VirtualBox

source: vbox/trunk/src/VBox/Storage/VHD.cpp@ 83878

Last change on this file since 83878 was 82968, checked in by vboxsync, 5 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 119.1 KB
Line 
1/* $Id: VHD.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */
2/** @file
3 * VHD Disk image, Core Code.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_VD_VHD
23#include <VBox/vd-plugin.h>
24#include <VBox/err.h>
25
26#include <VBox/log.h>
27#include <VBox/version.h>
28#include <iprt/asm.h>
29#include <iprt/assert.h>
30#include <iprt/mem.h>
31#include <iprt/uuid.h>
32#include <iprt/path.h>
33#include <iprt/string.h>
34#include <iprt/utf16.h>
35
36#include "VDBackends.h"
37
38#define VHD_RELATIVE_MAX_PATH 512
39#define VHD_ABSOLUTE_MAX_PATH 512
40
41#define VHD_SECTOR_SIZE 512
42#define VHD_BLOCK_SIZE (2 * _1M)
43
44/** The maximum VHD size is 2TB due to the 32bit sector numbers in the BAT.
45 * Note that this is the maximum file size including all footers and headers
46 * and not the maximum virtual disk size presented to the guest.
47 */
48#define VHD_MAX_SIZE (2 * _1T)
49/** Maximum number of 512 byte sectors for a VHD image. */
50#define VHD_MAX_SECTORS (VHD_MAX_SIZE / VHD_SECTOR_SIZE)
51
52/* This is common to all VHD disk types and is located at the end of the image */
53#pragma pack(1)
54typedef struct VHDFooter
55{
56 char Cookie[8];
57 uint32_t Features;
58 uint32_t Version;
59 uint64_t DataOffset;
60 uint32_t Timestamp;
61 uint8_t CreatorApp[4];
62 uint32_t CreatorVer;
63 uint32_t CreatorOS;
64 uint64_t OrigSize;
65 uint64_t CurSize;
66 uint16_t DiskGeometryCylinder;
67 uint8_t DiskGeometryHeads;
68 uint8_t DiskGeometrySectors;
69 uint32_t DiskType;
70 uint32_t Checksum;
71 char UniqueID[16];
72 uint8_t SavedState;
73 uint8_t Reserved[427];
74} VHDFooter;
75#pragma pack()
76
77/* this really is spelled with only one n */
78#define VHD_FOOTER_COOKIE "conectix"
79#define VHD_FOOTER_COOKIE_SIZE 8
80
81#define VHD_FOOTER_FEATURES_NOT_ENABLED 0
82#define VHD_FOOTER_FEATURES_TEMPORARY 1
83#define VHD_FOOTER_FEATURES_RESERVED 2
84
85#define VHD_FOOTER_FILE_FORMAT_VERSION 0x00010000
86#define VHD_FOOTER_DATA_OFFSET_FIXED UINT64_C(0xffffffffffffffff)
87#define VHD_FOOTER_DISK_TYPE_FIXED 2
88#define VHD_FOOTER_DISK_TYPE_DYNAMIC 3
89#define VHD_FOOTER_DISK_TYPE_DIFFERENCING 4
90
91#define VHD_MAX_LOCATOR_ENTRIES 8
92#define VHD_PLATFORM_CODE_NONE 0
93#define VHD_PLATFORM_CODE_WI2R 0x57693272
94#define VHD_PLATFORM_CODE_WI2K 0x5769326B
95#define VHD_PLATFORM_CODE_W2RU 0x57327275
96#define VHD_PLATFORM_CODE_W2KU 0x57326B75
97#define VHD_PLATFORM_CODE_MAC 0x4D163220
98#define VHD_PLATFORM_CODE_MACX 0x4D163258
99
100/* Header for expanding disk images. */
101#pragma pack(1)
102typedef struct VHDParentLocatorEntry
103{
104 uint32_t u32Code;
105 uint32_t u32DataSpace;
106 uint32_t u32DataLength;
107 uint32_t u32Reserved;
108 uint64_t u64DataOffset;
109} VHDPLE, *PVHDPLE;
110
111typedef struct VHDDynamicDiskHeader
112{
113 char Cookie[8];
114 uint64_t DataOffset;
115 uint64_t TableOffset;
116 uint32_t HeaderVersion;
117 uint32_t MaxTableEntries;
118 uint32_t BlockSize;
119 uint32_t Checksum;
120 uint8_t ParentUuid[16];
121 uint32_t ParentTimestamp;
122 uint32_t Reserved0;
123 uint16_t ParentUnicodeName[256];
124 VHDPLE ParentLocatorEntry[VHD_MAX_LOCATOR_ENTRIES];
125 uint8_t Reserved1[256];
126} VHDDynamicDiskHeader;
127#pragma pack()
128
129#define VHD_DYNAMIC_DISK_HEADER_COOKIE "cxsparse"
130#define VHD_DYNAMIC_DISK_HEADER_COOKIE_SIZE 8
131#define VHD_DYNAMIC_DISK_HEADER_VERSION 0x00010000
132
133/**
134 * Complete VHD image data structure.
135 */
136typedef struct VHDIMAGE
137{
138 /** Image file name. */
139 const char *pszFilename;
140 /** Opaque storage handle. */
141 PVDIOSTORAGE pStorage;
142
143 /** Pointer to the per-disk VD interface list. */
144 PVDINTERFACE pVDIfsDisk;
145 /** Pointer to the per-image VD interface list. */
146 PVDINTERFACE pVDIfsImage;
147 /** Error interface. */
148 PVDINTERFACEERROR pIfError;
149 /** I/O interface. */
150 PVDINTERFACEIOINT pIfIo;
151
152 /** Open flags passed by VBoxHDD layer. */
153 unsigned uOpenFlags;
154 /** Image flags defined during creation or determined during open. */
155 unsigned uImageFlags;
156 /** Total size of the image. */
157 uint64_t cbSize;
158
159 /** Physical geometry of this image. */
160 VDGEOMETRY PCHSGeometry;
161 /** Logical geometry of this image. */
162 VDGEOMETRY LCHSGeometry;
163
164 /** Image UUID. */
165 RTUUID ImageUuid;
166 /** Parent image UUID. */
167 RTUUID ParentUuid;
168
169 /** Parent's time stamp at the time of image creation. */
170 uint32_t u32ParentTimestamp;
171 /** Relative path to the parent image. */
172 char *pszParentFilename;
173
174 /** The Block Allocation Table. */
175 uint32_t *pBlockAllocationTable;
176 /** Number of entries in the table. */
177 uint32_t cBlockAllocationTableEntries;
178
179 /** Size of one data block. */
180 uint32_t cbDataBlock;
181 /** Sectors per data block. */
182 uint32_t cSectorsPerDataBlock;
183 /** Length of the sector bitmap in bytes. */
184 uint32_t cbDataBlockBitmap;
185 /** A copy of the disk footer. */
186 VHDFooter vhdFooterCopy;
187 /** Current end offset of the file (without the disk footer). */
188 uint64_t uCurrentEndOfFile;
189 /** Size of the data block bitmap in sectors. */
190 uint32_t cDataBlockBitmapSectors;
191 /** Start of the block allocation table. */
192 uint64_t uBlockAllocationTableOffset;
193 /** Buffer to hold block's bitmap for bit search operations. */
194 uint8_t *pu8Bitmap;
195 /** Offset to the next data structure (dynamic disk header). */
196 uint64_t u64DataOffset;
197 /** Flag to force dynamic disk header update. */
198 bool fDynHdrNeedsUpdate;
199 /** The static region list. */
200 VDREGIONLIST RegionList;
201} VHDIMAGE, *PVHDIMAGE;
202
203/**
204 * Structure tracking the expansion process of the image
205 * for async access.
206 */
207typedef struct VHDIMAGEEXPAND
208{
209 /** Flag indicating the status of each step. */
210 volatile uint32_t fFlags;
211 /** The index in the block allocation table which is written. */
212 uint32_t idxBatAllocated;
213 /** Big endian representation of the block index
214 * which is written in the BAT. */
215 uint32_t idxBlockBe;
216 /** Old end of the file - used for rollback in case of an error. */
217 uint64_t cbEofOld;
218 /** Sector bitmap written to the new block - variable in size. */
219 uint8_t au8Bitmap[1];
220} VHDIMAGEEXPAND, *PVHDIMAGEEXPAND;
221
222/**
223 * Flag defines
224 */
225#define VHDIMAGEEXPAND_STEP_IN_PROGRESS (0x0)
226#define VHDIMAGEEXPAND_STEP_FAILED (0x2)
227#define VHDIMAGEEXPAND_STEP_SUCCESS (0x3)
228/** All steps completed successfully. */
229#define VHDIMAGEEXPAND_ALL_SUCCESS (0xff)
230/** All steps completed (no success indicator) */
231#define VHDIMAGEEXPAND_ALL_COMPLETE (0xaa)
232
233/** Every status field has 2 bits so we can encode 4 steps in one byte. */
234#define VHDIMAGEEXPAND_STATUS_MASK 0x03
235#define VHDIMAGEEXPAND_BLOCKBITMAP_STATUS_SHIFT 0x00
236#define VHDIMAGEEXPAND_USERBLOCK_STATUS_SHIFT 0x02
237#define VHDIMAGEEXPAND_FOOTER_STATUS_SHIFT 0x04
238#define VHDIMAGEEXPAND_BAT_STATUS_SHIFT 0x06
239
240/**
241 * Helper macros to get and set the status field.
