1 | /* $Id: thread.cpp 1766 2007-03-28 12:51:24Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * InnoTek Portable Runtime - Threads, common routines.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006 InnoTek Systemberatung GmbH
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License as published by the Free Software Foundation,
|
---|
13 | * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
|
---|
14 | * distribution. VirtualBox OSE is distributed in the hope that it will
|
---|
15 | * be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * If you received this file as part of a commercial VirtualBox
|
---|
18 | * distribution, then only the terms of your commercial VirtualBox
|
---|
19 | * license agreement apply instead of the previous paragraph.
|
---|
20 | */
|
---|
21 |
|
---|
22 |
|
---|
23 |
|
---|
24 | /*******************************************************************************
|
---|
25 | * Header Files *
|
---|
26 | *******************************************************************************/
|
---|
27 | #define LOG_GROUP RTLOGGROUP_THREAD
|
---|
28 | #include <iprt/thread.h>
|
---|
29 | #include <iprt/log.h>
|
---|
30 | #include <iprt/avl.h>
|
---|
31 | #include <iprt/alloc.h>
|
---|
32 | #include <iprt/assert.h>
|
---|
33 | #include <iprt/semaphore.h>
|
---|
34 | #ifdef IN_RING0
|
---|
35 | # include <iprt/spinlock.h>
|
---|
36 | #endif
|
---|
37 | #include <iprt/asm.h>
|
---|
38 | #include <iprt/err.h>
|
---|
39 | #include <iprt/string.h>
|
---|
40 | #include "internal/thread.h"
|
---|
41 | #include "internal/sched.h"
|
---|
42 | #include "internal/process.h"
|
---|
43 |
|
---|
44 |
|
---|
45 | /*******************************************************************************
|
---|
46 | * Defined Constants And Macros *
|
---|
47 | *******************************************************************************/
|
---|
48 | #ifdef IN_RING0
|
---|
49 | # define RT_THREAD_LOCK_TMP(Tmp) RTSPINLOCKTMP Tmp = RTSPINLOCKTMP_INITIALIZER
|
---|
50 | # define RT_THREAD_LOCK_RW(Tmp) RTSpinlockAcquireNoInts(g_ThreadSpinlock, &(Tmp))
|
---|
51 | # define RT_THREAD_UNLOCK_RW(Tmp) RTSpinlockReleaseNoInts(g_ThreadSpinlock, &(Tmp))
|
---|
52 | # define RT_THREAD_LOCK_RD(Tmp) RTSpinlockAcquireNoInts(g_ThreadSpinlock, &(Tmp))
|
---|
53 | # define RT_THREAD_UNLOCK_RD(Tmp) RTSpinlockReleaseNoInts(g_ThreadSpinlock, &(Tmp))
|
---|
54 | #else
|
---|
55 | # define RT_THREAD_LOCK_TMP(Tmp)
|
---|
56 | # define RT_THREAD_LOCK_RW(Tmp) rtThreadLockRW()
|
---|
57 | # define RT_THREAD_UNLOCK_RW(Tmp) rtThreadUnLockRW()
|
---|
58 | # define RT_THREAD_LOCK_RD(Tmp) rtThreadLockRD()
|
---|
59 | # define RT_THREAD_UNLOCK_RD(Tmp) rtThreadUnLockRD()
|
---|
60 | #endif
|
---|
61 |
|
---|
62 |
|
---|
63 | /*******************************************************************************
|
---|
64 | * Global Variables *
|
---|
65 | *******************************************************************************/
|
---|
66 | /** The AVL thread containing the threads. */
|
---|
67 | static PAVLPVNODECORE g_ThreadTree;
|
---|
68 | #ifdef IN_RING3
|
---|
69 | /** The RW lock protecting the tree. */
|
---|
70 | static RTSEMRW g_ThreadRWSem = NIL_RTSEMRW;
|
---|
71 | #else
|
---|
72 | /** The spinlocks protecting the tree. */
|
---|
73 | static RTSPINLOCK g_ThreadSpinlock = NIL_RTSPINLOCK;
|
---|
74 | #endif
|
---|
75 |
|
---|
76 |
|
---|
77 | /*******************************************************************************
|
---|
78 | * Internal Functions *
|
---|
79 | *******************************************************************************/
|
---|
80 | static void rtThreadDestroy(PRTTHREADINT pThread);
|
---|
81 | static int rtThreadAdopt(RTTHREADTYPE enmType, unsigned fFlags, const char *pszName);
|
---|
82 | static void rtThreadRemoveLocked(PRTTHREADINT pThread);
|
---|
83 | static PRTTHREADINT rtThreadAlloc(RTTHREADTYPE enmType, unsigned fFlags, unsigned fIntFlags, const char *pszName);
|
---|
84 |
|
---|
85 |
|
---|
86 | /** @page pg_rt_thread IPRT Thread Internals
|
---|
87 | *
|
---|
88 | * IPRT provides interface to whatever native threading that the host provides,
|
---|
89 | * preferably using a CRT level interface to better integrate with other libraries.
|
---|
90 | *
|
---|
91 | * Internally IPRT keeps track of threads by means of the RTTHREADINT structure.
|
---|
92 | * All the RTTHREADINT structures are kept in a AVL tree which is protected by a
|
---|
93 | * read/write lock for efficient access. A thread is inserted into the tree in
|
---|
94 | * three places in the code. The main thread is 'adopted' by IPRT on RTR3Init()
|
---|
95 | * by rtThreadAdopt(). When creating a new thread there the child and the parent
|
---|
96 | * race inserting the thread, this is rtThreadMain() and RTThreadCreate.
|
---|
97 | *
|
---|
98 | * RTTHREADINT objects are using reference counting as a mean of sticking around
|
---|
99 | * till no-one needs them any longer. Waitable threads is created with one extra
|
---|
100 | * reference so they won't go away until they are waited on. This introduces a
|
---|
101 | * major problem if we use the host thread identifier as key in the AVL tree - the
|
---|
102 | * host may reuse the thread identifier before the thread was waited on. So, on
|
---|
103 | * most platforms we are using the RTTHREADINT pointer as key and not the
|
---|
104 | * thread id. RTThreadSelf() then have to be implemented using a pointer stored
|
---|
105 | * in thread local storage (TLS).
|
---|
106 | *
|
---|
107 | * In Ring-0 we only try keep track of kernel threads created by RTCreateThread
|
---|
108 | * at the moment. There we really only need the 'join' feature, but doing things
|
---|
109 | * the same way allow us to name threads and similar stuff.
|
---|
110 | */
|
---|
111 |
|
---|
112 |
|
---|
113 | /**
|
---|
114 | * Initializes the thread database.
|
---|
115 | *
|
---|
116 | * @returns iprt status code.
|
---|
117 | */
|
---|
118 | int rtThreadInit(void)
|
---|
119 | {
|
---|
120 | #ifdef IN_RING3
|
---|
121 | int rc = VINF_ALREADY_INITIALIZED;
|
---|
122 | if (g_ThreadRWSem == NIL_RTSEMRW)
|
---|
123 | {
|
---|
124 | /*
|
---|
125 | * We assume the caller is the 1st thread, which we'll call 'main'.
|
---|
126 | * But first, we'll create the semaphore.
|
---|
127 | */
|
---|
128 | int rc = RTSemRWCreate(&g_ThreadRWSem);
|
---|
129 | if (RT_SUCCESS(rc))
|
---|
130 | {
|
---|
131 | rc = rtThreadNativeInit();
|
---|
132 | #ifdef IN_RING3
|
---|
133 | if (RT_SUCCESS(rc))
|
---|
134 | rc = rtThreadAdopt(RTTHREADTYPE_DEFAULT, 0, "main");
|
---|
135 | if (RT_SUCCESS(rc))
|
---|
136 | rc = rtSchedNativeCalcDefaultPriority(RTTHREADTYPE_DEFAULT);
|
---|
137 | #endif
|
---|
138 | if (RT_SUCCESS(rc))
|
---|
139 | return VINF_SUCCESS;
|
---|
140 |
|
---|
141 | /* failed, clear out */
|
---|
142 | RTSemRWDestroy(g_ThreadRWSem);
|
---|
143 | g_ThreadRWSem = NIL_RTSEMRW;
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | #elif defined(IN_RING0)
|
---|
148 |
|
---|
149 | /*
|
---|
150 | * Create the spinlock and to native init.
