/* $Id: tstRTSemEvent.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */ /** @file * IPRT Testcase - Multiple Release Event Semaphores. */ /* * Copyright (C) 2009-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** The test handle. */ static RTTEST g_hTest; /** Use to stop test loops. */ static volatile bool g_fStop = false; /********************************************************************************************************************************* * Benchmark #1: Two thread pinging each other on two event sempahores. * *********************************************************************************************************************************/ /** Pair of event semphores for the first benchmark test. */ static RTSEMEVENT g_ahEvtBench1[2]; static uint64_t g_uTimeoutBench1; static uint64_t g_fWaitBench1; static uint64_t volatile g_cBench1Iterations; static DECLCALLBACK(int) bench1Thread(RTTHREAD hThreadSelf, void *pvUser) { uintptr_t const idxThread = (uintptr_t)pvUser; RT_NOREF(hThreadSelf); uint64_t cIterations = 0; for (;; cIterations++) { int rc = RTSemEventWaitEx(g_ahEvtBench1[idxThread], g_fWaitBench1, g_uTimeoutBench1); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTSemEventSignal(g_ahEvtBench1[(idxThread + 1) & 1]), VINF_SUCCESS); else if ( rc == VERR_TIMEOUT && g_uTimeoutBench1 == 0 && (g_fWaitBench1 & RTSEMWAIT_FLAGS_RELATIVE) ) { /* likely */ } else RTTestFailed(g_hTest, "rc=%Rrc g_fWaitBench1=%#x g_uTimeoutBench1=%#RX64 (now=%#RX64)", rc, g_fWaitBench1, g_uTimeoutBench1, RTTimeSystemNanoTS()); if (g_fStop) { RTTEST_CHECK_RC(g_hTest, RTSemEventSignal(g_ahEvtBench1[(idxThread + 1) & 1]), VINF_SUCCESS); break; } } if (idxThread == 0) g_cBench1Iterations = cIterations; return VINF_SUCCESS; } static void bench1(const char *pszTest, uint32_t fFlags, uint64_t uTimeout) { RTTestISub(pszTest); /* * Create the two threads and make the wait on one another's sempahore. */ g_fStop = false; g_uTimeoutBench1 = uTimeout; g_fWaitBench1 = fFlags; RTTESTI_CHECK_RC_RETV(RTSemEventCreate(&g_ahEvtBench1[0]), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventCreate(&g_ahEvtBench1[1]), VINF_SUCCESS); RTTHREAD hThread1; RTTESTI_CHECK_RC_RETV(RTThreadCreate(&hThread1, bench1Thread, (void *)0, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "bench1t1"), VINF_SUCCESS); RTTHREAD hThread2; RTTESTI_CHECK_RC_RETV(RTThreadCreate(&hThread2, bench1Thread, (void *)1, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "bench1t2"), VINF_SUCCESS); RTThreadSleep(256); /* * Kick off the first thread and wait for 5 seconds before stopping them * and seeing how many iterations they managed to perform. */ uint64_t const nsStart = RTTimeNanoTS(); RTTESTI_CHECK_RC(RTSemEventSignal(g_ahEvtBench1[0]), VINF_SUCCESS); RTThreadSleep(RT_MS_5SEC); ASMAtomicWriteBool(&g_fStop, true); uint64_t const cNsElapsed = RTTimeNanoTS() - nsStart; RTTESTI_CHECK_RC(RTSemEventSignal(g_ahEvtBench1[0]), VINF_SUCCESS); /* paranoia */ RTTESTI_CHECK_RC(RTThreadWait(hThread1, RT_MS_5SEC, NULL), VINF_SUCCESS); RTTESTI_CHECK_RC(RTSemEventSignal(g_ahEvtBench1[1]), VINF_SUCCESS); RTTESTI_CHECK_RC(RTThreadWait(hThread2, RT_MS_5SEC, NULL), VINF_SUCCESS); RTTESTI_CHECK_RC(RTSemEventDestroy(g_ahEvtBench1[0]), VINF_SUCCESS); RTTESTI_CHECK_RC(RTSemEventDestroy(g_ahEvtBench1[1]), VINF_SUCCESS); /* * Report the result. */ uint64_t cIterations = g_cBench1Iterations; RTTestValue(g_hTest, "Throughput", cIterations * RT_NS_1SEC / cNsElapsed, RTTESTUNIT_OCCURRENCES_PER_SEC); RTTestValue(g_hTest, "Roundtrip", cNsElapsed / RT_MAX(cIterations, 1), RTTESTUNIT_NS_PER_OCCURRENCE); } /********************************************************************************************************************************* * Test #1: Simple setup checking wakup order of two waiting thread. * *********************************************************************************************************************************/ static DECLCALLBACK(int) test1Thread(RTTHREAD hThreadSelf, void *pvUser) { RTSEMEVENT hSem = *(PRTSEMEVENT)pvUser; RTTEST_CHECK_RC(g_hTest, RTThreadUserSignal(hThreadSelf), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemEventWait(hSem, RT_INDEFINITE_WAIT), VINF_SUCCESS); return