/* $Id: tstRTSemRW.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */ /** @file * IPRT Testcase - Reader/Writer Semaphore. */ /* * Copyright (C) 2009-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ static RTTEST g_hTest; static RTSEMRW g_hSemRW = NIL_RTSEMRW; static bool volatile g_fTerminate; static bool g_fYield; static bool g_fQuiet; static unsigned g_uWritePercent; static uint32_t volatile g_cConcurrentWriters; static uint32_t volatile g_cConcurrentReaders; static DECLCALLBACK(int) Test4Thread(RTTHREAD ThreadSelf, void *pvUser) { /* Use randomization to get a little more variation of the sync pattern. We use a pseudo random generator here so that we don't end up testing the speed of the /dev/urandom implementation, but rather the read-write semaphores. */ int rc; RTRAND hRand; RTTEST_CHECK_RC_OK_RET(g_hTest, rc = RTRandAdvCreateParkMiller(&hRand), rc); RTTEST_CHECK_RC_OK_RET(g_hTest, rc = RTRandAdvSeed(hRand, (uintptr_t)ThreadSelf), rc); unsigned c100 = RTRandAdvU32Ex(hRand, 0, 99); uint64_t *pcItr = (uint64_t *)pvUser; bool fWrite; for (;;) { unsigned readrec = RTRandAdvU32Ex(hRand, 0, 3); unsigned writerec = RTRandAdvU32Ex(hRand, 0, 3); /* Don't overdo recursion testing. */ if (readrec > 1) readrec--; if (writerec > 1) writerec--; fWrite = (c100 < g_uWritePercent); if (fWrite) { for (unsigned i = 0; i <= writerec; i++) { rc = RTSemRWRequestWriteNoResume(g_hSemRW, RT_INDEFINITE_WAIT); if (RT_FAILURE(rc)) { RTTestFailed(g_hTest, "Write recursion %u on %s failed with rc=%Rrc", i, RTThreadSelfName(), rc); break; } } if (RT_FAILURE(rc)) break; if (ASMAtomicIncU32(&g_cConcurrentWriters) != 1) { RTTestFailed(g_hTest, "g_cConcurrentWriters=%u on %s after write locking it", g_cConcurrentWriters, RTThreadSelfName()); break; } if (g_cConcurrentReaders != 0) { RTTestFailed(g_hTest, "g_cConcurrentReaders=%u on %s after write locking it", g_cConcurrentReaders, RTThreadSelfName()); break; } } else { rc = RTSemRWRequestReadNoResume(g_hSemRW, RT_INDEFINITE_WAIT); if (RT_FAILURE(rc)) { RTTestFailed(g_hTest, "Read locking on %s failed with rc=%Rrc", RTThreadSelfName(), rc); break; } ASMAtomicIncU32(&g_cConcurrentReaders); if (g_cConcurrentWriters != 0) { RTTestFailed(g_hTest, "g_cConcurrentWriters=%u on %s after read locking it", g_cConcurrentWriters, RTThreadSelfName()); break; } } for (unsigned i = 0; i < readrec; i++) { rc = RTSemRWRequestReadNoResume(g_hSemRW, RT_INDEFINITE_WAIT); if (RT_FAILURE(rc)) { RTTestFailed(g_hTest, "Read recursion %u on %s failed with rc=%Rrc", i, RTThreadSelfName(), rc); break; } } if (RT_FAILURE(rc)) break; /* * Check for fairness: The values of the threads should not differ too much */ (*pcItr)++; /* * Check for correctness: Give other threads a chance. If the implementation is * correct, no other thread will be able to enter this lock now. */ if (g_fYield) RTThreadYield(); for (unsigned i = 0; i < readrec; i++) { rc = RTSemRWReleaseRead(g_hSemRW); if (RT_FAILURE(rc)) { RTTestFailed(g_hTest, "Read release %u on %s failed with rc=%Rrc", i, RTThreadSelfName(), rc); break; } } if (RT_FAILURE(rc)) break; if (fWrite) { if (ASMAtomicDecU32(&g_cConcurrentWriters) != 0) { RTTestFailed(g_hTest, "g_cConcurrentWriters=%u on %s before write release", g_cConcurrentWriters, RTThreadSelfName()); break; } if (g_cConcurrentReaders != 0) { RTTestFailed(g_hTest, "g_cConcurrentReaders=%u on %s before write release", g_cConcurrentReaders, RTThreadSelfName()); break; } for (unsigned i = 0; i <= writerec; i++) { rc = RTSemRWReleaseWrite(g_hSemRW); if (RT_FAILURE(rc)) { RTTestFailed(g_hTest, "Write release %u on %s failed with rc=%Rrc", i, RTThreadSelfName(), rc); break; } } } else { if (g_cConcurrentWriters != 0) { RTTestFailed(g_hTest, "g_cConcurrentWriters=%u on %s before read release", g_cConcurrentWriters, RTThreadSelfName()); break; } ASMAtomicDecU32(&g_cConcurrentReaders); rc = RTSemRWReleaseRead(g_hSemRW); if (RT_FAILURE(rc)) { RTTestFailed(g_hTest, "Read release on %s failed with rc=%Rrc", RTThreadSelfName(), rc); break; } } if (g_fTerminate) break; c100++; c100 %= 100; } if (!g_fQuiet) RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "Thread %s exited with %lld\n", RTThreadSelfName(), *pcItr); RTRandAdvDestroy(hRand); return VINF_SUCCESS; } static void Test4(unsigned cThreads, unsigned cSeconds, unsigned uWritePercent, bool fYield, bool fQuiet) { unsigned i; uint64_t acIterations[32]; RTTHREAD aThreads[RT_ELEMENTS(acIterations)]; AssertRelease(cThreads <= RT_ELEMENTS(acIterations)); RTTestSubF(g_hTest, "Test4 - %u threads, %u sec, %u%% writes, %syielding", cThreads, cSeconds, uWritePercent, fYield ? "" : "non-"); /* * Init globals. */ g_fYield = fYield; g_fQuiet = fQuiet; g_fTerminate = false; g_uWritePercent = uWritePercent; g_cConcurrentWriters = 0; g_cConcurrentReaders = 0; RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreate(&g_hSemRW), VINF_SUCCESS); /* * Create the threads and let them block on the semrw. */ RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWRequestWrite(g_hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS); for (i = 0; i < cThreads; i++) { acIterations[i] = 0; RTTEST_CHECK_RC_RETV(g_hTest, RTThreadCreateF(&aThreads[i], Test4Thread, &acIterations[i], 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "test-%u", i), VINF_SUCCESS); } /* * Do the test run. */ uint32_t cErrorsBefore = RTTestErrorCount(g_hTest); uint64_t u64StartTS = RTTimeNanoTS(); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_hSemRW), VINF_SUCCESS); RTThreadSleep(cSeconds * 1000); ASMAtomicWriteBool(&g_fTerminate, true); uint64_t ElapsedNS = RTTimeNanoTS() - u64StartTS; /* * Clean up the threads and semaphore. */ for (i = 0; i < cThreads; i++) RTTEST_CHECK_RC(g_hTest, RTThreadWait(aThreads[i], 5000, NULL), VINF_SUCCESS); RTTEST_CHECK_MSG(g_hTest, g_cConcurrentWriters == 0, (g_hTest, "g_cConcurrentWriters=%u at end of test\n", g_cConcurrentWriters)); RTTEST_CHECK_MSG(g_hTest, g_cConcurrentReaders == 0, (g_hTest, "g_cConcurrentReaders=%u at end of test\n", g_cConcurrentReaders)); RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(g_hSemRW), VINF_SUCCESS); g_hSemRW = NIL_RTSEMRW; if (RTTestErrorCount(g_hTest) != cErrorsBefore) RTThreadSleep(100); /* * Collect and display the results. */ uint64_t cItrTotal = acIterations[0]; for (i = 1; i < cThreads; i++) cItrTotal += acIterations[i]; uint64_t cItrNormal = cItrTotal / cThreads; uint64_t cItrMinOK = cItrNormal / 20; /* 5% */ uint64_t cItrMaxDeviation = 0; for (i = 0; i < cThreads; i++) { uint64_t cItrDelta = RT_ABS((int64_t)(acIterations[i] - cItrNormal)); if (acIterations[i] < cItrMinOK) RTTestFailed(g_hTest, "Thread %u did less than 5%% of the iterations - %llu (it) vs. %llu (5%%) - %llu%%\n", i, acIterations[i], cItrMinOK, cItrDelta * 100 / cItrNormal); else if (cItrDelta > cItrNormal / 2) RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "Warning! Thread %u deviates by more than 50%% - %llu (it) vs. %llu (avg) - %llu%%\n", i, acIterations[i], cItrNormal, cItrDelta * 100 / cItrNormal); if (cItrDelta > cItrMaxDeviation) cItrMaxDeviation = cItrDelta; } //RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, // "Threads: %u Total: %llu Per Sec: %llu Avg: %llu ns Max dev: %llu%%\n", // cThreads, // cItrTotal, // cItrTotal / cSeconds, // ElapsedNS / cItrTotal, // cItrMaxDeviation * 100 / cItrNormal // ); // RTTestValue(g_hTest, "Thruput", cItrTotal * UINT32_C(1000000000) / ElapsedNS, RTTESTUNIT_CALLS_PER_SEC); RTTestValue(g_hTest, "Max diviation", cItrMaxDeviation * 100 / cItrNormal, RTTESTUNIT_PCT); } static DECLCALLBACK(int) Test2Thread(RTTHREAD hThreadSelf, void *pvUser) { RTSEMRW hSemRW = (RTSEMRW)pvUser; RT_NOREF_PV(hThreadSelf); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead(hSemRW, 0), VERR_TIMEOUT); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(hSemRW, 0), VERR_TIMEOUT); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead(hSemRW, 1), VERR_TIMEOUT); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(hSemRW, 1), VERR_TIMEOUT); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead(hSemRW, 50), VERR_TIMEOUT); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(hSemRW, 50), VERR_TIMEOUT); return VINF_SUCCESS; } static void Test3(void) { RTTestSub(g_hTest, "Negative"); bool fSavedAssertQuiet = RTAssertSetQuiet(true); bool fSavedAssertMayPanic = RTAssertSetMayPanic(false); bool fSavedLckValEnabled = RTLockValidatorSetEnabled(false); RTSEMRW hSemRW; RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreate(&hSemRW), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hSemRW), VERR_NOT_OWNER); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hSemRW), VERR_NOT_OWNER); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hSemRW), VERR_NOT_OWNER); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hSemRW), VERR_WRONG_ORDER); /* cannot release the final write before the reads. */ RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(hSemRW), VINF_SUCCESS); RTLockValidatorSetEnabled(fSavedLckValEnabled); RTAssertSetMayPanic(fSavedAssertMayPanic); RTAssertSetQuiet(fSavedAssertQuiet); } static void Test2(void) { RTTestSub(g_hTest, "Timeout"); RTSEMRW hSemRW = NIL_RTSEMRW; RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreate(&hSemRW), VINF_SUCCESS); /* Lock it for writing and let the thread do the remainder of the test. */ RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWRequestWrite(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTHREAD hThread; RTTEST_CHECK_RC_RETV(g_hTest, RTThreadCreate(&hThread, Test2Thread, hSemRW, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "test2"), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTThreadWait(hThread, 15000, NULL), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(hSemRW), VINF_SUCCESS); } static bool Test1(void) { RTTestSub(g_hTest, "Basics"); RTSEMRW hSemRW = NIL_RTSEMRW; RTTEST_CHECK_RC_RET(g_hTest, RTSemRWCreate(&hSemRW), VINF_SUCCESS, false); RTTEST_CHECK_RET(g_hTest, hSemRW != NIL_RTSEMRW, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false); for (unsigned cMs = 0; cMs < 50; cMs++) { RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, cMs), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, cMs), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false); } RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false); for (unsigned cMs = 0; cMs < 50; cMs++) { RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, cMs), VINF_SUCCESS, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 1, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false); RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, cMs), VINF_SUCCESS, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 2, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false); RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, cMs), VINF_SUCCESS, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 2, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 1, false); RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, cMs), VINF_SUCCESS, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 3, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 1, false); RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false); /* midway */ RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 2, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 1, false); RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 2, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false); RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 1, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false); RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 0, false); RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false); RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == false, false); } RTTEST_CHECK_RC_RET(g_hTest, RTSemRWDestroy(hSemRW), VINF_SUCCESS, false); RTTEST_CHECK_RC_RET(g_hTest, RTSemRWDestroy(NIL_RTSEMRW), VINF_SUCCESS, false); return true; } int main(int argc, char **argv) { RT_NOREF_PV(argv); int rc = RTTestInitAndCreate("tstRTSemRW", &g_hTest); if (rc) return 1; RTTestBanner(g_hTest); if (Test1()) { RTCPUID cCores = RTMpGetOnlineCoreCount(); if (argc == 1) { Test2(); Test3(); /* threads, seconds, writePercent, yield, quiet */ Test4( 1, 1, 0, true, false); Test4( 1, 1, 1, true, false); Test4( 1, 1, 5, true, false); Test4( 2, 1, 3, true, false); Test4( 10, 1, 5, true, false); Test4( 10, 10, 10, false, false); if (cCores > 1) { RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "benchmarking (%u CPU cores)...\n", cCores); for (unsigned cThreads = 1; cThreads < 32; cThreads++) Test4(cThreads, 2, 1, false, true); } else RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "skipping benchmarking (only %u CPU core available)\n", cCores); /** @todo add a testcase where some stuff times out. */ } else { if (cCores > 1) { /* threads, seconds, writePercent, yield, quiet */ RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "benchmarking...\n"); Test4( 1, 3, 1, false, true); Test4( 1, 3, 1, false, true); Test4( 1, 3, 1, false, true); Test4( 2, 3, 1, false, true); Test4( 2, 3, 1, false, true); Test4( 2, 3, 1, false, true); Test4( 3, 3, 1, false, true); Test4( 3, 3, 1, false, true); Test4( 3, 3, 1, false, true); } else RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "skipping benchmarking (only %u CPU core available)\n", cCores); } } return RTTestSummaryAndDestroy(g_hTest); }