242 */
243#define VHDIMAGEEXPAND_STATUS_GET(fFlags, cShift) \
244 (((fFlags) >> (cShift)) & VHDIMAGEEXPAND_STATUS_MASK)
245#define VHDIMAGEEXPAND_STATUS_SET(fFlags, cShift, uVal) \
246 ASMAtomicOrU32(&(fFlags), ((uVal) & VHDIMAGEEXPAND_STATUS_MASK) << (cShift))
247
248
249/*********************************************************************************************************************************
250* Static Variables *
251*********************************************************************************************************************************/
252
253/** NULL-terminated array of supported file extensions. */
254static const VDFILEEXTENSION s_aVhdFileExtensions[] =
255{
256 {"vhd", VDTYPE_HDD},
257 {NULL, VDTYPE_INVALID}
258};
259
260
261/*********************************************************************************************************************************
262* Internal Functions *
263*********************************************************************************************************************************/
264
265
266/**
267 * Internal: Compute and update header checksum.
268 */
269static uint32_t vhdChecksum(void *pHeader, uint32_t cbSize)
270{
271 uint32_t u32ChkSum = 0;
272 for (uint32_t i = 0; i < cbSize; i++)
273 u32ChkSum += ((unsigned char *)pHeader)[i];
274 return ~u32ChkSum;
275}
276
277/**
278 * Internal: Convert filename to UTF16 with appropriate endianness.
279 */
280static int vhdFilenameToUtf16(const char *pszFilename, uint16_t *pu16Buf,
281 uint32_t cbBufSize, uint32_t *pcbActualSize,
282 bool fBigEndian)
283{
284 int rc;
285 PRTUTF16 pTmp16 = NULL;
286 size_t cTmp16Len;
287
288 rc = RTStrToUtf16(pszFilename, &pTmp16);
289 if (RT_SUCCESS(rc))
290 {
291 cTmp16Len = RTUtf16Len(pTmp16);
292 if (cTmp16Len * sizeof(*pTmp16) <= cbBufSize)
293 {
294 if (fBigEndian)
295 for (unsigned i = 0; i < cTmp16Len; i++)
296 pu16Buf[i] = RT_H2BE_U16(pTmp16[i]);
297 else
298 memcpy(pu16Buf, pTmp16, cTmp16Len * sizeof(*pTmp16));
299 if (pcbActualSize)
300 *pcbActualSize = (uint32_t)(cTmp16Len * sizeof(*pTmp16));
301 }
302 else
303 rc = VERR_FILENAME_TOO_LONG;
304 }
305
306 if (pTmp16)
307 RTUtf16Free(pTmp16);
308 return rc;
309}
310
311/**
312 * Internal: Update one locator entry.
313 */
314static int vhdLocatorUpdate(PVHDIMAGE pImage, PVHDPLE pLocator, const char *pszFilename)
315{
316 int rc = VINF_SUCCESS;
317 uint32_t cb = 0;
318 uint32_t cbMaxLen = RT_BE2H_U32(pLocator->u32DataSpace);
319 void *pvBuf = RTMemTmpAllocZ(cbMaxLen);
320 char *pszTmp;
321
322 if (!pvBuf)
323 return VERR_NO_MEMORY;
324
325 switch (RT_BE2H_U32(pLocator->u32Code))
326 {
327 case VHD_PLATFORM_CODE_WI2R:
328 {
329 if (RTPathStartsWithRoot(pszFilename))
330 {
331 /* Convert to relative path. */
332 char szPath[RTPATH_MAX];
333 rc = RTPathCalcRelative(szPath, sizeof(szPath), pImage->pszFilename, true /*fFromFile*/, pszFilename);
334 if (RT_SUCCESS(rc))
335 {
336 /* Update plain relative name. */
337 cb = (uint32_t)strlen(szPath);
338 if (cb > cbMaxLen)
339 {
340 rc = VERR_FILENAME_TOO_LONG;
341 break;
342 }
343 memcpy(pvBuf, szPath, cb);
344 }
345 }
346 else
347 {
348 /* Update plain relative name. */
349 cb = (uint32_t)strlen(pszFilename);
350 if (cb > cbMaxLen)
351 {
352 rc = VERR_FILENAME_TOO_LONG;
353 break;
354 }
355 memcpy(pvBuf, pszFilename, cb);
356 }
357 if (RT_SUCCESS(rc))
358 pLocator->u32DataLength = RT_H2BE_U32(cb);
359 break;
360 }
361 case VHD_PLATFORM_CODE_WI2K:
362 /* Update plain absolute name. */
363 rc = RTPathAbs(pszFilename, (char *)pvBuf, cbMaxLen);
364 if (RT_SUCCESS(rc))
365 {
366 cb = (uint32_t)strlen((const char *)pvBuf);
367 pLocator->u32DataLength = RT_H2BE_U32(cb);
368 }
369 break;
370 case VHD_PLATFORM_CODE_W2RU:
371 if (RTPathStartsWithRoot(pszFilename))
372 {
373 /* Convert to relative path. */
374 char szPath[RTPATH_MAX];
375 rc = RTPathCalcRelative(szPath, sizeof(szPath), pImage->pszFilename, true /*fFromFile*/, pszFilename);
376 if (RT_SUCCESS(rc))
377 rc = vhdFilenameToUtf16(szPath, (uint16_t *)pvBuf, cbMaxLen, &cb, false);
378 }
379 else
380 {
381 /* Update unicode relative name. */
382 rc = vhdFilenameToUtf16(pszFilename, (uint16_t *)pvBuf, cbMaxLen, &cb, false);
383 }
384
385 if (RT_SUCCESS(rc))
386 pLocator->u32DataLength = RT_H2BE_U32(cb);
387 break;
388 case VHD_PLATFORM_CODE_W2KU:
389 /* Update unicode absolute name. */
390 pszTmp = (char*)RTMemTmpAllocZ(cbMaxLen);
391 if (!pszTmp)
392 {
393 rc = VERR_NO_MEMORY;
394 break;
395 }
396 rc = RTPathAbs(pszFilename, pszTmp, cbMaxLen);
397 if (RT_FAILURE(rc))
398 {
399 RTMemTmpFree(pszTmp);
400 break;
401 }
402 rc = vhdFilenameToUtf16(pszTmp, (uint16_t *)pvBuf, cbMaxLen, &cb, false);
403 RTMemTmpFree(pszTmp);
404 if (RT_SUCCESS(rc))
405 pLocator->u32DataLength = RT_H2BE_U32(cb);
406 break;
407 default:
408 rc = VERR_NOT_IMPLEMENTED;
409 break;
410 }
411
412 if (RT_SUCCESS(rc))
413 {
414 Assert(cb > 0);
415 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
416 RT_BE2H_U64(pLocator->u64DataOffset),
417 pvBuf, cb);
418 }
419
420 if (pvBuf)
421 RTMemTmpFree(pvBuf);
422 return rc;
423}
424
425/**
426 * Internal: Update dynamic disk header from VHDIMAGE.
427 */
428static int vhdDynamicHeaderUpdate(PVHDIMAGE pImage)
429{
430 VHDDynamicDiskHeader ddh;
431 int rc, i;
432
433 if (!pImage)
434 return VERR_VD_NOT_OPENED;
435
436 rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage,
437 pImage->u64DataOffset, &ddh, sizeof(ddh));
438 if (RT_FAILURE(rc))
439 return rc;
440 if (memcmp(ddh.Cookie, VHD_DYNAMIC_DISK_HEADER_COOKIE, VHD_DYNAMIC_DISK_HEADER_COOKIE_SIZE) != 0)
441 return VERR_VD_VHD_INVALID_HEADER;
442
443 uint32_t u32Checksum = RT_BE2H_U32(ddh.Checksum);
444 ddh.Checksum = 0;
445 if (u32Checksum != vhdChecksum(&ddh, sizeof(ddh)))
446 return VERR_VD_VHD_INVALID_HEADER;
447
448 /* Update parent's timestamp. */
449 ddh.ParentTimestamp = RT_H2BE_U32(pImage->u32ParentTimestamp);
450 /* Update parent's filename. */
451 if (pImage->pszParentFilename)
452 {
453 rc = vhdFilenameToUtf16(RTPathFilename(pImage->pszParentFilename),
454 ddh.ParentUnicodeName, sizeof(ddh.ParentUnicodeName) - 1, NULL, true);
455 if (RT_FAILURE(rc))
456 return rc;
457 }
458
459 /* Update parent's locators. */
460 for (i = 0; i < VHD_MAX_LOCATOR_ENTRIES; i++)
461 {
462 /* Skip empty locators */
463 if ( ddh.ParentLocatorEntry[i].u32Code != RT_H2BE_U32(VHD_PLATFORM_CODE_NONE)
464 && pImage->pszParentFilename)
465 {
466 rc = vhdLocatorUpdate(pImage, &ddh.ParentLocatorEntry[i], pImage->pszParentFilename);
467 if (RT_FAILURE(rc))
468 return rc;
469 }
470 }
471 /* Update parent's UUID */
472 memcpy(ddh.ParentUuid, pImage->ParentUuid.au8, sizeof(ddh.ParentUuid));
473
474 /* Update data offset and number of table entries. */
475 ddh.MaxTableEntries = RT_H2BE_U32(pImage->cBlockAllocationTableEntries);
476
477 ddh.Checksum = 0;
478 ddh.Checksum = RT_H2BE_U32(vhdChecksum(&ddh, sizeof(ddh)));
479 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
480 pImage->u64DataOffset, &ddh, sizeof(ddh));
481 return rc;
482}
483
484/**
485 * Internal: Update the VHD footer.