|
---|
151 | */
|
---|
152 | Assert(g_ThreadSpinlock == NIL_RTSPINLOCK);
|
---|
153 | int rc = RTSpinlockCreate(&g_ThreadSpinlock);
|
---|
154 | if (RT_SUCCESS(rc))
|
---|
155 | {
|
---|
156 | rc = rtThreadNativeInit();
|
---|
157 | if (RT_SUCCESS(rc))
|
---|
158 | return VINF_SUCCESS;
|
---|
159 |
|
---|
160 | /* failed, clear out */
|
---|
161 | RTSpinlockDestroy(g_ThreadSpinlock);
|
---|
162 | g_ThreadSpinlock = NIL_RTSPINLOCK;
|
---|
163 | }
|
---|
164 | #else
|
---|
165 | # error "!IN_RING0 && !IN_RING3"
|
---|
166 | #endif
|
---|
167 | return rc;
|
---|
168 | }
|
---|
169 |
|
---|
170 |
|
---|
171 | /**
|
---|
172 | * Terminates the thread database.
|
---|
173 | */
|
---|
174 | void rtThreadTerm(void)
|
---|
175 | {
|
---|
176 | #ifdef IN_RING3
|
---|
177 | /* we don't cleanup here yet */
|
---|
178 |
|
---|
179 | #elif defined(IN_RING0)
|
---|
180 | /* just destroy the spinlock and assume the thread is fine... */
|
---|
181 | RTSpinlockDestroy(g_ThreadSpinlock);
|
---|
182 | g_ThreadSpinlock = NIL_RTSPINLOCK;
|
---|
183 | if (g_ThreadTree != NULL)
|
---|
184 | AssertMsg2("WARNING: g_ThreadTree=%p\n", g_ThreadTree);
|
---|
185 | #endif
|
---|
186 | }
|
---|
187 |
|
---|
188 |
|
---|
189 |
|
---|
190 | #ifdef IN_RING3
|
---|
191 |
|
---|
192 | inline void rtThreadLockRW(void)
|
---|
193 | {
|
---|
194 | if (g_ThreadRWSem == NIL_RTSEMRW)
|
---|
195 | rtThreadInit();
|
---|
196 | int rc = RTSemRWRequestWrite(g_ThreadRWSem, RT_INDEFINITE_WAIT);
|
---|
197 | AssertReleaseRC(rc);
|
---|
198 | }
|
---|
199 |
|
---|
200 |
|
---|
201 | inline void rtThreadLockRD(void)
|
---|
202 | {
|
---|
203 | if (g_ThreadRWSem == NIL_RTSEMRW)
|
---|
204 | rtThreadInit();
|
---|
205 | int rc = RTSemRWRequestRead(g_ThreadRWSem, RT_INDEFINITE_WAIT);
|
---|
206 | AssertReleaseRC(rc);
|
---|
207 | }
|
---|
208 |
|
---|
209 |
|
---|
210 | inline void rtThreadUnLockRW(void)
|
---|
211 | {
|
---|
212 | int rc = RTSemRWReleaseWrite(g_ThreadRWSem);
|
---|
213 | AssertReleaseRC(rc);
|
---|
214 | }
|
---|
215 |
|
---|
216 |
|
---|
217 | inline void rtThreadUnLockRD(void)
|
---|
218 | {
|
---|
219 | int rc = RTSemRWReleaseRead(g_ThreadRWSem);
|
---|
220 | AssertReleaseRC(rc);
|
---|
221 | }
|
---|
222 |
|
---|
223 | #endif /* IN_RING3 */
|
---|
224 |
|
---|
225 |
|
---|
226 | /**
|
---|
227 | * Adopts the calling thread.
|
---|
228 | * No locks are taken or released by this function.
|
---|
229 | */
|
---|
230 | static int rtThreadAdopt(RTTHREADTYPE enmType, unsigned fFlags, const char *pszName)
|
---|
231 | {
|
---|
232 | Assert(!(fFlags & RTTHREADFLAGS_WAITABLE));
|
---|
233 | fFlags &= ~RTTHREADFLAGS_WAITABLE;
|
---|
234 |
|
---|
235 | /*
|
---|
236 | * Allocate and insert the thread.
|
---|
237 | */
|
---|
238 | int rc = VERR_NO_MEMORY;
|
---|
239 | PRTTHREADINT pThread = rtThreadAlloc(enmType, fFlags, RTTHREADINT_FLAGS_ALIEN, pszName);
|
---|
240 | if (pThread)
|
---|
241 | {
|
---|
242 | RTNATIVETHREAD NativeThread = RTThreadNativeSelf();
|
---|
243 | rc = rtThreadNativeAdopt(pThread);
|
---|
244 | if (RT_SUCCESS(rc))
|
---|
245 | {
|
---|
246 | rtThreadInsert(pThread, NativeThread);
|
---|
247 | pThread->enmState = RTTHREADSTATE_RUNNING;
|
---|
248 | }
|
---|
249 | }
|
---|
250 | return rc;
|
---|
251 | }
|
---|
252 |
|
---|
253 |
|
---|
254 | /**
|
---|
255 | * Adopts a non-IPRT thread.
|
---|
256 | *
|
---|
257 | * @returns IPRT status code.
|
---|
258 | * @param enmType The thread type.
|
---|
259 | * @param fFlags The thread flags. RTTHREADFLAGS_WAITABLE is not currently allowed.
|
---|
260 | * @param pszName The thread name. Optional.
|
---|
261 | * @param pThread Where to store the thread handle. Optional.
|
---|
262 | */
|
---|
263 | RTDECL(int) RTThreadAdopt(RTTHREADTYPE enmType, unsigned fFlags, const char *pszName, PRTTHREAD pThread)
|
---|
264 | {
|
---|
265 | AssertReturn(!(fFlags & RTTHREADFLAGS_WAITABLE), VERR_INVALID_PARAMETER);
|
---|
266 | AssertReturn(!pszName || VALID_PTR(pszName), VERR_INVALID_POINTER);
|
---|
267 | AssertReturn(!pThread || VALID_PTR(pThread), VERR_INVALID_POINTER);
|
---|
268 |
|
---|
269 | int rc = VINF_SUCCESS;
|
---|
270 | RTTHREAD Thread = RTThreadSelf();
|
---|
271 | if (Thread == NIL_RTTHREAD)
|
---|
272 | {
|
---|
273 | /* generate a name if none was given. */
|
---|
274 | char szName[RTTHREAD_NAME_LEN];
|
---|
275 | if (!pszName || !*pszName)
|
---|
276 | {
|
---|
277 | static uint32_t s_i32AlienId = 0;
|
---|
278 | uint32_t i32Id = ASMAtomicIncU32(&s_i32AlienId);
|
---|
279 | RTStrPrintf(szName, sizeof(szName), "ALIEN-%RX32", i32Id);
|
---|
280 | pszName = szName;
|
---|
281 | }
|
---|
282 |
|
---|
283 | /* try adopt it */
|
---|
284 | rc = rtThreadAdopt(enmType, fFlags, pszName);
|
---|
285 | Thread = RTThreadSelf();
|
---|
286 | Log(("RTThreadAdopt: %RTthrd %RTnthrd '%s' enmType=%d fFlags=%#x rc=%Rrc\n",
|
---|
287 | Thread, RTThreadNativeSelf(), pszName, enmType, fFlags, rc));
|
---|
288 | }
|
---|
289 | else
|
---|
290 | Log(("RTThreadAdopt: %RTthrd %RTnthrd '%s' enmType=%d fFlags=%#x - already adopted!\n",
|
---|
291 | Thread, RTThreadNativeSelf(), pszName, enmType, fFlags));
|
---|
292 |
|
---|
293 | if (pThread)
|
---|
294 | *pThread = Thread;
|
---|
295 | return rc;
|
---|
296 | }
|
---|
297 |
|
---|
298 |
|
---|
299 | /**
|
---|
300 | * Allocates a per thread data structure and initializes the basic fields.
|
---|
301 | *
|
---|
302 | * @returns Pointer to per thread data structure.
|
---|
303 | * This is reference once.
|
---|
304 | * @returns NULL on failure.
|
---|
305 | * @param enmType The thread type.
|
---|
306 | * @param fFlags The thread flags.
|
---|
307 | * @param fIntFlags The internal thread flags.
|
---|
308 | * @param pszName Pointer to the thread name.