VINF_SUCCESS; } static void test1(void) { RTTestISub("Two threads"); /* * Create the threads and let them block on the event semaphore one * after the other. */ RTSEMEVENT hSem; RTTESTI_CHECK_RC_RETV(RTSemEventCreate(&hSem), VINF_SUCCESS); RTTHREAD hThread1; RTTESTI_CHECK_RC_RETV(RTThreadCreate(&hThread1, test1Thread, &hSem, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "test1t1"), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTThreadUserWait(hThread1, RT_MS_30SEC), VINF_SUCCESS); RTThreadSleep(256); RTTHREAD hThread2; RTTESTI_CHECK_RC_RETV(RTThreadCreate(&hThread2, test1Thread, &hSem, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "test1t2"), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTThreadUserWait(hThread2, RT_MS_30SEC), VINF_SUCCESS); RTThreadSleep(256); #if defined(RT_OS_SOLARIS) /* * The Single UNIX Specification v2 states: "If more than one thread is blocked on a * condition variable, the scheduling policy determines the order in which threads * are unblocked." On Solaris, the default scheduling policy, SCHED_OTHER, does not * specify the order in which multiple threads blocked on a condition variable are * awakened. Thus we can't guarantee which thread will wake up when the condition * variable is signalled so instead of verifying the order of thread wakeup we * simply verify that two signals wake both threads. */ /* Signal twice to wake up both threads */ RTTESTI_CHECK_RC(RTSemEventSignal(hSem), VINF_SUCCESS); RTThreadSleep(256); RTTESTI_CHECK_RC(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC(RTThreadWait(hThread1, 5000, NULL), VINF_SUCCESS); RTTESTI_CHECK_RC(RTThreadWait(hThread2, 5000, NULL), VINF_SUCCESS); #else /* * The Linux sched(7) man page states: "SCHED_OTHER is the standard Linux * time-sharing scheduler ... the thread chosen to run is based on a dynamic * priority that ... is based on the nice value and is increased for each time * quantum the thread is ready to run, but denied to run by the scheduler." This * means that in practice the thread blocked longest on the condition variable will * be awakened first and thus we can verify the ordering below. FreeBSD and macOS * don't seem to document their implementations for this scenario but empirically * they behave similar to Linux. */ /* Signal once, hopefully waking up thread1: */ RTTESTI_CHECK_RC(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC(RTThreadWait(hThread1, 5000, NULL), VINF_SUCCESS); /* Signal once more, hopefully waking up thread2: */ RTTESTI_CHECK_RC(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC(RTThreadWait(hThread2, 5000, NULL), VINF_SUCCESS); #endif RTTESTI_CHECK_RC(RTSemEventDestroy(hSem), VINF_SUCCESS); } /********************************************************************************************************************************* * Basic tests * *********************************************************************************************************************************/ /** * Just do a number of short waits and calculate min, max and average. */ static void resolution(void) { RTTestISub("Timeout resolution"); RTSEMEVENT hSem; RTTESTI_CHECK_RC_RETV(RTSemEventCreate(&hSem), VINF_SUCCESS); uint64_t cNsMin = UINT64_MAX; uint64_t cNsMax = 0; uint64_t cNsTotal = 0; uint32_t cLoops; for (cLoops = 0; cLoops < 256; cLoops++) { uint64_t const nsStart = RTTimeNanoTS(); int rc = RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_RELATIVE | RTSEMWAIT_FLAGS_NANOSECS, RT_NS_1US); uint64_t const cNsElapsed = RTTimeNanoTS() - nsStart; RTTESTI_CHECK_RC(rc, VERR_TIMEOUT); cNsTotal += cNsElapsed; if (cNsElapsed < cNsMin) cNsMin = cNsElapsed; if (cNsElapsed > cNsMax) cNsMax = cNsElapsed; } RTTestIValue("min", cNsMin, RTTESTUNIT_NS); RTTestIValue("max", cNsMax, RTTESTUNIT_NS); RTTestIValue("average", cNsTotal / cLoops, RTTESTUNIT_NS); RTTestIValue("RTSemEventGetResolution", RTSemEventGetResolution(), RTTESTUNIT_NS); RTTESTI_CHECK_RC_RETV(RTSemEventDestroy(hSem), VINF_SUCCESS); } static void testBasicsWaitTimeout(RTSEMEVENT hSem, unsigned