSummaryAndDestroy(hTest); /* * Try allocate. */ static struct TstHeapOffsetOps { size_t cb; unsigned uAlignment; void *pvAlloc; unsigned iFreeOrder; } s_aOps[] = { { 16, 0, NULL, 0 }, // 0 { 16, 4, NULL, 1 }, { 16, 8, NULL, 2 }, { 16, 16, NULL, 5 }, { 16, 32, NULL, 4 }, { 32, 0, NULL, 3 }, // 5 { 31, 0, NULL, 6 }, { 1024, 0, NULL, 8 }, { 1024, 32, NULL, 10 }, { 1024, 32, NULL, 12 }, { PAGE_SIZE, PAGE_SIZE, NULL, 13 }, // 10 { 1024, 32, NULL, 9 }, { PAGE_SIZE, 32, NULL, 11 }, { PAGE_SIZE, PAGE_SIZE, NULL, 14 }, { 16, 0, NULL, 15 }, { 9, 0, NULL, 7 }, // 15 { 16, 0, NULL, 7 }, { 36, 0, NULL, 7 }, { 16, 0, NULL, 7 }, { 12344, 0, NULL, 7 }, { 50, 0, NULL, 7 }, // 20 { 16, 0, NULL, 7 }, }; uint32_t i; RTHeapOffsetDump(Heap, (PFNRTHEAPOFFSETPRINTF)(uintptr_t)RTPrintf); /** @todo Add some detail info output with a signature identical to RTPrintf. */ size_t cbBefore = RTHeapOffsetGetFreeSize(Heap); static char const s_szFill[] = "01234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"; /* allocate */ for (i = 0; i < RT_ELEMENTS(s_aOps); i++) { s_aOps[i].pvAlloc = RTHeapOffsetAlloc(Heap, s_aOps[i].cb, s_aOps[i].uAlignment); RTTESTI_CHECK_MSG(s_aOps[i].pvAlloc, ("RTHeapOffsetAlloc(%p, %#x, %#x,) -> NULL i=%d\n", (void *)Heap, s_aOps[i].cb, s_aOps[i].uAlignment, i)); if (!s_aOps[i].pvAlloc) return RTTestSummaryAndDestroy(hTest); memset(s_aOps[i].pvAlloc, s_szFill[i], s_aOps[i].cb); RTTESTI_CHECK_MSG(RT_ALIGN_P(s_aOps[i].pvAlloc, (s_aOps[i].uAlignment ? s_aOps[i].uAlignment : 8)) == s_aOps[i].pvAlloc, ("RTHeapOffsetAlloc(%p, %#x, %#x,) -> %p\n", (void *)Heap, s_aOps[i].cb, s_aOps[i].uAlignment, i)); if (!s_aOps[i].pvAlloc) return RTTestSummaryAndDestroy(hTest); } /* free and allocate the same node again. */ for (i = 0; i < RT_ELEMENTS(s_aOps); i++) { if (!s_aOps[i].pvAlloc) continue; //RTPrintf("debug: i=%d pv=%#x cb=%#zx align=%#zx cbReal=%#zx\n", i, s_aOps[i].pvAlloc, // s_aOps[i].cb, s_aOps[i].uAlignment, RTHeapOffsetSize(Heap, s_aOps[i].pvAlloc)); size_t cbBeforeSub = RTHeapOffsetGetFreeSize(Heap); RTHeapOffsetFree(Heap, s_aOps[i].pvAlloc); size_t cbAfterSubFree = RTHeapOffsetGetFreeSize(Heap); void *pv; pv = RTHeapOffsetAlloc(Heap, s_aOps[i].cb, s_aOps[i].uAlignment); RTTESTI_CHECK_MSG(pv, ("RTHeapOffsetAlloc(%p, %#x, %#x,) -> NULL i=%d\n", (void *)Heap, s_aOps[i].cb, s_aOps[i].uAlignment, i)); if (!pv) return RTTestSummaryAndDestroy(hTest); //RTPrintf("debug: i=%d pv=%p cbReal=%#zx cbBeforeSub=%#zx cbAfterSubFree=%#zx cbAfterSubAlloc=%#zx \n", i, pv, RTHeapOffsetSize(Heap, pv), // cbBeforeSub, cbAfterSubFree, RTHeapOffsetGetFreeSize(Heap)); if (pv != s_aOps[i].pvAlloc) RTTestIPrintf(RTTESTLVL_ALWAYS, "Warning: Free+Alloc returned different address. new=%p old=%p i=%d\n", pv, s_aOps[i].pvAlloc, i); s_aOps[i].pvAlloc = pv; size_t cbAfterSubAlloc = RTHeapOffsetGetFreeSize(Heap); if (cbBeforeSub != cbAfterSubAlloc) { RTTestIPrintf(RTTESTLVL_ALWAYS, "Warning: cbBeforeSub=%#zx cbAfterSubFree=%#zx cbAfterSubAlloc=%#zx. i=%d\n", cbBeforeSub, cbAfterSubFree, cbAfterSubAlloc, i); //return 1; - won't work correctly until we start creating free block instead of donating memory on alignment. } } /* make a copy of the heap and the to-be-freed list. */ static uint8_t s_abMemCopy[sizeof(s_abMem)]; memcpy(s_abMemCopy, s_abMem, sizeof(s_abMem)); uintptr_t offDelta = (uintptr_t)&s_abMemCopy[0] - (uintptr_t)&s_abMem[0]; RTHEAPOFFSET hHeapCopy = (RTHEAPOFFSET)((uintptr_t)Heap + offDelta); static struct TstHeapOffsetOps s_aOpsCopy[RT_ELEMENTS(s_aOps)]; memcpy(&s_aOpsCopy[0], &s_aOps[0], sizeof(s_aOps)); /* free it in a specific order. */ int cFreed = 0; for (i = 0; i < RT_ELEMENTS(s_aOps); i++) { unsigned j; for (j = 0; j < RT_ELEMENTS(s_aOps); j++) { if ( s_aOps[j].iFreeOrder != i || !s_aOps[j].pvAlloc) continue; //RTPrintf("j=%d i=%d free=%d cb=%d pv=%p\n", j, i, RTHeapOffsetGetFreeSize(Heap), s_aOps[j].cb, s_aOps[j].pvAlloc); RTHeapOffsetFree(Heap, s_aOps[j].pvAlloc); s_aOps[j].pvAlloc = NULL; cFreed++; } } RTTESTI_CHECK(cFreed == RT_ELEMENTS(s_aOps)); RTTestIPrintf(RTTESTLVL_ALWAYS, "i=done free=%d\n", RTHeapOffsetGetFreeSize(Heap)); /* check that we're back at the right amount of free memory. */ size_t cbAfter = RTHeapOffsetGetFreeSize(Heap); if (cbBefore != cbAfter) { RTTestIPrintf(RTTESTLVL_ALWAYS, "Warning: Either we've split out an alignment chunk at the start, or we've got\n" " an alloc/free accounting bug: cbBefore=%d cbAfter=%d\n", cbBefore, cbAfter); RTHeapOffsetDump(Heap, (PFNRTHEAPOFFSETPRINTF)(uintptr_t)RTPrintf); } /* relocate and free the bits in heap2 now. */ RTTestSub(hTest, "Relocated Heap"); /* free it in a specific order. */ int cFreed2 = 0; for (i = 0; i < RT_ELEMENTS(s_aOpsCopy); i++) { unsigned j; for (j = 0; j < RT_ELEMENTS(s_aOpsCopy); j++) { if ( s_aOpsCopy[j].iFreeOrder != i || !s_aOpsCopy[j].pvAlloc) continue; //RTPrintf("j=%d i=%d free=%d cb=%d pv=%p\n", j, i, RTHeapOffsetGetFreeSize(hHeapCopy), s_aOpsCopy[j].cb, s_aOpsCopy[j].pvAlloc); RTHeapOffsetFree(hHeapCopy, (uint8_t *)s_aOpsCopy[j].pvAlloc + offDelta); s_aOpsCopy[j].pvAlloc = NULL; cFreed2++; } } RTTESTI_CHECK(cFreed2 == RT_ELEMENTS(s_aOpsCopy)); /* check that we're back at the right amount of free memory. */ size_t cbAfterCopy = RTHeapOffsetGetFreeSize(hHeapCopy); RTTESTI_CHECK_MSG(cbAfterCopy == cbAfter, ("cbAfterCopy=%zu cbAfter=%zu\n", cbAfterCopy, cbAfter)); /* * Use random allocation pattern */ RTTestSub(hTest, "Random Test"); RTTESTI_CHECK_RC(rc = RTHeapOffsetInit(&Heap, &s_abMem[1], sizeof(s_abMem) - 1), VINF_SUCCESS); if (RT_FAILURE(rc)) return RTTestSummaryAndDestroy(hTest); RTRAND hRand; RTTESTI_CHECK_RC(rc = RTRandAdvCreateParkMiller(&hRand), VINF_SUCCESS); if (RT_FAILURE(rc)) return RTTestSummaryAndDestroy(hTest); #if 0 RTRandAdvSeed(hRand, 42); #else RTRandAdvSeed(hRand, RTTimeNanoTS()); #endif static struct { size_t cb; void *pv; } s_aHistory[1536]; RT_ZERO(s_aHistory); for (unsigned iTest = 0; iTest < 131072; iTest++) { i = RTRandAdvU32Ex(hRand, 0, RT_ELEMENTS(s_aHistory) - 1); if (!s_aHistory[i].pv) { uint32_t uAlignment = 1 << RTRandAdvU32Ex(hRand, 0, 7); s_aHistory[i].cb = RTRandAdvU32Ex(hRand, 9, 1024); s_aHistory[i].pv = RTHeapOffsetAlloc(Heap, s_aHistory[i].cb, uAlignment); if (!s_aHistory[i].pv) { s_aHistory[i].cb = 9; s_aHistory[i].pv = RTHeapOffsetAlloc(Heap, s_aHistory[i].cb, 0); } if (s_aHistory[i].pv) memset(s_aHistory[i].pv, 0xbb, s_aHistory[i].cb); } else { RTHeapOffsetFree(Heap, s_aHistory[i].pv); s_aHistory[i].pv = NULL; } if ((iTest % 7777) == 7776) { /* exhaust the heap */ for (i = 0; i < RT_ELEMENTS(s_aHistory) && RTHeapOffsetGetFreeSize(Heap) >= 256; i++) if (!s_aHistory[i].pv) { s_aHistory[i].cb = RTRandAdvU32Ex(hRand, 256, 16384); s_aHistory[i].pv = RTHeapOffsetAlloc(Heap, s_aHistory[i].cb, 0); } for (i = 0; i < RT_ELEMENTS(s_aHistory) && RTHeapOffsetGetFreeSize(Heap); i++) { if (!s_aHistory[i].pv) { s_aHistory[i].cb = 1; s_aHistory[i].pv = RTHeapOffsetAlloc(Heap, s_aHistory[i].cb, 1); } if (s_aHistory[i].pv) memset(s_aHistory[i].pv, 0x55, s_aHistory[i].cb); } RTTESTI_CHECK_MSG(RTHeapOffsetGetFreeSize(Heap) == 0, ("%zu\n", RTHeapOffsetGetFreeSize(Heap))); } else if ((iTest % 7777) == 1111) { /* free all */ for (i = 0; i < RT_ELEMENTS(s_aHistory); i++) { RTHeapOffsetFree(Heap, s_aHistory[i].pv); s_aHistory[i].pv = NULL; } size_t cbAfterRand = RTHeapOffsetGetFreeSize(Heap); RTTESTI_CHECK_MSG(cbAfterRand == cbAfter, ("cbAfterRand=%zu cbAfter=%zu\n", cbAfterRand, cbAfter)); } } /* free the rest. */ for (i = 0; i < RT_ELEMENTS(s_aHistory); i++) { RTHeapOffsetFree(Heap, s_aHistory[i].pv); s_aHistory[i].pv = NULL; } /* check that we're back at the right amount of free memory. */ size_t cbAfterRand = RTHeapOffsetGetFreeSize(Heap); RTTESTI_CHECK_MSG(cbAfterRand == cbAfter, ("cbAfterRand=%zu cbAfter=%zu\n", cbAfterRand, cbAfter)); RTTESTI_CHECK_RC(rc = RTRandAdvDestroy(hRand), VINF_SUCCESS); return RTTestSummaryAndDestroy(hTest); }