|
---|
309 | */
|
---|
310 | PRTTHREADINT rtThreadAlloc(RTTHREADTYPE enmType, unsigned fFlags, unsigned fIntFlags, const char *pszName)
|
---|
311 | {
|
---|
312 | PRTTHREADINT pThread = (PRTTHREADINT)RTMemAllocZ(sizeof(RTTHREADINT));
|
---|
313 | if (pThread)
|
---|
314 | {
|
---|
315 | pThread->Core.Key = (void*)NIL_RTTHREAD;
|
---|
316 | pThread->u32Magic = RTTHREADINT_MAGIC;
|
---|
317 | size_t cchName = strlen(pszName);
|
---|
318 | if (cchName >= RTTHREAD_NAME_LEN)
|
---|
319 | cchName = RTTHREAD_NAME_LEN - 1;
|
---|
320 | memcpy(pThread->szName, pszName, cchName);
|
---|
321 | pThread->szName[cchName] = '\0';
|
---|
322 | pThread->cRefs = 2 + !!(fFlags & RTTHREADFLAGS_WAITABLE); /* And extra reference if waitable. */
|
---|
323 | pThread->rc = VERR_PROCESS_RUNNING; /** @todo get a better error code! */
|
---|
324 | pThread->enmType = enmType;
|
---|
325 | pThread->fFlags = fFlags;
|
---|
326 | pThread->fIntFlags = fIntFlags;
|
---|
327 | pThread->enmState = RTTHREADSTATE_INITIALIZING;
|
---|
328 | int rc = RTSemEventMultiCreate(&pThread->EventUser);
|
---|
329 | if (RT_SUCCESS(rc))
|
---|
330 | {
|
---|
331 | rc = RTSemEventMultiCreate(&pThread->EventTerminated);
|
---|
332 | if (RT_SUCCESS(rc))
|
---|
333 | return pThread;
|
---|
334 | RTSemEventMultiDestroy(pThread->EventUser);
|
---|
335 | }
|
---|
336 | RTMemFree(pThread);
|
---|
337 | }
|
---|
338 | return NULL;
|
---|
339 | }
|
---|
340 |
|
---|
341 |
|
---|
342 | /**
|
---|
343 | * Insert the per thread data structure into the tree.
|
---|
344 | *
|
---|
345 | * This can be called from both the thread it self and the parent,
|
---|
346 | * thus it must handle insertion failures in a nice manner.
|
---|
347 | *
|
---|
348 | * @param pThread Pointer to thread structure allocated by rtThreadAlloc().
|
---|
349 | * @param NativeThread The native thread id.
|
---|
350 | */
|
---|
351 | void rtThreadInsert(PRTTHREADINT pThread, RTNATIVETHREAD NativeThread)
|
---|
352 | {
|
---|
353 | Assert(pThread);
|
---|
354 | Assert(pThread->u32Magic == RTTHREADINT_MAGIC);
|
---|
355 |
|
---|
356 | RT_THREAD_LOCK_TMP(Tmp);
|
---|
357 | RT_THREAD_LOCK_RW(Tmp);
|
---|
358 |
|
---|
359 | /*
|
---|
360 | * Before inserting we must check if there is a thread with this id
|
---|
361 | * in the tree already. We're racing parent and child on insert here
|
---|
362 | * so that the handle is valid in both ends when they return / start.
|
---|
363 | *
|
---|
364 | * If it's not ourself we find, it's a dead alien thread and we will
|
---|
365 | * unlink it from the tree. Alien threads will be released at this point.
|
---|
366 | */
|
---|
367 | PRTTHREADINT pThreadOther = (PRTTHREADINT)RTAvlPVGet(&g_ThreadTree, (void *)NativeThread);
|
---|
368 | if (pThreadOther != pThread)
|
---|
369 | {
|
---|
370 | /* remove dead alien if any */
|
---|
371 | if (pThreadOther)
|
---|
372 | {
|
---|
373 | Assert(pThreadOther->fIntFlags & RTTHREADINT_FLAGS_ALIEN);
|
---|
374 | ASMAtomicBitClear(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE_BIT);
|
---|
375 | rtThreadRemoveLocked(pThreadOther);
|
---|
376 | if (pThreadOther->fIntFlags & RTTHREADINT_FLAGS_ALIEN)
|
---|
377 | rtThreadRelease(pThreadOther);
|
---|
378 | }
|
---|
379 |
|
---|
380 | /* insert the thread */
|
---|
381 | pThread->Core.Key = (void *)NativeThread;
|
---|
382 | bool fRc = RTAvlPVInsert(&g_ThreadTree, &pThread->Core);
|
---|
383 | ASMAtomicOrU32(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE);
|
---|
384 |
|
---|
385 | AssertReleaseMsg(fRc, ("Lock problem? %p (%RTnthrd) %s\n", pThread, NativeThread, pThread->szName));
|
---|
386 | NOREF(fRc);
|
---|
387 | }
|
---|
388 |
|
---|
389 | RT_THREAD_UNLOCK_RW(Tmp);
|
---|
390 | }
|
---|
391 |
|
---|
392 |
|
---|
393 | /**
|
---|
394 | * Removes the thread from the AVL tree, call owns the tree lock
|
---|
395 | * and has cleared the RTTHREADINT_FLAG_IN_TREE bit.
|
---|
396 | *
|
---|
397 | * @param pThread The thread to remove.
|
---|
398 | */
|
---|
399 | static void rtThreadRemoveLocked(PRTTHREADINT pThread)
|
---|
400 | {
|
---|
401 | PRTTHREADINT pThread2 = (PRTTHREADINT)RTAvlPVRemove(&g_ThreadTree, pThread->Core.Key);
|
---|
402 | AssertMsg(pThread2 == pThread, ("%p(%s) != %p (%p/%s)\n", pThread2, pThread2 ? pThread2->szName : "<null>",
|
---|
403 | pThread, pThread->Core.Key, pThread->szName));
|
---|
404 | NOREF(pThread2);
|
---|
405 | }
|
---|
406 |
|
---|
407 |
|
---|
408 | /**
|
---|
409 | * Removes the thread from the AVL tree.
|
---|
410 | *
|
---|
411 | * @param pThread The thread to remove.
|
---|
412 | */
|
---|
413 | static void rtThreadRemove(PRTTHREADINT pThread)
|
---|
414 | {
|
---|
415 | RT_THREAD_LOCK_TMP(Tmp);
|
---|
416 | RT_THREAD_LOCK_RW(Tmp);
|
---|
417 | if (ASMAtomicBitTestAndClear(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE_BIT))
|
---|
418 | rtThreadRemoveLocked(pThread);
|
---|
419 | RT_THREAD_UNLOCK_RW(Tmp);
|
---|
420 | }
|
---|
421 |
|
---|
422 |
|
---|
423 | /**
|
---|
424 | * Checks if a thread is alive or not.
|
---|
425 | *
|
---|
426 | * @returns true if the thread is alive (or we don't really know).
|
---|
427 | * @returns false if the thread has surely terminate.
|
---|
428 | */
|
---|
429 | DECLINLINE(bool) rtThreadIsAlive(PRTTHREADINT pThread)
|
---|
430 | {
|
---|
431 | return !(pThread->fIntFlags & RTTHREADINT_FLAGS_TERMINATED);
|
---|
432 | }
|
---|
433 |
|
---|
434 |
|
---|
435 | /**
|
---|
436 | * Gets a thread by it's native ID.
|
---|
437 | *
|
---|
438 | * @returns pointer to the thread structure.
|
---|
439 | * @returns NULL if not a thread IPRT knows.
|
---|
440 | * @param NativeThread The native thread id.
|
---|
441 | */
|
---|
442 | PRTTHREADINT rtThreadGetByNative(RTNATIVETHREAD NativeThread)
|
---|
443 | {
|
---|
444 | /*
|
---|
445 | * Simple tree lookup.
|
---|
446 | */
|
---|
447 | RT_THREAD_LOCK_TMP(Tmp);
|
---|
448 | RT_THREAD_LOCK_RD(Tmp);
|
---|
449 | PRTTHREADINT pThread = (PRTTHREADINT)RTAvlPVGet(&g_ThreadTree, (void *)NativeThread);
|
---|
450 | RT_THREAD_UNLOCK_RD(Tmp);
|
---|
451 | return pThread;
|
---|
452 | }
|
---|
453 |
|
---|
454 |
|
---|
455 | /**
|
---|
456 | * Gets the per thread data structure for a thread handle.
|
---|
457 | *
|
---|
458 | * @returns Pointer to the per thread data structure for Thread.
|
---|
459 | * The caller must release the thread using rtThreadRelease().