486 */
487static int vhdUpdateFooter(PVHDIMAGE pImage)
488{
489 int rc = VINF_SUCCESS;
490
491 /* Update fields which can change. */
492 pImage->vhdFooterCopy.CurSize = RT_H2BE_U64(pImage->cbSize);
493 pImage->vhdFooterCopy.DiskGeometryCylinder = RT_H2BE_U16(pImage->PCHSGeometry.cCylinders);
494 pImage->vhdFooterCopy.DiskGeometryHeads = pImage->PCHSGeometry.cHeads;
495 pImage->vhdFooterCopy.DiskGeometrySectors = pImage->PCHSGeometry.cSectors;
496
497 pImage->vhdFooterCopy.Checksum = 0;
498 pImage->vhdFooterCopy.Checksum = RT_H2BE_U32(vhdChecksum(&pImage->vhdFooterCopy, sizeof(VHDFooter)));
499
500 if (pImage->pBlockAllocationTable)
501 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, 0,
502 &pImage->vhdFooterCopy, sizeof(VHDFooter));
503
504 if (RT_SUCCESS(rc))
505 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
506 pImage->uCurrentEndOfFile, &pImage->vhdFooterCopy,
507 sizeof(VHDFooter));
508
509 return rc;
510}
511
512/**
513 * Internal. Flush image data to disk.
514 */
515static int vhdFlushImage(PVHDIMAGE pImage)
516{
517 int rc = VINF_SUCCESS;
518
519 if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
520 return VINF_SUCCESS;
521
522 if (pImage->pBlockAllocationTable)
523 {
524 /*
525 * This is an expanding image. Write the BAT and copy of the disk footer.
526 */
527 size_t cbBlockAllocationTableToWrite = pImage->cBlockAllocationTableEntries * sizeof(uint32_t);
528 uint32_t *pBlockAllocationTableToWrite = (uint32_t *)RTMemAllocZ(cbBlockAllocationTableToWrite);
529
530 if (!pBlockAllocationTableToWrite)
531 return VERR_NO_MEMORY;
532
533 /*
534 * The BAT entries have to be stored in big endian format.
535 */
536 for (unsigned i = 0; i < pImage->cBlockAllocationTableEntries; i++)
537 pBlockAllocationTableToWrite[i] = RT_H2BE_U32(pImage->pBlockAllocationTable[i]);
538
539 /*
540 * Write the block allocation table after the copy of the disk footer and the dynamic disk header.
541 */
542 vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, pImage->uBlockAllocationTableOffset,
543 pBlockAllocationTableToWrite, cbBlockAllocationTableToWrite);
544 if (pImage->fDynHdrNeedsUpdate)
545 rc = vhdDynamicHeaderUpdate(pImage);
546 RTMemFree(pBlockAllocationTableToWrite);
547 }
548
549 if (RT_SUCCESS(rc))
550 rc = vhdUpdateFooter(pImage);
551
552 if (RT_SUCCESS(rc))
553 rc = vdIfIoIntFileFlushSync(pImage->pIfIo, pImage->pStorage);
554
555 return rc;
556}
557
558/**
559 * Internal. Free all allocated space for representing an image except pImage,
560 * and optionally delete the image from disk.
561 */
562static int vhdFreeImage(PVHDIMAGE pImage, bool fDelete)
563{
564 int rc = VINF_SUCCESS;
565
566 /* Freeing a never allocated image (e.g. because the open failed) is
567 * not signalled as an error. After all nothing bad happens. */
568 if (pImage)
569 {
570 if (pImage->pStorage)
571 {
572 /* No point updating the file that is deleted anyway. */
573 if (!fDelete)
574 vhdFlushImage(pImage);
575
576 rc = vdIfIoIntFileClose(pImage->pIfIo, pImage->pStorage);
577 pImage->pStorage = NULL;
578 }
579
580 if (pImage->pszParentFilename)
581 {
582 RTStrFree(pImage->pszParentFilename);
583 pImage->pszParentFilename = NULL;
584 }
585 if (pImage->pBlockAllocationTable)
586 {
587 RTMemFree(pImage->pBlockAllocationTable);
588 pImage->pBlockAllocationTable = NULL;
589 }
590 if (pImage->pu8Bitmap)
591 {
592 RTMemFree(pImage->pu8Bitmap);
593 pImage->pu8Bitmap = NULL;
594 }
595
596 if (fDelete && pImage->pszFilename)
597 {
598 int rc2 = vdIfIoIntFileDelete(pImage->pIfIo, pImage->pszFilename);
599 if (RT_SUCCESS(rc))
600 rc = rc2;
601 }
602 }
603
604 LogFlowFunc(("returns %Rrc\n", rc));
605 return rc;
606}
607
608/* 946684800 is the number of seconds between 1/1/1970 and 1/1/2000 */
609#define VHD_TO_UNIX_EPOCH_SECONDS UINT64_C(946684800)
610
611static uint32_t vhdRtTime2VhdTime(PCRTTIMESPEC pRtTimestamp)
612{
613 uint64_t u64Seconds = RTTimeSpecGetSeconds(pRtTimestamp);
614 return (uint32_t)(u64Seconds - VHD_TO_UNIX_EPOCH_SECONDS);
615}
616
617static void vhdTime2RtTime(PRTTIMESPEC pRtTimestamp, uint32_t u32VhdTimestamp)
618{
619 RTTimeSpecSetSeconds(pRtTimestamp, VHD_TO_UNIX_EPOCH_SECONDS + u32VhdTimestamp);
620}
621
622/**
623 * Internal: Allocates the block bitmap rounding up to the next 32bit or 64bit boundary.
624 * Can be freed with RTMemFree. The memory is zeroed.
625 */
626DECLINLINE(uint8_t *)vhdBlockBitmapAllocate(PVHDIMAGE pImage)
627{
628#ifdef RT_ARCH_AMD64
629 return (uint8_t *)RTMemAllocZ(pImage->cbDataBlockBitmap + 8);
630#else
631 return (uint8_t *)RTMemAllocZ(pImage->cbDataBlockBitmap + 4);
632#endif
633}
634
635/**
636 * Internal: called when the async expansion process completed (failure or success).
637 * Will do the necessary rollback if an error occurred.
638 */
639static int vhdAsyncExpansionComplete(PVHDIMAGE pImage, PVDIOCTX pIoCtx, PVHDIMAGEEXPAND pExpand)
640{
641 int rc = VINF_SUCCESS;
642 uint32_t fFlags = ASMAtomicReadU32(&pExpand->fFlags);
643 bool fIoInProgress = false;
644
645 /* Quick path, check if everything succeeded. */
646 if (fFlags == VHDIMAGEEXPAND_ALL_SUCCESS)
647 {
648 pImage->pBlockAllocationTable[pExpand->idxBatAllocated] = RT_BE2H_U32(pExpand->idxBlockBe);
649 RTMemFree(pExpand);
650 }
651 else
652 {
653 uint32_t uStatus;
654
655 uStatus = VHDIMAGEEXPAND_STATUS_GET(pExpand->fFlags, VHDIMAGEEXPAND_BAT_STATUS_SHIFT);
656 if ( uStatus == VHDIMAGEEXPAND_STEP_FAILED
657 || uStatus == VHDIMAGEEXPAND_STEP_SUCCESS)
658 {
659 /* Undo and restore the old value. */
660 pImage->pBlockAllocationTable[pExpand->idxBatAllocated] = ~0U;
661
662 /* Restore the old value on the disk.
