/* $Id: tstTimerLR.cpp 44528 2013-02-04 14:27:54Z vboxsync $ */ /** @file * IPRT Testcase - Low Resolution Timers. */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include #include #include #include #include #include #include /******************************************************************************* * Global Variables * *******************************************************************************/ static volatile unsigned gcTicks; static volatile uint64_t gu64Min; static volatile uint64_t gu64Max; static volatile uint64_t gu64Prev; static DECLCALLBACK(void) TimerLRCallback(RTTIMERLR hTimerLR, void *pvUser, uint64_t iTick) { gcTicks++; const uint64_t u64Now = RTTimeNanoTS(); if (gu64Prev) { const uint64_t u64Delta = u64Now - gu64Prev; if (u64Delta < gu64Min) gu64Min = u64Delta; if (u64Delta > gu64Max) gu64Max = u64Delta; } gu64Prev = u64Now; } int main() { /* * Init runtime */ unsigned cErrors = 0; int rc = RTR3InitExeNoArguments(0); if (RT_FAILURE(rc)) return RTMsgInitFailure(rc); /* * Check that the clock is reliable. */ RTPrintf("tstTimer: TESTING - RTTimeNanoTS() for 2sec\n"); uint64_t uTSMillies = RTTimeMilliTS(); uint64_t uTSBegin = RTTimeNanoTS(); uint64_t uTSLast = uTSBegin; uint64_t uTSDiff; uint64_t cIterations = 0; do { uint64_t uTS = RTTimeNanoTS(); if (uTS < uTSLast) { RTPrintf("tstTimer: FAILURE - RTTimeNanoTS() is unreliable. uTS=%RU64 uTSLast=%RU64\n", uTS, uTSLast); cErrors++; } if (++cIterations > (2*1000*1000*1000)) { RTPrintf("tstTimer: FAILURE - RTTimeNanoTS() is unreliable. cIterations=%RU64 uTS=%RU64 uTSBegin=%RU64\n", cIterations, uTS, uTSBegin); return 1; } uTSLast = uTS; uTSDiff = uTSLast - uTSBegin; } while (uTSDiff < (2*1000*1000*1000)); uTSMillies = RTTimeMilliTS() - uTSMillies; if (uTSMillies >= 2500 || uTSMillies <= 1500) { RTPrintf("tstTimer: FAILURE - uTSMillies=%RI64 uTSBegin=%RU64 uTSLast=%RU64 uTSDiff=%RU64\n", uTSMillies, uTSBegin, uTSLast, uTSDiff); cErrors++; } if (!cErrors) RTPrintf("tstTimer: OK - RTTimeNanoTS()\n"); /* * Tests. */ static struct { unsigned uMilliesInterval; unsigned uMilliesWait; unsigned cLower; unsigned cUpper; } aTests[] = { { 1000, 2500, 3, 3 }, /* (keep in mind the immediate first tick) */ { 250, 2000, 6, 10 }, { 100, 2000, 17, 23 }, }; unsigned i = 0; for (i = 0; i < RT_ELEMENTS(aTests); i++) { //aTests[i].cLower = (aTests[i].uMilliesWait - aTests[i].uMilliesWait / 10) / aTests[i].uMilliesInterval; //aTests[i].cUpper = (aTests[i].uMilliesWait + aTests[i].uMilliesWait / 10) / aTests[i].uMilliesInterval; RTPrintf("\n" "tstTimer: TESTING - %d ms interval, %d ms wait, expects %d-%d ticks.\n", aTests[i].uMilliesInterval, aTests[i].uMilliesWait, aTests[i].cLower, aTests[i].cUpper); /* * Start timer which ticks every 10ms. */ gcTicks = 0; RTTIMERLR hTimerLR; gu64Max = 0; gu64Min = UINT64_MAX; gu64Prev = 0; rc = RTTimerLRCreateEx(&hTimerLR, aTests[i].uMilliesInterval * (uint64_t)1000000, 0, TimerLRCallback, NULL); if (RT_FAILURE(rc)) { RTPrintf("RTTimerLRCreateEX(,%u*1M,,,) -> %d\n", aTests[i].uMilliesInterval, rc); cErrors++; continue; } /* * Start the timer an actively wait for it for the period requested. */ uTSBegin = RTTimeNanoTS(); rc = RTTimerLRStart(hTimerLR, 0); if (RT_FAILURE(rc)) { RTPrintf("tstTimer: FAILURE - RTTimerLRStart() -> %Rrc\n", rc); cErrors++; } while (RTTimeNanoTS() - uTSBegin < (uint64_t)aTests[i].uMilliesWait * 1000000) /* nothing */; /* don't stop it, destroy it because there are