|
---|
460 | * @returns NULL if Thread was not found.
|
---|
461 | * @param Thread Thread id which structure is to be returned.
|
---|
462 | */
|
---|
463 | PRTTHREADINT rtThreadGet(RTTHREAD Thread)
|
---|
464 | {
|
---|
465 | if ( Thread != NIL_RTTHREAD
|
---|
466 | && VALID_PTR(Thread))
|
---|
467 | {
|
---|
468 | PRTTHREADINT pThread = (PRTTHREADINT)Thread;
|
---|
469 | if ( pThread->u32Magic == RTTHREADINT_MAGIC
|
---|
470 | && pThread->cRefs > 0)
|
---|
471 | {
|
---|
472 | ASMAtomicIncU32(&pThread->cRefs);
|
---|
473 | return pThread;
|
---|
474 | }
|
---|
475 | }
|
---|
476 |
|
---|
477 | AssertMsgFailed(("Thread=%RTthrd\n", Thread));
|
---|
478 | return NULL;
|
---|
479 | }
|
---|
480 |
|
---|
481 |
|
---|
482 | /**
|
---|
483 | * Release a per thread data structure.
|
---|
484 | *
|
---|
485 | * @returns New reference count.
|
---|
486 | * @param pThread The thread structure to release.
|
---|
487 | */
|
---|
488 | uint32_t rtThreadRelease(PRTTHREADINT pThread)
|
---|
489 | {
|
---|
490 | Assert(pThread);
|
---|
491 | uint32_t cRefs;
|
---|
492 | if (pThread->cRefs >= 1)
|
---|
493 | {
|
---|
494 | cRefs = ASMAtomicDecU32(&pThread->cRefs);
|
---|
495 | if (!cRefs)
|
---|
496 | rtThreadDestroy(pThread);
|
---|
497 | }
|
---|
498 | else
|
---|
499 | cRefs = 0;
|
---|
500 | return cRefs;
|
---|
501 | }
|
---|
502 |
|
---|
503 |
|
---|
504 | /**
|
---|
505 | * Destroys the per thread data.
|
---|
506 | *
|
---|
507 | * @param pThread The thread to destroy.
|
---|
508 | */
|
---|
509 | static void rtThreadDestroy(PRTTHREADINT pThread)
|
---|
510 | {
|
---|
511 | /*
|
---|
512 | * Mark it dead and remove it from the tree.
|
---|
513 | */
|
---|
514 | ASMAtomicXchgU32(&pThread->u32Magic, RTTHREADINT_MAGIC_DEAD);
|
---|
515 | rtThreadRemove(pThread);
|
---|
516 |
|
---|
517 | /*
|
---|
518 | * Free resources.
|
---|
519 | */
|
---|
520 | pThread->Core.Key = (void *)NIL_RTTHREAD;
|
---|
521 | pThread->enmType = RTTHREADTYPE_INVALID;
|
---|
522 | RTSemEventMultiDestroy(pThread->EventUser);
|
---|
523 | pThread->EventUser = NIL_RTSEMEVENTMULTI;
|
---|
524 | if (pThread->EventTerminated != NIL_RTSEMEVENTMULTI)
|
---|
525 | {
|
---|
526 | RTSemEventMultiDestroy(pThread->EventTerminated);
|
---|
527 | pThread->EventTerminated = NIL_RTSEMEVENTMULTI;
|
---|
528 | }
|
---|
529 | RTMemFree(pThread);
|
---|
530 | }
|
---|
531 |
|
---|
532 |
|
---|
533 | /**
|
---|
534 | * Terminates the thread.
|
---|
535 | * Called by the thread wrapper function when the thread terminates.
|
---|
536 | *
|
---|
537 | * @param pThread The thread structure.
|
---|
538 | * @param rc The thread result code.
|
---|
539 | */
|
---|
540 | void rtThreadTerminate(PRTTHREADINT pThread, int rc)
|
---|
541 | {
|
---|
542 | Assert(pThread->cRefs >= 1);
|
---|
543 |
|
---|
544 | /*
|
---|
545 | * Set the rc, mark it terminated and signal anyone waiting.
|
---|
546 | */
|
---|
547 | pThread->rc = rc;
|
---|
548 | ASMAtomicXchgSize(&pThread->enmState, RTTHREADSTATE_TERMINATED);
|
---|
549 | ASMAtomicOrU32(&pThread->fIntFlags, RTTHREADINT_FLAGS_TERMINATED);
|
---|
550 | if (pThread->EventTerminated != NIL_RTSEMEVENTMULTI)
|
---|
551 | RTSemEventMultiSignal(pThread->EventTerminated);
|
---|
552 |
|
---|
553 | /*
|
---|
554 | * Remove the thread from the tree so that there will be no
|
---|
555 | * key clashes in the AVL tree and release our reference to ourself.
|
---|
556 | */
|
---|
557 | rtThreadRemove(pThread);
|
---|
558 | rtThreadRelease(pThread);
|
---|
559 | }
|
---|
560 |
|
---|
561 |
|
---|
562 | /**
|
---|
563 | * The common thread main function.
|
---|
564 | * This is called by rtThreadNativeMain().
|
---|
565 | *
|
---|
566 | * @returns The status code of the thread.
|
---|
567 | * pThread is dereference by the thread before returning!
|
---|
568 | * @param pThread The thread structure.
|
---|
569 | * @param NativeThread The native thread id.
|
---|
570 | * @param pszThreadName The name of the thread (purely a dummy for backtrace).
|
---|
571 | */
|
---|
572 | int rtThreadMain(PRTTHREADINT pThread, RTNATIVETHREAD NativeThread, const char *pszThreadName)
|
---|
573 | {
|
---|
574 | NOREF(pszThreadName);
|
---|
575 | rtThreadInsert(pThread, NativeThread);
|
---|
576 | Log(("rtThreadMain: Starting: pThread=%p NativeThread=%RTnthrd Name=%s pfnThread=%p pvUser=%p\n",
|
---|
577 | pThread, NativeThread, pThread->szName, pThread->pfnThread, pThread->pvUser));
|
---|
578 |
|
---|
579 | /*
|
---|
580 | * Change the priority.
|
---|
581 | */
|
---|
582 | int rc = rtThreadNativeSetPriority(pThread, pThread->enmType);
|
---|
583 | #ifdef IN_RING3
|
---|
584 | AssertMsgRC(rc, ("Failed to set priority of thread %p (%RTnthrd / %s) to enmType=%d enmPriority=%d rc=%Vrc\n",
|
---|
585 | pThread, NativeThread, pThread->szName, pThread->enmType, g_enmProcessPriority, rc));
|
---|
586 | #else
|
---|
587 | AssertMsgRC(rc, ("Failed to set priority of thread %p (%RTnthrd / %s) to enmType=%d rc=%Vrc\n",
|
---|
588 | pThread, NativeThread, pThread->szName, pThread->enmType, rc));
|
---|
589 | #endif
|
---|
590 |
|
---|
591 | /*
|
---|
592 | * Call thread function and terminate when it returns.
|
---|
593 | */
|
---|
594 | pThread->enmState = RTTHREADSTATE_RUNNING;
|
---|
595 | rc = pThread->pfnThread(pThread, pThread->pvUser);
|
---|
596 |
|
---|
597 | Log(("rtThreadMain: Terminating: rc=%d pThread=%p NativeThread=%RTnthrd Name=%s pfnThread=%p pvUser=%p\n",
|
---|
598 | rc, pThread, NativeThread, pThread->szName, pThread->pfnThread, pThread->pvUser));
|
---|
599 | rtThreadTerminate(pThread, rc);
|
---|
600 | return rc;
|
---|
601 | }
|
---|
602 |
|
---|
603 |
|
---|
604 | /**
|
---|
605 | * Create a new thread.
|
---|
606 | *
|
---|
607 | * @returns iprt status code.
|
---|
608 | * @param pThread Where to store the thread handle to the new thread. (optional)
|
---|
609 | * @param pfnThread The thread function.
|
---|
610 | * @param pvUser User argument.
|
---|
611 | * @param cbStack The size of the stack for the new thread.
|
---|
612 | * Use 0 for the default stack size.
|
---|
613 | * @param enmType The thread type. Used for deciding scheduling attributes
|
---|
614 | * of the thread.
|
---|
615 | * @param fFlags Flags of the RTTHREADFLAGS type (ORed together).
|
---|
616 | * @param pszName Thread name.