663 * No need for a completion callback because we can't
664 * do anything if this fails. */
665 if (uStatus == VHDIMAGEEXPAND_STEP_SUCCESS)
666 {
667 rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage,
668 pImage->uBlockAllocationTableOffset
669 + pExpand->idxBatAllocated * sizeof(uint32_t),
670 &pImage->pBlockAllocationTable[pExpand->idxBatAllocated],
671 sizeof(uint32_t), pIoCtx, NULL, NULL);
672 fIoInProgress |= rc == VERR_VD_ASYNC_IO_IN_PROGRESS;
673 }
674 }
675
676 /* Restore old size (including the footer because another application might
677 * fill up the free space making it impossible to add the footer)
678 * and add the footer at the right place again. */
679 rc = vdIfIoIntFileSetSize(pImage->pIfIo, pImage->pStorage,
680 pExpand->cbEofOld + sizeof(VHDFooter));
681 AssertRC(rc);
682
683 pImage->uCurrentEndOfFile = pExpand->cbEofOld;
684 rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage,
685 pImage->uCurrentEndOfFile,
686 &pImage->vhdFooterCopy, sizeof(VHDFooter),
687 pIoCtx, NULL, NULL);
688 fIoInProgress |= rc == VERR_VD_ASYNC_IO_IN_PROGRESS;
689 }
690
691 return fIoInProgress ? VERR_VD_ASYNC_IO_IN_PROGRESS : rc;
692}
693
694static int vhdAsyncExpansionStepCompleted(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq, unsigned iStep)
695{
696 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
697 PVHDIMAGEEXPAND pExpand = (PVHDIMAGEEXPAND)pvUser;
698
699 LogFlowFunc(("pBackendData=%#p pIoCtx=%#p pvUser=%#p rcReq=%Rrc iStep=%u\n",
700 pBackendData, pIoCtx, pvUser, rcReq, iStep));
701
702 if (RT_SUCCESS(rcReq))
703 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, iStep, VHDIMAGEEXPAND_STEP_SUCCESS);
704 else
705 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, iStep, VHDIMAGEEXPAND_STEP_FAILED);
706
707 if ((pExpand->fFlags & VHDIMAGEEXPAND_ALL_COMPLETE) == VHDIMAGEEXPAND_ALL_COMPLETE)
708 return vhdAsyncExpansionComplete(pImage, pIoCtx, pExpand);
709
710 return VERR_VD_ASYNC_IO_IN_PROGRESS;
711}
712
713static DECLCALLBACK(int) vhdAsyncExpansionDataBlockBitmapComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq)
714{
715 return vhdAsyncExpansionStepCompleted(pBackendData, pIoCtx, pvUser, rcReq, VHDIMAGEEXPAND_BLOCKBITMAP_STATUS_SHIFT);
716}
717
718static DECLCALLBACK(int) vhdAsyncExpansionDataComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq)
719{
720 return vhdAsyncExpansionStepCompleted(pBackendData, pIoCtx, pvUser, rcReq, VHDIMAGEEXPAND_USERBLOCK_STATUS_SHIFT);
721}
722
723static DECLCALLBACK(int) vhdAsyncExpansionBatUpdateComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq)
724{
725 return vhdAsyncExpansionStepCompleted(pBackendData, pIoCtx, pvUser, rcReq, VHDIMAGEEXPAND_BAT_STATUS_SHIFT);
726}
727
728static DECLCALLBACK(int) vhdAsyncExpansionFooterUpdateComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq)
729{
730 return vhdAsyncExpansionStepCompleted(pBackendData, pIoCtx, pvUser, rcReq, VHDIMAGEEXPAND_FOOTER_STATUS_SHIFT);
731}
732
733static int vhdLoadDynamicDisk(PVHDIMAGE pImage, uint64_t uDynamicDiskHeaderOffset)
734{
735 VHDDynamicDiskHeader vhdDynamicDiskHeader;
736 int rc = VINF_SUCCESS;
737 uint32_t *pBlockAllocationTable;
738 uint64_t uBlockAllocationTableOffset;
739 unsigned i = 0;
740
741 Log(("Open a dynamic disk.\n"));
742
743 /*
744 * Read the dynamic disk header.
745 */
746 rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, uDynamicDiskHeaderOffset,
747 &vhdDynamicDiskHeader, sizeof(VHDDynamicDiskHeader));
748 if (memcmp(vhdDynamicDiskHeader.Cookie, VHD_DYNAMIC_DISK_HEADER_COOKIE, VHD_DYNAMIC_DISK_HEADER_COOKIE_SIZE))
749 return VERR_INVALID_PARAMETER;
750
751 pImage->cbDataBlock = RT_BE2H_U32(vhdDynamicDiskHeader.BlockSize);
752 LogFlowFunc(("BlockSize=%u\n", pImage->cbDataBlock));
753 pImage->cBlockAllocationTableEntries = RT_BE2H_U32(vhdDynamicDiskHeader.MaxTableEntries);
754 LogFlowFunc(("MaxTableEntries=%lu\n", pImage->cBlockAllocationTableEntries));
755 AssertMsg(!(pImage->cbDataBlock % VHD_SECTOR_SIZE), ("%s: Data block size is not a multiple of %!\n", __FUNCTION__, VHD_SECTOR_SIZE));
756
757 /*
758 * Bail out if the number of BAT entries exceeds the number of sectors for a maximum image.
759 * Lower the number of sectors in the BAT as a few sectors are already occupied by the footers
760 * and headers.
761 */
762 if (pImage->cBlockAllocationTableEntries > (VHD_MAX_SECTORS - 2))
763 return VERR_VD_VHD_INVALID_HEADER;
764
765 pImage->cSectorsPerDataBlock = pImage->cbDataBlock / VHD_SECTOR_SIZE;
766 LogFlowFunc(("SectorsPerDataBlock=%u\n", pImage->cSectorsPerDataBlock));
767
768 /*
769 * Every block starts with a bitmap indicating which sectors are valid and which are not.
770 * We store the size of it to be able to calculate the real offset.
771 */
772 pImage->cbDataBlockBitmap = pImage->cSectorsPerDataBlock / 8;
773 pImage->cDataBlockBitmapSectors = pImage->cbDataBlockBitmap / VHD_SECTOR_SIZE;
774 /* Round up to full sector size */
775 if (pImage->cbDataBlockBitmap % VHD_SECTOR_SIZE > 0)
776 pImage->cDataBlockBitmapSectors++;
777 LogFlowFunc(("cbDataBlockBitmap=%u\n", pImage->cbDataBlockBitmap));
778 LogFlowFunc(("cDataBlockBitmapSectors=%u\n", pImage->cDataBlockBitmapSectors));
779
780 pImage->pu8Bitmap = vhdBlockBitmapAllocate(pImage);
781 if (!pImage->pu8Bitmap)
782 return VERR_NO_MEMORY;
783
784 pBlockAllocationTable = (uint32_t *)RTMemAllocZ(pImage->cBlockAllocationTableEntries * sizeof(uint32_t));
785 if (!pBlockAllocationTable)
786 return VERR_NO_MEMORY;
787
788 /*
789 * Read the table.
790 */
791 uBlockAllocationTableOffset = RT_BE2H_U64(vhdDynamicDiskHeader.TableOffset);
792 LogFlowFunc(("uBlockAllocationTableOffset=%llu\n", uBlockAllocationTableOffset));
793 pImage->uBlockAllocationTableOffset = uBlockAllocationTableOffset;
794 rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage,
795 uBlockAllocationTableOffset, pBlockAllocationTable,
796 pImage->cBlockAllocationTableEntries * sizeof(uint32_t));
797 if (RT_FAILURE(rc))
798 {
799 RTMemFree(pBlockAllocationTable);
800 return rc;
801 }
802
803 /*
804 * Because the offset entries inside the allocation table are stored big endian
805 * we need to convert them into host endian.
806 */
807 pImage->pBlockAllocationTable = (uint32_t *)RTMemAllocZ(pImage->cBlockAllocationTableEntries * sizeof(uint32_t));
808 if (!pImage->pBlockAllocationTable)
809 {
810 RTMemFree(pBlockAllocationTable);
811 return VERR_NO_MEMORY;
812 }
813
814 for (i = 0; i < pImage->cBlockAllocationTableEntries; i++)
815 pImage->pBlockAllocationTable[i] = RT_BE2H_U32(pBlockAllocationTable[i]);
816
817 RTMemFree(pBlockAllocationTable);
818
819 if (pImage->uImageFlags & VD_IMAGE_FLAGS_DIFF)
820 memcpy(pImage->ParentUuid.au8, vhdDynamicDiskHeader.ParentUuid, sizeof(pImage->ParentUuid));
821
822 return rc;
823}
824
825static int vhdOpenImage(PVHDIMAGE pImage, unsigned uOpenFlags)
826{
827 uint64_t FileSize;
828 VHDFooter vhdFooter;
829
830 pImage->uOpenFlags = uOpenFlags;
831
832 pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk);
833 pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage);
834 AssertPtrReturn(pImage->pIfIo, VERR_INVALID_PARAMETER);
835
836 /*
837 * Open the image.