potential races in destroying an active timer. */ rc = RTTimerLRDestroy(hTimerLR); if (RT_FAILURE(rc)) { RTPrintf("tstTimer: FAILURE - RTTimerLRDestroy() -> %d gcTicks=%d\n", rc, gcTicks); cErrors++; } uint64_t uTSEnd = RTTimeNanoTS(); uTSDiff = uTSEnd - uTSBegin; RTPrintf("uTS=%RI64 (%RU64 - %RU64)\n", uTSDiff, uTSBegin, uTSEnd); /* Check that it really stopped. */ unsigned cTicks = gcTicks; RTThreadSleep(aTests[i].uMilliesInterval * 2); if (gcTicks != cTicks) { RTPrintf("tstTimer: FAILURE - RTTimerLRDestroy() didn't really stop the timer! gcTicks=%d cTicks=%d\n", gcTicks, cTicks); cErrors++; continue; } /* * Check the number of ticks. */ if (gcTicks < aTests[i].cLower) { RTPrintf("tstTimer: FAILURE - Too few ticks gcTicks=%d (expected %d-%d)", gcTicks, aTests[i].cUpper, aTests[i].cLower); cErrors++; } else if (gcTicks > aTests[i].cUpper) { RTPrintf("tstTimer: FAILURE - Too many ticks gcTicks=%d (expected %d-%d)", gcTicks, aTests[i].cUpper, aTests[i].cLower); cErrors++; } else RTPrintf("tstTimer: OK - gcTicks=%d", gcTicks); RTPrintf(" min=%RU64 max=%RU64\n", gu64Min, gu64Max); } /* * Test changing the interval dynamically */ RTPrintf("\n" "tstTimer: Testing dynamic changes of timer interval...\n"); do { RTTIMERLR hTimerLR; rc = RTTimerLRCreateEx(&hTimerLR, aTests[0].uMilliesInterval * (uint64_t)1000000, 0, TimerLRCallback, NULL); if (RT_FAILURE(rc)) { RTPrintf("RTTimerLRCreateEX(,%u*1M,,,) -> %d\n", aTests[0].uMilliesInterval, rc); cErrors++; continue; } for (i = 0; i < RT_ELEMENTS(aTests); i++) { RTPrintf("\n" "tstTimer: TESTING - %d ms interval, %d ms wait, expects %d-%d ticks.\n", aTests[i].uMilliesInterval, aTests[i].uMilliesWait, aTests[i].cLower, aTests[i].cUpper); gcTicks = 0; gu64Max = 0; gu64Min = UINT64_MAX; gu64Prev = 0; /* * Start the timer an actively wait for it for the period requested. */ uTSBegin = RTTimeNanoTS(); if (i == 0) { rc = RTTimerLRStart(hTimerLR, 0); if (RT_FAILURE(rc)) { RTPrintf("tstTimer: FAILURE - RTTimerLRStart() -> %Rrc\n", rc); cErrors++; } } else { rc = RTTimerLRChangeInterval(hTimerLR, aTests[i].uMilliesInterval * (uint64_t)1000000); if (RT_FAILURE(rc)) { RTPrintf("tstTimer: FAILURE - RTTimerLRChangeInterval() -> %d gcTicks=%d\n", rc, gcTicks); cErrors++; } } while (RTTimeNanoTS() - uTSBegin < (uint64_t)aTests[i].uMilliesWait * 1000000) /* nothing */; uint64_t uTSEnd = RTTimeNanoTS(); uTSDiff = uTSEnd - uTSBegin; RTPrintf("uTS=%RI64 (%RU64 - %RU64)\n", uTSDiff, uTSBegin, uTSEnd); /* * Check the number of ticks. */ if (gcTicks < aTests[i].cLower) { RTPrintf("tstTimer: FAILURE - Too few ticks gcTicks=%d (expected %d-%d)\n", gcTicks, aTests[i].cUpper, aTests[i].cLower); cErrors++; } else if (gcTicks > aTests[i].cUpper) { RTPrintf("tstTimer: FAILURE - Too many ticks gcTicks=%d (expected %d-%d)\n", gcTicks, aTests[i].cUpper, aTests[i].cLower); cErrors++; } else RTPrintf("tstTimer: OK - gcTicks=%d\n", gcTicks); // RTPrintf(" min=%RU64 max=%RU64\n", gu64Min, gu64Max); } /* don't stop it, destroy it because there are potential races in destroying an active timer. */ rc = RTTimerLRDestroy(hTimerLR); if (RT_FAILURE(rc)) { RTPrintf("tstTimer: FAILURE - RTTimerLRDestroy() -> %d gcTicks=%d\n", rc, gcTicks); cErrors++; } } while (0); /* * Test multiple timers running at once. */ /** @todo multiple LR timer testcase. */ /* * Summary. */ if (!cErrors) RTPrintf("tstTimer: SUCCESS\n"); else RTPrintf("tstTimer: FAILURE %d errors\n", cErrors); return !!cErrors; }