|
---|
617 | */
|
---|
618 | RTDECL(int) RTThreadCreate(PRTTHREAD pThread, PFNRTTHREAD pfnThread, void *pvUser, size_t cbStack,
|
---|
619 | RTTHREADTYPE enmType, unsigned fFlags, const char *pszName)
|
---|
620 | {
|
---|
621 | LogFlow(("RTThreadCreate: pThread=%p pfnThread=%p pvUser=%p cbStack=%#x enmType=%d fFlags=%#x pszName=%p:{%s}\n",
|
---|
622 | pThread, pfnThread, pvUser, cbStack, enmType, fFlags, pszName, pszName));
|
---|
623 |
|
---|
624 | /*
|
---|
625 | * Validate input.
|
---|
626 | */
|
---|
627 | if (!VALID_PTR(pThread) && pThread)
|
---|
628 | {
|
---|
629 | Assert(VALID_PTR(pThread));
|
---|
630 | return VERR_INVALID_PARAMETER;
|
---|
631 | }
|
---|
632 | if (!VALID_PTR(pfnThread))
|
---|
633 | {
|
---|
634 | Assert(VALID_PTR(pfnThread));
|
---|
635 | return VERR_INVALID_PARAMETER;
|
---|
636 | }
|
---|
637 | if (!pszName || !*pszName || strlen(pszName) >= RTTHREAD_NAME_LEN)
|
---|
638 | {
|
---|
639 | AssertMsgFailed(("pszName=%s (max len is %d because of logging)\n", pszName, RTTHREAD_NAME_LEN - 1));
|
---|
640 | return VERR_INVALID_PARAMETER;
|
---|
641 | }
|
---|
642 | if (fFlags & ~RTTHREADFLAGS_MASK)
|
---|
643 | {
|
---|
644 | AssertMsgFailed(("fFlags=%#x\n", fFlags));
|
---|
645 | return VERR_INVALID_PARAMETER;
|
---|
646 | }
|
---|
647 |
|
---|
648 | /*
|
---|
649 | * Allocate thread argument.
|
---|
650 | */
|
---|
651 | int rc;
|
---|
652 | PRTTHREADINT pThreadInt = rtThreadAlloc(enmType, fFlags, 0, pszName);
|
---|
653 | if (pThreadInt)
|
---|
654 | {
|
---|
655 | pThreadInt->pfnThread = pfnThread;
|
---|
656 | pThreadInt->pvUser = pvUser;
|
---|
657 | pThreadInt->cbStack = cbStack;
|
---|
658 |
|
---|
659 | RTNATIVETHREAD NativeThread;
|
---|
660 | rc = rtThreadNativeCreate(pThreadInt, &NativeThread);
|
---|
661 | if (RT_SUCCESS(rc))
|
---|
662 | {
|
---|
663 | rtThreadInsert(pThreadInt, NativeThread);
|
---|
664 | rtThreadRelease(pThreadInt);
|
---|
665 | Log(("RTThreadCreate: Created thread %p (%p) %s\n", pThreadInt, NativeThread, pszName));
|
---|
666 | if (pThread)
|
---|
667 | *pThread = pThreadInt;
|
---|
668 | return VINF_SUCCESS;
|
---|
669 | }
|
---|
670 |
|
---|
671 | pThreadInt->cRefs = 1;
|
---|
672 | rtThreadRelease(pThreadInt);
|
---|
673 | }
|
---|
674 | else
|
---|
675 | rc = VERR_NO_TMP_MEMORY;
|
---|
676 | LogFlow(("RTThreadCreate: Failed to create thread, rc=%Vrc\n", rc));
|
---|
677 | AssertReleaseRC(rc);
|
---|
678 | return rc;
|
---|
679 | }
|
---|
680 |
|
---|
681 |
|
---|
682 | /**
|
---|
683 | * Gets the native thread id of a IPRT thread.
|
---|
684 | *
|
---|
685 | * @returns The native thread id.
|
---|
686 | * @param Thread The IPRT thread.
|
---|
687 | */
|
---|
688 | RTDECL(RTNATIVETHREAD) RTThreadGetNative(RTTHREAD Thread)
|
---|
689 | {
|
---|
690 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
691 | if (pThread)
|
---|
692 | return (RTNATIVETHREAD)pThread->Core.Key;
|
---|
693 | return NIL_RTNATIVETHREAD;
|
---|
694 | }
|
---|
695 |
|
---|
696 |
|
---|
697 | /**
|
---|
698 | * Gets the IPRT thread of a native thread.
|
---|
699 | *
|
---|
700 | * @returns The IPRT thread handle
|
---|
701 | * @returns NIL_RTTHREAD if not a thread known to IPRT.
|
---|
702 | * @param NativeThread The native thread handle/id.
|
---|
703 | */
|
---|
704 | RTDECL(RTTHREAD) RTThreadFromNative(RTNATIVETHREAD NativeThread)
|
---|
705 | {
|
---|
706 | PRTTHREADINT pThread = rtThreadGetByNative(NativeThread);
|
---|
707 | if (pThread)
|
---|
708 | {
|
---|
709 | rtThreadRelease(pThread);
|
---|
710 | return pThread;
|
---|
711 | }
|
---|
712 | return NIL_RTTHREAD;
|
---|
713 | }
|
---|
714 |
|
---|
715 |
|
---|
716 | /**
|
---|
717 | * Gets the name of the current thread thread.
|
---|
718 | *
|
---|
719 | * @returns Pointer to readonly name string.
|
---|
720 | * @returns NULL on failure.
|
---|
721 | */
|
---|
722 | RTDECL(const char *) RTThreadSelfName(void)
|
---|
723 | {
|
---|
724 | RTTHREAD Thread = RTThreadSelf();
|
---|
725 | if (Thread != NIL_RTTHREAD)
|
---|
726 | {
|
---|
727 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
728 | if (pThread)
|
---|
729 | return pThread->szName;
|
---|
730 | }
|
---|
731 | return NULL;
|
---|
732 | }
|
---|
733 |
|
---|
734 |
|
---|
735 | /**
|
---|
736 | * Gets the name of a thread.
|
---|
737 | *
|
---|
738 | * @returns Pointer to readonly name string.
|
---|
739 | * @returns NULL on failure.
|
---|
740 | * @param Thread Thread handle of the thread to query the name of.
|
---|
741 | */
|
---|
742 | RTDECL(const char *) RTThreadGetName(RTTHREAD Thread)
|
---|
743 | {
|
---|
744 | if (Thread == NIL_RTTHREAD)
|
---|
745 | return NULL;
|
---|
746 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
747 | return pThread ? pThread->szName : NULL;
|
---|
748 | }
|
---|
749 |
|
---|
750 |
|
---|
751 | /**
|
---|
752 | * Sets the name of a thread.
|
---|
753 | *
|
---|
754 | * @returns iprt status code.
|
---|
755 | * @param Thread Thread handle of the thread to query the name of.
|
---|
756 | * @param pszName The thread name.
|
---|
757 | */
|
---|
758 | RTDECL(int) RTThreadSetName(RTTHREAD Thread, const char *pszName)
|
---|
759 | {
|
---|
760 | /*
|
---|
761 | * Validate input.
|
---|
762 | */
|
---|
763 | size_t cchName = strlen(pszName);
|
---|
764 | if (cchName >= RTTHREAD_NAME_LEN)
|
---|
765 | {
|
---|
766 | AssertMsgFailed(("pszName=%s is too long, max is %d\n", pszName, RTTHREAD_NAME_LEN - 1));
|
---|
767 | return VERR_INVALID_PARAMETER;
|
---|
768 | }
|
---|
769 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
770 | if (!pThread)
|
---|
771 | return VERR_INVALID_HANDLE;
|
---|
772 |
|
---|
773 | /*
|
---|
774 | * Update the name.
|
---|
775 | */
|
---|
776 | pThread->szName[cchName] = '\0'; /* paranoia */
|
---|
777 | memcpy(pThread->szName, pszName, cchName);
|
---|
778 | return VINF_SUCCESS;
|
---|
779 | }
|
---|
780 |
|
---|
781 |
|
---|
782 | /**
|
---|
783 | * Signal the user event.
|
---|
784 | *
|
---|
785 | * @returns iprt status code.