i) { RTTESTI_CHECK_RC_RETV(RTSemEventWait(hSem, 0), VERR_TIMEOUT); #if 0 RTTESTI_CHECK_RC_RETV(RTSemEventWaitNoResume(hSem, 0), VERR_TIMEOUT); #else RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_RELATIVE, 0), VERR_TIMEOUT); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeSystemNanoTS() + 1000*i), VERR_TIMEOUT); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeNanoTS() + 1000*i), VERR_TIMEOUT); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_RELATIVE, 0), VERR_TIMEOUT); #endif } static void testBasics(void) { RTTestISub("Basics"); RTSEMEVENT hSem; RTTESTI_CHECK_RC_RETV(RTSemEventCreate(&hSem), VINF_SUCCESS); /* The semaphore is created in a non-signalled state. */ testBasicsWaitTimeout(hSem, 0); testBasicsWaitTimeout(hSem, 1); if (RTTestIErrorCount()) return; /* When signalling the semaphore, only the next waiter call shall success, all subsequent ones should timeout as above. */ RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWait(hSem, 0), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 0); if (RTTestIErrorCount()) return; RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWait(hSem, 2), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 2); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWait(hSem, RT_INDEFINITE_WAIT), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); if (RTTestIErrorCount()) return; /* Now do all the event wait ex variations: */ RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_RELATIVE, 0), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeSystemNanoTS() + RT_NS_1US), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeNanoTS() + RT_NS_1US), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 0); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeNanoTS() + RT_NS_1HOUR), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 0); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, 0), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, _1G), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, UINT64_MAX), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 10); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeSystemMilliTS() + RT_MS_1SEC), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeMilliTS() + RT_MS_1SEC), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, 0), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 0); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, _1M), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventWaitEx(hSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_ABSOLUTE, UINT64_MAX), VINF_SUCCESS); testBasicsWaitTimeout(hSem, 1); /* Destroy it. */ RTTESTI_CHECK_RC_RETV(RTSemEventDestroy(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventDestroy(NIL_RTSEMEVENT), VINF_SUCCESS); /* Whether it is signalled or not used shouldn't matter. */ RTTESTI_CHECK_RC_RETV(RTSemEventCreate(&hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventSignal(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventDestroy(hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventCreate(&hSem), VINF_SUCCESS); RTTESTI_CHECK_RC_RETV(RTSemEventDestroy(hSem), VINF_SUCCESS); RTTestISubDone(); } int main(int argc, char **argv) { RT_NOREF_PV(argc); RT_NOREF_PV(argv); RTEXITCODE rcExit = RTTestInitAndCreate("tstRTSemEvent", &g_hTest); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; testBasics(); if (!RTTestErrorCount(g_hTest)) { test1(); resolution(); } if (!RTTestErrorCount(g_hTest)) { bench1("Benchmark: Ping Pong, spin", RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_MILLISECS | RTSEMWAIT_FLAGS_RELATIVE, 0); bench1("Benchmark: Ping Pong, indefinite", RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0); bench1("Benchmark: Ping Pong, absolute", RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE, RTTimeSystemNanoTS() + RT_NS_1HOUR); bench1("Benchmark: Ping Pong, relative", RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_RELATIVE, RT_NS_1HOUR); bench1("Benchmark: Ping Pong, relative, resume", RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_RELATIVE, RT_NS_1HOUR); } return RTTestSummaryAndDestroy(g_hTest); }