838 */
839 int rc = vdIfIoIntFileOpen(pImage->pIfIo, pImage->pszFilename,
840 VDOpenFlagsToFileOpenFlags(uOpenFlags,
841 false /* fCreate */),
842 &pImage->pStorage);
843 if (RT_FAILURE(rc))
844 {
845 /* Do NOT signal an appropriate error here, as the VD layer has the
846 * choice of retrying the open if it failed. */
847 return rc;
848 }
849
850 rc = vdIfIoIntFileGetSize(pImage->pIfIo, pImage->pStorage, &FileSize);
851 pImage->uCurrentEndOfFile = FileSize - sizeof(VHDFooter);
852
853 rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, pImage->uCurrentEndOfFile,
854 &vhdFooter, sizeof(VHDFooter));
855 if (RT_SUCCESS(rc))
856 {
857 if (memcmp(vhdFooter.Cookie, VHD_FOOTER_COOKIE, VHD_FOOTER_COOKIE_SIZE) != 0)
858 {
859 /*
860 * There is also a backup header at the beginning in case the image got corrupted.
861 * Such corrupted images are detected here to let the open handler repair it later.
862 */
863 rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage, 0,
864 &vhdFooter, sizeof(VHDFooter));
865 if (RT_SUCCESS(rc))
866 {
867 if (memcmp(vhdFooter.Cookie, VHD_FOOTER_COOKIE, VHD_FOOTER_COOKIE_SIZE) != 0)
868 rc = VERR_VD_VHD_INVALID_HEADER;
869 else
870 rc = VERR_VD_IMAGE_CORRUPTED;
871 }
872 }
873 }
874
875 if (RT_FAILURE(rc))
876 {
877 vhdFreeImage(pImage, false);
878 return rc;
879 }
880
881 switch (RT_BE2H_U32(vhdFooter.DiskType))
882 {
883 case VHD_FOOTER_DISK_TYPE_FIXED:
884 pImage->uImageFlags |= VD_IMAGE_FLAGS_FIXED;
885 break;
886 case VHD_FOOTER_DISK_TYPE_DYNAMIC:
887 pImage->uImageFlags &= ~VD_IMAGE_FLAGS_FIXED;
888 break;
889 case VHD_FOOTER_DISK_TYPE_DIFFERENCING:
890 pImage->uImageFlags |= VD_IMAGE_FLAGS_DIFF;
891 pImage->uImageFlags &= ~VD_IMAGE_FLAGS_FIXED;
892 break;
893 default:
894 vhdFreeImage(pImage, false);
895 return VERR_NOT_IMPLEMENTED;
896 }
897
898 pImage->cbSize = RT_BE2H_U64(vhdFooter.CurSize);
899 pImage->LCHSGeometry.cCylinders = 0;
900 pImage->LCHSGeometry.cHeads = 0;
901 pImage->LCHSGeometry.cSectors = 0;
902 pImage->PCHSGeometry.cCylinders = RT_BE2H_U16(vhdFooter.DiskGeometryCylinder);
903 pImage->PCHSGeometry.cHeads = vhdFooter.DiskGeometryHeads;
904 pImage->PCHSGeometry.cSectors = vhdFooter.DiskGeometrySectors;
905
906 /*
907 * Copy of the disk footer.
908 * If we allocate new blocks in differencing disks on write access
909 * the footer is overwritten. We need to write it at the end of the file.
910 */
911 memcpy(&pImage->vhdFooterCopy, &vhdFooter, sizeof(VHDFooter));
912
913 /*
914 * Is there a better way?
915 */
916 memcpy(&pImage->ImageUuid, &vhdFooter.UniqueID, 16);
917
918 pImage->u64DataOffset = RT_BE2H_U64(vhdFooter.DataOffset);
919 LogFlowFunc(("DataOffset=%llu\n", pImage->u64DataOffset));
920
921 if (!(pImage->uImageFlags & VD_IMAGE_FLAGS_FIXED))
922 rc = vhdLoadDynamicDisk(pImage, pImage->u64DataOffset);
923
924 if (RT_SUCCESS(rc))
925 {
926 PVDREGIONDESC pRegion = &pImage->RegionList.aRegions[0];
927 pImage->RegionList.fFlags = 0;
928 pImage->RegionList.cRegions = 1;
929
930 pRegion->offRegion = 0; /* Disk start. */
931 pRegion->cbBlock = 512;
932 pRegion->enmDataForm = VDREGIONDATAFORM_RAW;
933 pRegion->enmMetadataForm = VDREGIONMETADATAFORM_NONE;
934 pRegion->cbData = 512;
935 pRegion->cbMetadata = 0;
936 pRegion->cRegionBlocksOrBytes = pImage->cbSize;
937 }
938 else
939 vhdFreeImage(pImage, false);
940 return rc;
941}
942
943/**
944 * Internal: Checks if a sector in the block bitmap is set
945 */
946DECLINLINE(bool) vhdBlockBitmapSectorContainsData(PVHDIMAGE pImage, uint32_t cBlockBitmapEntry)
947{
948 uint32_t iBitmap = (cBlockBitmapEntry / 8); /* Byte in the block bitmap. */
949
950 /*
951 * The index of the bit in the byte of the data block bitmap.
952 * The most significant bit stands for a lower sector number.
953 */
954 uint8_t iBitInByte = (8-1) - (cBlockBitmapEntry % 8);
955 uint8_t *puBitmap = pImage->pu8Bitmap + iBitmap;
956
957 AssertMsg(puBitmap < (pImage->pu8Bitmap + pImage->cbDataBlockBitmap),
958 ("VHD: Current bitmap position exceeds maximum size of the bitmap\n"));
959
960 return ((*puBitmap) & RT_BIT(iBitInByte)) != 0;
961}
962
963/**
964 * Internal: Sets the given sector in the sector bitmap.
965 */
966DECLINLINE(bool) vhdBlockBitmapSectorSet(PVHDIMAGE pImage, uint8_t *pu8Bitmap, uint32_t cBlockBitmapEntry)
967{
968 RT_NOREF1(pImage);
969 uint32_t iBitmap = (cBlockBitmapEntry / 8); /* Byte in the block bitmap. */
970
971 /*
972 * The index of the bit in the byte of the data block bitmap.
973 * The most significant bit stands for a lower sector number.
974 */
975 uint8_t iBitInByte = (8-1) - (cBlockBitmapEntry % 8);
976 uint8_t *puBitmap = pu8Bitmap + iBitmap;
977
978 AssertMsg(puBitmap < (pu8Bitmap + pImage->cbDataBlockBitmap),
979 ("VHD: Current bitmap position exceeds maximum size of the bitmap\n"));
980
981 bool fClear = ((*puBitmap) & RT_BIT(iBitInByte)) == 0;
982 *puBitmap |= RT_BIT(iBitInByte);
983 return fClear;
984}
985
986/**
987 * Internal: Derive drive geometry from its size.
988 */
989static void vhdSetDiskGeometry(PVHDIMAGE pImage, uint64_t cbSize)
990{
991 uint64_t u64TotalSectors = cbSize / VHD_SECTOR_SIZE;
992 uint32_t u32CylinderTimesHeads, u32Heads, u32SectorsPerTrack;
993
994 if (u64TotalSectors > 65535 * 16 * 255)
995 {
996 /* ATA disks limited to 127 GB. */
997 u64TotalSectors = 65535 * 16 * 255;
998 }
999
1000 if (u64TotalSectors >= 65535 * 16 * 63)
1001 {
1002 u32SectorsPerTrack = 255;
1003 u32Heads = 16;
1004 u32CylinderTimesHeads = u64TotalSectors / u32SectorsPerTrack;
1005 }
1006 else
1007 {
1008 u32SectorsPerTrack = 17;
1009 u32CylinderTimesHeads = u64TotalSectors / u32SectorsPerTrack;
1010
1011 u32Heads = (u32CylinderTimesHeads + 1023) / 1024;
1012
1013 if (u32Heads < 4)
1014 {
1015 u32Heads = 4;
1016 }
1017 if (u32CylinderTimesHeads >= (u32Heads * 1024) || u32Heads > 16)
1018 {
1019 u32SectorsPerTrack = 31;
1020 u32Heads = 16;
1021 u32CylinderTimesHeads = u64TotalSectors / u32SectorsPerTrack;
1022 }
1023 if (u32CylinderTimesHeads >= (u32Heads * 1024))
1024 {
1025 u32SectorsPerTrack = 63;
1026 u32Heads = 16;
1027 u32CylinderTimesHeads = u64TotalSectors / u32SectorsPerTrack;
1028 }
1029 }
1030 pImage->PCHSGeometry.cCylinders = u32CylinderTimesHeads / u32Heads;
1031 pImage->PCHSGeometry.cHeads = u32Heads;
1032 pImage->PCHSGeometry.cSectors = u32SectorsPerTrack;
1033 pImage->LCHSGeometry.cCylinders = 0;
1034 pImage->LCHSGeometry.cHeads = 0;
1035 pImage->LCHSGeometry.cSectors = 0;
1036}
1037
1038
1039static uint32_t vhdAllocateParentLocators(PVHDIMAGE pImage, VHDDynamicDiskHeader *pDDH, uint64_t u64Offset)
1040{
1041 RT_NOREF1(pImage);
1042 PVHDPLE pLocator = pDDH->ParentLocatorEntry;
1043
1044 /*
1045 * The VHD spec states that the DataSpace field holds the number of sectors
1046 * required to store the parent locator path.
1047 * As it turned out VPC and Hyper-V store the amount of bytes reserved for the
1048 * path and not the number of sectors.