|
---|
786 | */
|
---|
787 | RTDECL(int) RTThreadUserSignal(RTTHREAD Thread)
|
---|
788 | {
|
---|
789 | int rc;
|
---|
790 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
791 | if (pThread)
|
---|
792 | {
|
---|
793 | rc = RTSemEventMultiSignal(pThread->EventUser);
|
---|
794 | rtThreadRelease(pThread);
|
---|
795 | }
|
---|
796 | else
|
---|
797 | rc = VERR_INVALID_HANDLE;
|
---|
798 | return rc;
|
---|
799 | }
|
---|
800 |
|
---|
801 |
|
---|
802 | /**
|
---|
803 | * Wait for the user event, resume on interruption.
|
---|
804 | *
|
---|
805 | * @returns iprt status code.
|
---|
806 | * @param Thread The thread to wait for.
|
---|
807 | * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
|
---|
808 | * an indefinite wait.
|
---|
809 | */
|
---|
810 | RTDECL(int) RTThreadUserWait(RTTHREAD Thread, unsigned cMillies)
|
---|
811 | {
|
---|
812 | int rc;
|
---|
813 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
814 | if (pThread)
|
---|
815 | {
|
---|
816 | rc = RTSemEventMultiWait(pThread->EventUser, cMillies);
|
---|
817 | rtThreadRelease(pThread);
|
---|
818 | }
|
---|
819 | else
|
---|
820 | rc = VERR_INVALID_HANDLE;
|
---|
821 | return rc;
|
---|
822 | }
|
---|
823 |
|
---|
824 |
|
---|
825 | /**
|
---|
826 | * Wait for the user event, return on interruption.
|
---|
827 | *
|
---|
828 | * @returns iprt status code.
|
---|
829 | * @param Thread The thread to wait for.
|
---|
830 | * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
|
---|
831 | * an indefinite wait.
|
---|
832 | */
|
---|
833 | RTDECL(int) RTThreadUserWaitNoResume(RTTHREAD Thread, unsigned cMillies)
|
---|
834 | {
|
---|
835 | int rc;
|
---|
836 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
837 | if (pThread)
|
---|
838 | {
|
---|
839 | rc = RTSemEventMultiWaitNoResume(pThread->EventUser, cMillies);
|
---|
840 | rtThreadRelease(pThread);
|
---|
841 | }
|
---|
842 | else
|
---|
843 | rc = VERR_INVALID_HANDLE;
|
---|
844 | return rc;
|
---|
845 | }
|
---|
846 |
|
---|
847 |
|
---|
848 | /**
|
---|
849 | * Reset the user event.
|
---|
850 | *
|
---|
851 | * @returns iprt status code.
|
---|
852 | * @param Thread The thread to reset.
|
---|
853 | */
|
---|
854 | RTDECL(int) RTThreadUserReset(RTTHREAD Thread)
|
---|
855 | {
|
---|
856 | int rc;
|
---|
857 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
858 | if (pThread)
|
---|
859 | {
|
---|
860 | rc = RTSemEventMultiReset(pThread->EventUser);
|
---|
861 | rtThreadRelease(pThread);
|
---|
862 | }
|
---|
863 | else
|
---|
864 | rc = VERR_INVALID_HANDLE;
|
---|
865 | return rc;
|
---|
866 | }
|
---|
867 |
|
---|
868 |
|
---|
869 | /**
|
---|
870 | * Wait for the thread to terminate.
|
---|
871 | *
|
---|
872 | * @returns iprt status code.
|
---|
873 | * @param Thread The thread to wait for.
|
---|
874 | * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
|
---|
875 | * an indefinite wait.
|
---|
876 | * @param prc Where to store the return code of the thread. Optional.
|
---|
877 | * @param fAutoResume Whether or not to resume the wait on VERR_INTERRUPTED.
|
---|
878 | */
|
---|
879 | static int rtThreadWait(RTTHREAD Thread, unsigned cMillies, int *prc, bool fAutoResume)
|
---|
880 | {
|
---|
881 | int rc = VERR_INVALID_HANDLE;
|
---|
882 | if (Thread != NIL_RTTHREAD)
|
---|
883 | {
|
---|
884 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
885 | if (pThread)
|
---|
886 | {
|
---|
887 | if (pThread->fFlags & RTTHREADFLAGS_WAITABLE)
|
---|
888 | {
|
---|
889 | if (fAutoResume)
|
---|
890 | rc = RTSemEventMultiWait(pThread->EventTerminated, cMillies);
|
---|
891 | else
|
---|
892 | rc = RTSemEventMultiWaitNoResume(pThread->EventTerminated, cMillies);
|
---|
893 | if (RT_SUCCESS(rc))
|
---|
894 | {
|
---|
895 | if (prc)
|
---|
896 | *prc = pThread->rc;
|
---|
897 |
|
---|
898 | /*
|
---|
899 | * If the thread is marked as waitable, we'll do one additional
|
---|
900 | * release in order to free up the thread structure (see how we
|
---|
901 | * init cRef in rtThreadAlloc()).
|
---|
902 | */
|
---|
903 | if (ASMAtomicBitTestAndClear(&pThread->fFlags, RTTHREADFLAGS_WAITABLE_BIT))
|
---|
904 | rtThreadRelease(pThread);
|
---|
905 | }
|
---|
906 | }
|
---|
907 | else
|
---|
908 | {
|
---|
909 | rc = VERR_THREAD_NOT_WAITABLE;
|
---|
910 | AssertRC(rc);
|
---|
911 | }
|
---|
912 | rtThreadRelease(pThread);
|
---|
913 | }
|
---|
914 | }
|
---|
915 | return rc;
|
---|
916 | }
|
---|
917 |
|
---|
918 |
|
---|
919 | /**
|
---|
920 | * Wait for the thread to terminate, resume on interruption.
|
---|
921 | *
|
---|
922 | * @returns iprt status code.
|
---|
923 | * Will not return VERR_INTERRUPTED.
|
---|
924 | * @param Thread The thread to wait for.
|
---|
925 | * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
|
---|
926 | * an indefinite wait.
|
---|
927 | * @param prc Where to store the return code of the thread. Optional.
|
---|
928 | */
|
---|
929 | RTDECL(int) RTThreadWait(RTTHREAD Thread, unsigned cMillies, int *prc)
|
---|
930 | {
|
---|
931 | int rc = rtThreadWait(Thread, cMillies, prc, true);
|
---|
932 | Assert(rc != VERR_INTERRUPTED);
|
---|
933 | return rc;
|
---|
934 | }
|
---|
935 |
|
---|
936 |
|
---|
937 | /**
|
---|
938 | * Wait for the thread to terminate, return on interruption.
|
---|
939 | *
|
---|
940 | * @returns iprt status code.
|
---|
941 | * @param Thread The thread to wait for.
|
---|
942 | * @param cMillies The number of milliseconds to wait. Use RT_INDEFINITE_WAIT for
|
---|
943 | * an indefinite wait.
|
---|
944 | * @param prc Where to store the return code of the thread. Optional.
|
---|
945 | */
|
---|
946 | RTDECL(int) RTThreadWaitNoResume(RTTHREAD Thread, unsigned cMillies, int *prc)
|
---|
947 | {
|
---|
948 | return rtThreadWait(Thread, cMillies, prc, false);
|
---|
949 | }
|
---|
950 |
|
---|
951 |
|
---|
952 | /**
|
---|
953 | * Changes the type of the specified thread.
|
---|
954 | *
|
---|
955 | * @returns iprt status code.
|
---|
956 | * @param Thread The thread which type should be changed.
|
---|
957 | * @param enmType The new thread type.
|
---|
958 | */
|
---|
959 | RTDECL(int) RTThreadSetType(RTTHREAD Thread, RTTHREADTYPE enmType)
|
---|
960 | {
|
---|
961 | /*
|
---|
962 | * Validate input.
|
---|
963 | */
|
---|
964 | int rc;
|
---|
965 | if ( enmType > RTTHREADTYPE_INVALID
|
---|
966 | && enmType < RTTHREADTYPE_END)
|
---|
967 | {
|
---|
968 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
969 | if (pThread)
|
---|
970 | {
|
---|
971 | if (rtThreadIsAlive(pThread))
|
---|
972 | {
|
---|
973 | /*
|
---|
974 | * Do the job.
|
---|
975 | */
|
---|
976 | RT_THREAD_LOCK_TMP(Tmp);
|
---|
977 | RT_THREAD_LOCK_RW(Tmp);
|
---|
978 | rc = rtThreadNativeSetPriority(pThread, enmType);
|
---|
979 | if (RT_SUCCESS(rc))
|
---|
980 | ASMAtomicXchgSize(&pThread->enmType, enmType);
|
---|
981 | RT_THREAD_UNLOCK_RW(Tmp);
|
---|
982 | if (RT_FAILURE(rc))
|
---|
983 | Log(("RTThreadSetType: failed on thread %p (%s), rc=%Vrc!!!\n", Thread, pThread->szName, rc));
|
---|
984 | }
|
---|
985 | else
|
---|
986 | rc = VERR_THREAD_IS_DEAD;
|
---|
987 | rtThreadRelease(pThread);
|
---|
988 | }
|
---|
989 | else
|
---|
990 | rc = VERR_INVALID_HANDLE;
|
---|
991 | }
|
---|
992 | else
|
---|
993 | {
|
---|
994 | AssertMsgFailed(("enmType=%d\n", enmType));
|
---|
995 | rc = VERR_INVALID_PARAMETER;
|
---|
996 | }
|
---|
997 | return rc;
|
---|
998 | }
|
---|
999 |
|
---|
1000 |
|
---|
1001 | /**
|
---|
1002 | * Gets the type of the specified thread.
|
---|
1003 | *
|
---|
1004 | * @returns The thread type.
|
---|
1005 | * @returns RTTHREADTYPE_INVALID if the thread handle is invalid.
|
---|
1006 | * @param Thread The thread in question.
|
---|
1007 | */
|
---|
1008 | RTDECL(RTTHREADTYPE) RTThreadGetType(RTTHREAD Thread)
|
---|
1009 | {
|
---|
1010 | RTTHREADTYPE enmType = RTTHREADTYPE_INVALID;
|
---|
1011 | PRTTHREADINT pThread = rtThreadGet(Thread);
|
---|
1012 | if (pThread)
|
---|
1013 | {
|
---|
1014 | enmType = pThread->enmType;
|
---|
1015 | rtThreadRelease(pThread);
|
---|
1016 | }
|
---|
1017 | return enmType;
|
---|
1018 | }
|
---|
1019 |
|
---|
1020 |
|
---|
1021 | #ifdef IN_RING3
|
---|
1022 |
|
---|
1023 | /**
|
---|
1024 | * Recalculates scheduling attributes for the the default process
|
---|
1025 | * priority using the specified priority type for the calling thread.
|
---|
1026 | *
|
---|
1027 | * The scheduling attributes are targeted at threads and they are protected
|
---|
1028 | * by the thread read-write semaphore, that's why RTProc is forwarding the
|
---|
1029 | * operation to RTThread.
|
---|
1030 | *
|
---|
1031 | * @returns iprt status code.
|
---|
1032 | */
|
---|
1033 | int rtThreadDoCalcDefaultPriority(RTTHREADTYPE enmType)
|
---|
1034 | {
|
---|
1035 | RT_THREAD_LOCK_TMP(Tmp);
|
---|
1036 | RT_THREAD_LOCK_RW(Tmp);
|
---|
1037 | int rc = rtSchedNativeCalcDefaultPriority(enmType);
|
---|
1038 | RT_THREAD_UNLOCK_RW(Tmp);
|
---|
1039 | return rc;
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 |
|
---|
1043 | /**
|
---|
1044 | * Thread enumerator - sets the priority of one thread.
|
---|
1045 | *
|
---|
1046 | * @returns 0 to continue.
|
---|
1047 | * @returns !0 to stop. In our case a VERR_ code.
|
---|
1048 | * @param pNode The thread node.
|
---|
1049 | * @param pvUser The new priority.
|
---|
1050 | */
|
---|
1051 | static DECLCALLBACK(int) rtThreadSetPriorityOne(PAVLPVNODECORE pNode, void *pvUser)
|
---|
1052 | {
|
---|
1053 | PRTTHREADINT pThread = (PRTTHREADINT)pNode;
|
---|
1054 | if (!rtThreadIsAlive(pThread))
|
---|
1055 | return VINF_SUCCESS;
|
---|
1056 | int rc = rtThreadNativeSetPriority(pThread, pThread->enmType);
|
---|
1057 | if (RT_SUCCESS(rc)) /* hide any warnings */
|
---|
1058 | return VINF_SUCCESS;
|
---|
1059 | return rc;
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 |
|
---|
1063 | /**
|
---|
1064 | * Attempts to alter the priority of the current process.
|
---|
1065 | *
|
---|
1066 | * The scheduling attributes are targeted at threads and they are protected
|
---|
1067 | * by the thread read-write semaphore, that's why RTProc is forwarding the
|
---|
1068 | * operation to RTThread. This operation also involves updating all thread
|
---|
1069 | * which is much faster done from RTThread.
|
---|
1070 | *
|
---|
1071 | * @returns iprt status code.
|
---|
1072 | * @param enmPriority The new priority.
|
---|
1073 | */
|
---|
1074 | int rtThreadDoSetProcPriority(RTPROCPRIORITY enmPriority)
|
---|
1075 | {
|
---|
1076 | LogFlow(("rtThreadDoSetProcPriority: enmPriority=%d\n", enmPriority));
|
---|
1077 |
|
---|
1078 | /*
|
---|
1079 | * First validate that we're allowed by the OS to use all the
|
---|
1080 | * scheduling attributes defined by the specified process priority.
|
---|
1081 | */
|
---|
1082 | RT_THREAD_LOCK_TMP(Tmp);
|
---|
1083 | RT_THREAD_LOCK_RW(Tmp);
|
---|
1084 | int rc = rtProcNativeSetPriority(enmPriority);
|
---|
1085 | if (RT_SUCCESS(rc))
|
---|
1086 | {
|
---|
1087 | /*
|
---|
1088 | * Update the priority of existing thread.
|
---|
1089 | */
|
---|
1090 | rc = RTAvlPVDoWithAll(&g_ThreadTree, true, rtThreadSetPriorityOne, NULL);
|
---|
1091 | if (RT_SUCCESS(rc))
|
---|
1092 | ASMAtomicXchgSize(&g_enmProcessPriority, enmPriority);
|
---|
1093 | else
|
---|
1094 | {
|
---|
1095 | /*
|
---|
1096 | * Failed, restore the priority.
|
---|
1097 | */
|
---|
1098 | rtProcNativeSetPriority(g_enmProcessPriority);
|
---|
1099 | RTAvlPVDoWithAll(&g_ThreadTree, true, rtThreadSetPriorityOne, NULL);
|
---|
1100 | }
|
---|
1101 | }
|
---|
1102 | RT_THREAD_UNLOCK_RW(Tmp);
|
---|
1103 | LogFlow(("rtThreadDoSetProcPriority: returns %Vrc\n", rc));
|
---|
1104 | return rc;
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 |
|
---|
1108 | /**
|
---|
1109 | * Bitch about a deadlock.
|
---|
1110 | *
|
---|
1111 | * @param pThread This thread.
|
---|
1112 | * @param pCur The thread we're deadlocking with.
|
---|
1113 | * @param enmState The sleep state.
|
---|
1114 | * @param u64Block The block data. A pointer or handle.
|
---|
1115 | * @param pszFile Where we are gonna block.
|
---|
1116 | * @param uLine Where we are gonna block.
|
---|
1117 | * @param uId Where we are gonna block.
|
---|
1118 | */
|
---|
1119 | static void rtThreadDeadlock(PRTTHREADINT pThread, PRTTHREADINT pCur, RTTHREADSTATE enmState, uint64_t u64Block,
|
---|
1120 | const char *pszFile, unsigned uLine, RTUINTPTR uId)
|
---|
1121 | {
|
---|
1122 | AssertMsg1(pCur == pThread ? "!!Deadlock detected!!" : "!!Deadlock exists!!", uLine, pszFile, "");
|
---|
1123 |
|
---|
1124 | /*
|
---|
1125 | * Print the threads and locks involved.
|
---|
1126 | */
|
---|
1127 | PRTTHREADINT apSeenThreads[8] = {0,0,0,0,0,0,0,0};
|
---|
1128 | unsigned iSeenThread = 0;
|
---|
1129 | pCur = pThread;
|
---|
1130 | for (unsigned iEntry = 0; pCur && iEntry < 256; iEntry++)
|
---|
1131 | {
|
---|
1132 | /*
|
---|
1133 | * Print info on pCur. Determin next while doing so.