1049 */
1050
1051 /* Unicode absolute Windows path. */
1052 pLocator->u32Code = RT_H2BE_U32(VHD_PLATFORM_CODE_W2KU);
1053 pLocator->u32DataSpace = RT_H2BE_U32(VHD_ABSOLUTE_MAX_PATH * sizeof(RTUTF16));
1054 pLocator->u64DataOffset = RT_H2BE_U64(u64Offset);
1055 pLocator++;
1056 u64Offset += VHD_ABSOLUTE_MAX_PATH * sizeof(RTUTF16);
1057 /* Unicode relative Windows path. */
1058 pLocator->u32Code = RT_H2BE_U32(VHD_PLATFORM_CODE_W2RU);
1059 pLocator->u32DataSpace = RT_H2BE_U32(VHD_RELATIVE_MAX_PATH * sizeof(RTUTF16));
1060 pLocator->u64DataOffset = RT_H2BE_U64(u64Offset);
1061 u64Offset += VHD_RELATIVE_MAX_PATH * sizeof(RTUTF16);
1062 return u64Offset;
1063}
1064
1065/**
1066 * Internal: Additional code for dynamic VHD image creation.
1067 */
1068static int vhdCreateDynamicImage(PVHDIMAGE pImage, uint64_t cbSize)
1069{
1070 int rc;
1071 VHDDynamicDiskHeader DynamicDiskHeader;
1072 uint32_t u32BlockAllocationTableSectors;
1073 void *pvTmp = NULL;
1074
1075 memset(&DynamicDiskHeader, 0, sizeof(DynamicDiskHeader));
1076
1077 pImage->u64DataOffset = sizeof(VHDFooter);
1078 pImage->cbDataBlock = VHD_BLOCK_SIZE; /* 2 MB */
1079 pImage->cSectorsPerDataBlock = pImage->cbDataBlock / VHD_SECTOR_SIZE;
1080 pImage->cbDataBlockBitmap = pImage->cSectorsPerDataBlock / 8;
1081 pImage->cDataBlockBitmapSectors = pImage->cbDataBlockBitmap / VHD_SECTOR_SIZE;
1082 /* Align to sector boundary */
1083 if (pImage->cbDataBlockBitmap % VHD_SECTOR_SIZE > 0)
1084 pImage->cDataBlockBitmapSectors++;
1085 pImage->pu8Bitmap = vhdBlockBitmapAllocate(pImage);
1086 if (!pImage->pu8Bitmap)
1087 return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, N_("VHD: cannot allocate memory for bitmap storage"));
1088
1089 /* Initialize BAT. */
1090 pImage->uBlockAllocationTableOffset = (uint64_t)sizeof(VHDFooter) + sizeof(VHDDynamicDiskHeader);
1091 pImage->cBlockAllocationTableEntries = (uint32_t)((cbSize + pImage->cbDataBlock - 1) / pImage->cbDataBlock); /* Align table to the block size. */
1092 u32BlockAllocationTableSectors = (pImage->cBlockAllocationTableEntries * sizeof(uint32_t) + VHD_SECTOR_SIZE - 1) / VHD_SECTOR_SIZE;
1093 pImage->pBlockAllocationTable = (uint32_t *)RTMemAllocZ(pImage->cBlockAllocationTableEntries * sizeof(uint32_t));
1094 if (!pImage->pBlockAllocationTable)
1095 return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, N_("VHD: cannot allocate memory for BAT"));
1096
1097 for (unsigned i = 0; i < pImage->cBlockAllocationTableEntries; i++)
1098 {
1099 pImage->pBlockAllocationTable[i] = 0xFFFFFFFF; /* It is actually big endian. */
1100 }
1101
1102 /* Round up to the sector size. */
1103 if (pImage->uImageFlags & VD_IMAGE_FLAGS_DIFF) /* fix hyper-v unreadable error */
1104 pImage->uCurrentEndOfFile = vhdAllocateParentLocators(pImage, &DynamicDiskHeader,
1105 pImage->uBlockAllocationTableOffset + u32BlockAllocationTableSectors * VHD_SECTOR_SIZE);
1106 else
1107 pImage->uCurrentEndOfFile = pImage->uBlockAllocationTableOffset + u32BlockAllocationTableSectors * VHD_SECTOR_SIZE;
1108
1109 /* Set dynamic image size. */
1110 pvTmp = RTMemTmpAllocZ(pImage->uCurrentEndOfFile + sizeof(VHDFooter));
1111 if (!pvTmp)
1112 return vdIfError(pImage->pIfError, VERR_NO_MEMORY, RT_SRC_POS, N_("VHD: cannot set the file size for '%s'"), pImage->pszFilename);
1113
1114 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, 0, pvTmp,
1115 pImage->uCurrentEndOfFile + sizeof(VHDFooter));
1116 if (RT_FAILURE(rc))
1117 {
1118 RTMemTmpFree(pvTmp);
1119 return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VHD: cannot set the file size for '%s'"), pImage->pszFilename);
1120 }
1121
1122 RTMemTmpFree(pvTmp);
1123
1124 /* Initialize and write the dynamic disk header. */
1125 memcpy(DynamicDiskHeader.Cookie, VHD_DYNAMIC_DISK_HEADER_COOKIE, sizeof(DynamicDiskHeader.Cookie));
1126 DynamicDiskHeader.DataOffset = UINT64_C(0xFFFFFFFFFFFFFFFF); /* Initially the disk has no data. */
1127 DynamicDiskHeader.TableOffset = RT_H2BE_U64(pImage->uBlockAllocationTableOffset);
1128 DynamicDiskHeader.HeaderVersion = RT_H2BE_U32(VHD_DYNAMIC_DISK_HEADER_VERSION);
1129 DynamicDiskHeader.BlockSize = RT_H2BE_U32(pImage->cbDataBlock);
1130 DynamicDiskHeader.MaxTableEntries = RT_H2BE_U32(pImage->cBlockAllocationTableEntries);
1131 /* Compute and update checksum. */
1132 DynamicDiskHeader.Checksum = 0;
1133 DynamicDiskHeader.Checksum = RT_H2BE_U32(vhdChecksum(&DynamicDiskHeader, sizeof(DynamicDiskHeader)));
1134
1135 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, sizeof(VHDFooter),
1136 &DynamicDiskHeader, sizeof(DynamicDiskHeader));
1137 if (RT_FAILURE(rc))
1138 return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VHD: cannot write dynamic disk header to image '%s'"), pImage->pszFilename);
1139
1140 /* Write BAT. */
1141 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, pImage->uBlockAllocationTableOffset,
1142 pImage->pBlockAllocationTable,
1143 pImage->cBlockAllocationTableEntries * sizeof(uint32_t));
1144 if (RT_FAILURE(rc))
1145 return vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VHD: cannot write BAT to image '%s'"), pImage->pszFilename);
1146
1147 return rc;
1148}
1149
1150/**
1151 * Internal: The actual code for VHD image creation, both fixed and dynamic.
1152 */
1153static int vhdCreateImage(PVHDIMAGE pImage, uint64_t cbSize,
1154 unsigned uImageFlags, const char *pszComment,
1155 PCVDGEOMETRY pPCHSGeometry,
1156 PCVDGEOMETRY pLCHSGeometry, PCRTUUID pUuid,
1157 unsigned uOpenFlags,
1158 PVDINTERFACEPROGRESS pIfProgress,
1159 unsigned uPercentStart, unsigned uPercentSpan)
1160{
1161 RT_NOREF3(pszComment, pPCHSGeometry, pLCHSGeometry);
1162 VHDFooter Footer;
1163 RTTIMESPEC now;
1164
1165 pImage->uOpenFlags = uOpenFlags;
1166 pImage->uImageFlags = uImageFlags;
1167 pImage->pIfError = VDIfErrorGet(pImage->pVDIfsDisk);
1168
1169 int rc = vdIfIoIntFileOpen(pImage->pIfIo, pImage->pszFilename,
1170 VDOpenFlagsToFileOpenFlags(uOpenFlags & ~VD_OPEN_FLAGS_READONLY,
1171 true /* fCreate */),
1172 &pImage->pStorage);
1173 if (RT_SUCCESS(rc))
1174 {
1175 pImage->cbSize = cbSize;
1176 pImage->ImageUuid = *pUuid;
1177 RTUuidClear(&pImage->ParentUuid);
1178 vhdSetDiskGeometry(pImage, cbSize);
1179
1180 /* Initialize the footer. */
1181 memset(&Footer, 0, sizeof(Footer));
1182 memcpy(Footer.Cookie, VHD_FOOTER_COOKIE, sizeof(Footer.Cookie));
1183 Footer.Features = RT_H2BE_U32(0x2);
1184 Footer.Version = RT_H2BE_U32(VHD_FOOTER_FILE_FORMAT_VERSION);
1185 Footer.Timestamp = RT_H2BE_U32(vhdRtTime2VhdTime(RTTimeNow(&now)));
1186 memcpy(Footer.CreatorApp, "vbox", sizeof(Footer.CreatorApp));
1187 Footer.CreatorVer = RT_H2BE_U32(VBOX_VERSION);
1188#ifdef RT_OS_DARWIN
1189 Footer.CreatorOS = RT_H2BE_U32(0x4D616320); /* "Mac " */
1190#else /* Virtual PC supports only two platforms atm, so everything else will be Wi2k. */
1191 Footer.CreatorOS = RT_H2BE_U32(0x5769326B); /* "Wi2k" */
1192#endif
1193 Footer.OrigSize = RT_H2BE_U64(cbSize);
1194 Footer.CurSize = Footer.OrigSize;
1195 Footer.DiskGeometryCylinder = RT_H2BE_U16(pImage->PCHSGeometry.cCylinders);
1196 Footer.DiskGeometryHeads = pImage->PCHSGeometry.cHeads;
1197 Footer.DiskGeometrySectors = pImage->PCHSGeometry.cSectors;
1198 memcpy(Footer.UniqueID, pImage->ImageUuid.au8, sizeof(Footer.UniqueID));
1199 Footer.SavedState = 0;
1200
1201 if (uImageFlags & VD_IMAGE_FLAGS_FIXED)
1202 {
1203 Footer.DiskType = RT_H2BE_U32(VHD_FOOTER_DISK_TYPE_FIXED);
1204 /*
1205 * Initialize fixed image.
1206 * "The size of the entire file is the size of the hard disk in
1207 * the guest operating system plus the size of the footer."
1208 */
1209 pImage->u64DataOffset = VHD_FOOTER_DATA_OFFSET_FIXED;
1210 pImage->uCurrentEndOfFile = cbSize;
1211 rc = vdIfIoIntFileSetAllocationSize(pImage->pIfIo, pImage->pStorage, pImage->uCurrentEndOfFile + sizeof(VHDFooter),
1212 0 /* fFlags */, pIfProgress,
1213 uPercentStart, uPercentSpan);
1214 if (RT_FAILURE(rc))
1215 rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VHD: cannot set the file size for '%s'"), pImage->pszFilename);
1216 }
1217 else
1218 {
1219 /*
1220 * Initialize dynamic image.
1221 *
1222 * The overall structure of dynamic disk is:
1223 *
1224 * [Copy of hard disk footer (512 bytes)]
1225 * [Dynamic disk header (1024 bytes)]
1226 * [BAT (Block Allocation Table)]
1227 * [Parent Locators]
1228 * [Data block 1]
1229 * [Data block 2]
1230 * ...
1231 * [Data block N]
1232 * [Hard disk footer (512 bytes)]
1233 */
1234 Footer.DiskType = (uImageFlags & VD_IMAGE_FLAGS_DIFF)
1235 ? RT_H2BE_U32(VHD_FOOTER_DISK_TYPE_DIFFERENCING)
1236 : RT_H2BE_U32(VHD_FOOTER_DISK_TYPE_DYNAMIC);
1237 /* We are half way thorough with creation of image, let the caller know. */
1238 vdIfProgress(pIfProgress, (uPercentStart + uPercentSpan) / 2);
1239
1240 rc = vhdCreateDynamicImage(pImage, cbSize);
1241 }
1242
1243 if (RT_SUCCESS(rc))
1244 {
1245 /* Compute and update the footer checksum. */
1246 Footer.DataOffset = RT_H2BE_U64(pImage->u64DataOffset);
1247 Footer.Checksum = 0;
1248 Footer.Checksum = RT_H2BE_U32(vhdChecksum(&Footer, sizeof(Footer)));
1249
1250 pImage->vhdFooterCopy = Footer;
1251
1252 /* Store the footer */
1253 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, pImage->uCurrentEndOfFile,
1254 &Footer, sizeof(Footer));
1255 if (RT_SUCCESS(rc))
1256 {
1257 /* Dynamic images contain a copy of the footer at the very beginning of the file. */
1258 if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED))
1259 {
1260 /* Write the copy of the footer. */
1261 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage, 0, &Footer, sizeof(Footer));
1262 if (RT_FAILURE(rc))
1263 rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VHD: cannot write a copy of footer to image '%s'"), pImage->pszFilename);
1264 }
1265 }
1266 else
1267 rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VHD: cannot write footer to image '%s'"), pImage->pszFilename);
1268 }
1269 }
1270 else
1271 rc = vdIfError(pImage->pIfError, rc, RT_SRC_POS, N_("VHD: cannot create image '%s'"), pImage->pszFilename);
1272
1273 if (RT_SUCCESS(rc))
1274 vdIfProgress(pIfProgress, uPercentStart + uPercentSpan);
1275
1276 if (RT_SUCCESS(rc))
1277 {
1278 PVDREGIONDESC pRegion = &pImage->RegionList.aRegions[0];
1279 pImage->RegionList.fFlags = 0;
1280 pImage->RegionList.cRegions = 1;
1281
1282 pRegion->offRegion = 0; /* Disk start. */
1283 pRegion->cbBlock = 512;
1284 pRegion->enmDataForm = VDREGIONDATAFORM_RAW;
1285 pRegion->enmMetadataForm = VDREGIONMETADATAFORM_NONE;
1286 pRegion->cbData = 512;
1287 pRegion->cbMetadata = 0;
1288 pRegion->cRegionBlocksOrBytes = pImage->cbSize;
1289 }
1290 else
1291 vhdFreeImage(pImage, rc != VERR_ALREADY_EXISTS);
1292 return rc;
1293}
1294
1295
1296/** @interface_method_impl{VDIMAGEBACKEND,pfnProbe} */
1297static DECLCALLBACK(int) vhdProbe(const char *pszFilename, PVDINTERFACE pVDIfsDisk,
1298 PVDINTERFACE pVDIfsImage, VDTYPE enmDesiredType, VDTYPE *penmType)
1299{
1300 RT_NOREF(pVDIfsDisk, enmDesiredType);
1301 LogFlowFunc(("pszFilename=\"%s\" pVDIfsDisk=%#p pVDIfsImage=%#p\n", pszFilename, pVDIfsDisk, pVDIfsImage));
1302 PVDIOSTORAGE pStorage;
1303 PVDINTERFACEIOINT pIfIo = VDIfIoIntGet(pVDIfsImage);
1304 AssertPtrReturn(pIfIo, VERR_INVALID_PARAMETER);
1305
1306 int rc = vdIfIoIntFileOpen(pIfIo, pszFilename,
1307 VDOpenFlagsToFileOpenFlags(VD_OPEN_FLAGS_READONLY,
1308 false /* fCreate */),
1309 &pStorage);
1310 if (RT_SUCCESS(rc))
1311 {
1312 uint64_t cbFile;
1313
1314 rc = vdIfIoIntFileGetSize(pIfIo, pStorage, &cbFile);
1315 if ( RT_SUCCESS(rc)
1316 && cbFile >= sizeof(VHDFooter))
1317 {
1318 VHDFooter vhdFooter;
1319
1320 rc = vdIfIoIntFileReadSync(pIfIo, pStorage, cbFile - sizeof(VHDFooter),
1321 &vhdFooter, sizeof(VHDFooter));
1322 if (RT_SUCCESS(rc))
1323 {
1324 if (memcmp(vhdFooter.Cookie, VHD_FOOTER_COOKIE, VHD_FOOTER_COOKIE_SIZE) != 0)
1325 {
1326 /*
1327 * There is also a backup header at the beginning in case the image got corrupted.
1328 * Such corrupted images are detected here to let the open handler repair it later.