|
---|
1134 | */
|
---|
1135 | AssertMsg2(" #%d: %RTthrd/%RTnthrd %s: %s(%u) %RTptr\n",
|
---|
1136 | iEntry, pCur, pCur->Core.Key, pCur->szName,
|
---|
1137 | pCur->pszBlockFile, pCur->uBlockLine, pCur->uBlockId);
|
---|
1138 | PRTTHREADINT pNext = NULL;
|
---|
1139 | switch (pCur->enmState)
|
---|
1140 | {
|
---|
1141 | case RTTHREADSTATE_CRITSECT:
|
---|
1142 | {
|
---|
1143 | PRTCRITSECT pCritSect = pCur->Block.pCritSect;
|
---|
1144 | if (pCur->enmState != RTTHREADSTATE_CRITSECT)
|
---|
1145 | {
|
---|
1146 | AssertMsg2("Impossible!!!\n");
|
---|
1147 | break;
|
---|
1148 | }
|
---|
1149 | if (VALID_PTR(pCritSect) && RTCritSectIsInitialized(pCritSect))
|
---|
1150 | {
|
---|
1151 | AssertMsg2(" Waiting on CRITSECT %p: Entered %s(%u) %RTptr\n",
|
---|
1152 | pCritSect, pCritSect->Strict.pszEnterFile,
|
---|
1153 | pCritSect->Strict.u32EnterLine, pCritSect->Strict.uEnterId);
|
---|
1154 | pNext = pCritSect->Strict.ThreadOwner;
|
---|
1155 | }
|
---|
1156 | else
|
---|
1157 | AssertMsg2(" Waiting on CRITSECT %p: invalid pointer or uninitialized critsect\n", pCritSect);
|
---|
1158 | break;
|
---|
1159 | }
|
---|
1160 |
|
---|
1161 | default:
|
---|
1162 | AssertMsg2(" Impossible!!! enmState=%d\n", pCur->enmState);
|
---|
1163 | break;
|
---|
1164 | }
|
---|
1165 |
|
---|
1166 | /*
|
---|
1167 | * Check for cycle.
|
---|
1168 | */
|
---|
1169 | if (iEntry && pCur == pThread)
|
---|
1170 | break;
|
---|
1171 | for (unsigned i = 0; i < ELEMENTS(apSeenThreads); i++)
|
---|
1172 | if (apSeenThreads[i] == pCur)
|
---|
1173 | {
|
---|
1174 | AssertMsg2(" Cycle!\n");
|
---|
1175 | pNext = NULL;
|
---|
1176 | break;
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 | /*
|
---|
1180 | * Advance to the next thread.
|
---|
1181 | */
|
---|
1182 | iSeenThread = (iSeenThread + 1) % ELEMENTS(apSeenThreads);
|
---|
1183 | apSeenThreads[iSeenThread] = pCur;
|
---|
1184 | pCur = pNext;
|
---|
1185 | }
|
---|
1186 | AssertBreakpoint();
|
---|
1187 | }
|
---|
1188 |
|
---|
1189 |
|
---|
1190 | /**
|
---|
1191 | * Change the thread state to blocking and do deadlock detection.
|
---|
1192 | *
|
---|
1193 | * This is a RT_STRICT method for debugging locks and detecting deadlocks.
|
---|
1194 | *
|
---|
1195 | * @param pThread This thread.
|
---|
1196 | * @param enmState The sleep state.
|
---|
1197 | * @param u64Block The block data. A pointer or handle.
|
---|
1198 | * @param pszFile Where we are blocking.
|
---|
1199 | * @param uLine Where we are blocking.
|
---|
1200 | * @param uId Where we are blocking.
|
---|
1201 | */
|
---|
1202 | void rtThreadBlocking(PRTTHREADINT pThread, RTTHREADSTATE enmState, uint64_t u64Block,
|
---|
1203 | const char *pszFile, unsigned uLine, RTUINTPTR uId)
|
---|
1204 | {
|
---|
1205 | Assert(RTTHREAD_IS_SLEEPING(enmState));
|
---|
1206 | if (pThread && pThread->enmState == RTTHREADSTATE_RUNNING)
|
---|
1207 | {
|
---|
1208 | /** @todo This has to be serialized! The deadlock detection isn't 100% safe!!! */
|
---|
1209 | pThread->Block.u64 = u64Block;
|
---|
1210 | pThread->pszBlockFile = pszFile;
|
---|
1211 | pThread->uBlockLine = uLine;
|
---|
1212 | pThread->uBlockId = uId;
|
---|
1213 | ASMAtomicXchgSize(&pThread->enmState, enmState);
|
---|
1214 |
|
---|
1215 | /*
|
---|
1216 | * Do deadlock detection.
|
---|
1217 | *
|
---|
1218 | * Since we're missing proper serialization, we don't declare it a
|
---|
1219 | * deadlock until we've got three runs with the same list length.
|
---|
1220 | * While this isn't perfect, it should avoid out the most obvious
|
---|
1221 | * races on SMP boxes.
|
---|
1222 | */
|
---|
1223 | PRTTHREADINT pCur;
|
---|
1224 | unsigned cPrevLength = ~0U;
|
---|
1225 | unsigned cEqualRuns = 0;
|
---|
1226 | unsigned iParanoia = 256;
|
---|
1227 | do
|
---|
1228 | {
|
---|
1229 | unsigned cLength = 0;
|
---|
1230 | pCur = pThread;
|
---|
1231 | for (;;)
|
---|
1232 | {
|
---|
1233 | /*
|
---|
1234 | * Get the next thread.
|
---|
1235 | */
|
---|
1236 | for (;;)
|
---|
1237 | {
|
---|
1238 | switch (pCur->enmState)
|
---|
1239 | {
|
---|
1240 | case RTTHREADSTATE_CRITSECT:
|
---|
1241 | {
|
---|
1242 | PRTCRITSECT pCritSect = pCur->Block.pCritSect;
|
---|
1243 | if (pCur->enmState != RTTHREADSTATE_CRITSECT)
|
---|
1244 | continue;
|
---|
1245 | pCur = pCritSect->Strict.ThreadOwner;
|
---|
1246 | break;
|
---|
1247 | }
|
---|
1248 |
|
---|
1249 | default:
|
---|
1250 | pCur = NULL;
|
---|
1251 | break;
|
---|
1252 | }
|
---|
1253 | break;
|
---|
1254 | }
|
---|
1255 | if (!pCur)
|
---|
1256 | return;
|
---|
1257 |
|
---|
1258 | /*
|
---|
1259 | * If we've got back to the blocking thread id we've got a deadlock.
|
---|
1260 | * If we've got a chain of more than 256 items, there is some kind of cycle
|
---|
1261 | * in the list, which means that there is already a deadlock somewhere.
|
---|
1262 | */
|
---|
1263 | if (pCur == pThread || cLength >= 256)
|
---|
1264 | break;
|
---|
1265 | cLength++;
|
---|
1266 | }
|
---|
1267 |
|
---|
1268 | /* compare with previous list run. */
|
---|
1269 | if (cLength != cPrevLength)
|
---|
1270 | {
|
---|
1271 | cPrevLength = cLength;
|
---|
1272 | cEqualRuns = 0;
|
---|
1273 | }
|
---|
1274 | else
|
---|
1275 | cEqualRuns++;
|
---|
1276 | } while (cEqualRuns < 3 && --iParanoia > 0);
|
---|
1277 |
|
---|
1278 | /*
|
---|
1279 | * Ok, if we ever get here, it's most likely a genuine deadlock.
|
---|
1280 | */
|
---|
1281 | rtThreadDeadlock(pThread, pCur, enmState, u64Block, pszFile, uLine, uId);
|
---|
1282 | }
|
---|
1283 | }
|
---|
1284 |
|
---|
1285 |
|
---|
1286 | /**
|
---|
1287 | * Unblocks a thread.
|
---|
1288 | *
|
---|
1289 | * This function is paired with rtThreadBlocking.
|
---|
1290 | *
|
---|
1291 | * @param pThread The current thread.
|
---|
1292 | * @param enmCurState The current state, used to check for nested blocking.
|
---|
1293 | * The new state will be running.
|
---|
1294 | */
|
---|
1295 | void rtThreadUnblocked(PRTTHREADINT pThread, RTTHREADSTATE enmCurState)
|
---|
1296 | {
|
---|
1297 | if (pThread && pThread->enmState == enmCurState)
|
---|
1298 | ASMAtomicXchgSize(&pThread->enmState, RTTHREADSTATE_RUNNING);
|
---|
1299 | }
|
---|
1300 |
|
---|
1301 | #endif /* IN_RING3 */
|
---|
1302 |
|
---|