1329 */
1330 rc = vdIfIoIntFileReadSync(pIfIo, pStorage, 0, &vhdFooter, sizeof(VHDFooter));
1331 if ( RT_FAILURE(rc)
1332 || (memcmp(vhdFooter.Cookie, VHD_FOOTER_COOKIE, VHD_FOOTER_COOKIE_SIZE) != 0))
1333 rc = VERR_VD_VHD_INVALID_HEADER;
1334 }
1335
1336 if (RT_SUCCESS(rc))
1337 *penmType = VDTYPE_HDD;
1338 }
1339 else
1340 rc = VERR_VD_VHD_INVALID_HEADER;
1341 }
1342 else if (RT_SUCCESS(rc))
1343 rc = VERR_VD_VHD_INVALID_HEADER;
1344
1345 vdIfIoIntFileClose(pIfIo, pStorage);
1346 }
1347
1348 LogFlowFunc(("returns %Rrc\n", rc));
1349 return rc;
1350}
1351
1352/** @interface_method_impl{VDIMAGEBACKEND,pfnOpen} */
1353static DECLCALLBACK(int) vhdOpen(const char *pszFilename, unsigned uOpenFlags,
1354 PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
1355 VDTYPE enmType, void **ppBackendData)
1356{
1357 RT_NOREF1(enmType); /**< @todo r=klaus make use of the type info. */
1358
1359 LogFlowFunc(("pszFilename=\"%s\" uOpenFlags=%#x pVDIfsDisk=%#p pVDIfsImage=%#p enmType=%u ppBackendData=%#p\n",
1360 pszFilename, uOpenFlags, pVDIfsDisk, pVDIfsImage, enmType, ppBackendData));
1361 int rc = VINF_SUCCESS;
1362
1363 /* Check open flags. All valid flags are supported. */
1364 AssertReturn(!(uOpenFlags & ~VD_OPEN_FLAGS_MASK), VERR_INVALID_PARAMETER);
1365 AssertReturn((VALID_PTR(pszFilename) && *pszFilename), VERR_INVALID_PARAMETER);
1366
1367 PVHDIMAGE pImage = (PVHDIMAGE)RTMemAllocZ(RT_UOFFSETOF(VHDIMAGE, RegionList.aRegions[1]));
1368 if (RT_LIKELY(pImage))
1369 {
1370 pImage->pszFilename = pszFilename;
1371 pImage->pStorage = NULL;
1372 pImage->pVDIfsDisk = pVDIfsDisk;
1373 pImage->pVDIfsImage = pVDIfsImage;
1374
1375 rc = vhdOpenImage(pImage, uOpenFlags);
1376 if (RT_SUCCESS(rc))
1377 *ppBackendData = pImage;
1378 else
1379 RTMemFree(pImage);
1380 }
1381 else
1382 rc = VERR_NO_MEMORY;
1383
1384 LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData));
1385 return rc;
1386}
1387
1388/** @interface_method_impl{VDIMAGEBACKEND,pfnCreate} */
1389static DECLCALLBACK(int) vhdCreate(const char *pszFilename, uint64_t cbSize,
1390 unsigned uImageFlags, const char *pszComment,
1391 PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry,
1392 PCRTUUID pUuid, unsigned uOpenFlags,
1393 unsigned uPercentStart, unsigned uPercentSpan,
1394 PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
1395 PVDINTERFACE pVDIfsOperation, VDTYPE enmType,
1396 void **ppBackendData)
1397{
1398 LogFlowFunc(("pszFilename=\"%s\" cbSize=%llu uImageFlags=%#x pszComment=\"%s\" pPCHSGeometry=%#p pLCHSGeometry=%#p Uuid=%RTuuid uOpenFlags=%#x uPercentStart=%u uPercentSpan=%u pVDIfsDisk=%#p pVDIfsImage=%#p pVDIfsOperation=%#p enmType=%u ppBackendData=%#p",
1399 pszFilename, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, pUuid, uOpenFlags, uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation, enmType, ppBackendData));
1400 int rc;
1401 PVDINTERFACEPROGRESS pIfProgress = VDIfProgressGet(pVDIfsOperation);
1402
1403 /* Check the VD container type. */
1404 if (enmType != VDTYPE_HDD)
1405 return VERR_VD_INVALID_TYPE;
1406
1407 /* Check open flags. All valid flags are supported. */
1408 AssertReturn(!(uOpenFlags & ~VD_OPEN_FLAGS_MASK), VERR_INVALID_PARAMETER);
1409 AssertReturn( VALID_PTR(pszFilename)
1410 && *pszFilename
1411 && VALID_PTR(pPCHSGeometry)
1412 && VALID_PTR(pLCHSGeometry), VERR_INVALID_PARAMETER);
1413 /** @todo Check the values of other params */
1414
1415 PVHDIMAGE pImage = (PVHDIMAGE)RTMemAllocZ(RT_UOFFSETOF(VHDIMAGE, RegionList.aRegions[1]));
1416 if (RT_LIKELY(pImage))
1417 {
1418 pImage->pszFilename = pszFilename;
1419 pImage->pStorage = NULL;
1420 pImage->pVDIfsDisk = pVDIfsDisk;
1421 pImage->pVDIfsImage = pVDIfsImage;
1422
1423 /* Get I/O interface. */
1424 pImage->pIfIo = VDIfIoIntGet(pImage->pVDIfsImage);
1425 if (RT_LIKELY(VALID_PTR(pImage->pIfIo)))
1426 {
1427 rc = vhdCreateImage(pImage, cbSize, uImageFlags, pszComment,
1428 pPCHSGeometry, pLCHSGeometry, pUuid, uOpenFlags,
1429 pIfProgress, uPercentStart, uPercentSpan);
1430 if (RT_SUCCESS(rc))
1431 {
1432 /* So far the image is opened in read/write mode. Make sure the
1433 * image is opened in read-only mode if the caller requested that. */
1434 if (uOpenFlags & VD_OPEN_FLAGS_READONLY)
1435 {
1436 vhdFreeImage(pImage, false);
1437 rc = vhdOpenImage(pImage, uOpenFlags);
1438 }
1439
1440 if (RT_SUCCESS(rc))
1441 *ppBackendData = pImage;
1442 }
1443 }
1444 else
1445 rc = VERR_INVALID_PARAMETER;
1446
1447 if (RT_FAILURE(rc))
1448 RTMemFree(pImage);
1449 }
1450 else
1451 rc = VERR_NO_MEMORY;
1452
1453 LogFlowFunc(("returns %Rrc\n", rc));
1454 return rc;
1455}
1456
1457/** @interface_method_impl{VDIMAGEBACKEND,pfnRename} */
1458static DECLCALLBACK(int) vhdRename(void *pBackendData, const char *pszFilename)
1459{
1460 LogFlowFunc(("pBackendData=%#p pszFilename=%#p\n", pBackendData, pszFilename));
1461 int rc = VINF_SUCCESS;
1462 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1463
1464 /* Check arguments. */
1465 AssertReturn((pImage && pszFilename && *pszFilename), VERR_INVALID_PARAMETER);
1466
1467 /* Close the image. */
1468 rc = vhdFreeImage(pImage, false);
1469 if (RT_SUCCESS(rc))
1470 {
1471 /* Rename the file. */
1472 rc = vdIfIoIntFileMove(pImage->pIfIo, pImage->pszFilename, pszFilename, 0);
1473 if (RT_SUCCESS(rc))
1474 {
1475 /* Update pImage with the new information. */
1476 pImage->pszFilename = pszFilename;
1477
1478 /* Open the old file with new name. */
1479 rc = vhdOpenImage(pImage, pImage->uOpenFlags);
1480 }
1481 else
1482 {
1483 /* The move failed, try to reopen the original image. */
1484 int rc2 = vhdOpenImage(pImage, pImage->uOpenFlags);
1485 if (RT_FAILURE(rc2))
1486 rc = rc2;
1487 }
1488 }
1489
1490 LogFlowFunc(("returns %Rrc\n", rc));
1491 return rc;
1492}
1493
1494/** @interface_method_impl{VDIMAGEBACKEND,pfnClose} */
1495static DECLCALLBACK(int) vhdClose(void *pBackendData, bool fDelete)
1496{
1497 LogFlowFunc(("pBackendData=%#p fDelete=%d\n", pBackendData, fDelete));
1498 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1499
1500 int rc = vhdFreeImage(pImage, fDelete);
1501 RTMemFree(pImage);
1502
1503 LogFlowFunc(("returns %Rrc\n", rc));
1504 return rc;
1505}
1506
1507/** @interface_method_impl{VDIMAGEBACKEND,pfnRead} */
1508static DECLCALLBACK(int) vhdRead(void *pBackendData, uint64_t uOffset, size_t cbToRead,
1509 PVDIOCTX pIoCtx, size_t *pcbActuallyRead)
1510{
1511 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1512 int rc = VINF_SUCCESS;
1513
1514 LogFlowFunc(("pBackendData=%p uOffset=%#llx pIoCtx=%#p cbToRead=%u pcbActuallyRead=%p\n",
1515 pBackendData, uOffset, pIoCtx, cbToRead, pcbActuallyRead));
1516
1517 AssertPtr(pImage);
1518 Assert(uOffset % 512 == 0);
1519 Assert(cbToRead % 512 == 0);
1520 AssertReturn((VALID_PTR(pIoCtx) && cbToRead), VERR_INVALID_PARAMETER);
1521 AssertReturn(uOffset + cbToRead <= pImage->cbSize, VERR_INVALID_PARAMETER);
1522
1523 /*
1524 * If we have a dynamic disk image, we need to find the data block and sector to read.
1525 */
1526 if (pImage->pBlockAllocationTable)
1527 {
1528 /*
1529 * Get the data block first.
1530 */
1531 uint32_t cBlockAllocationTableEntry = (uOffset / VHD_SECTOR_SIZE) / pImage->cSectorsPerDataBlock;
1532 uint32_t cBATEntryIndex = (uOffset / VHD_SECTOR_SIZE) % pImage->cSectorsPerDataBlock;
1533 uint64_t uVhdOffset;
1534
1535 LogFlowFunc(("cBlockAllocationTableEntry=%u cBatEntryIndex=%u\n", cBlockAllocationTableEntry, cBATEntryIndex));
1536 LogFlowFunc(("BlockAllocationEntry=%u\n", pImage->pBlockAllocationTable[cBlockAllocationTableEntry]));
1537
1538 /*
1539 * Clip read range to remain in this data block.
1540 */
1541 cbToRead = RT_MIN(cbToRead, (pImage->cbDataBlock - (cBATEntryIndex * VHD_SECTOR_SIZE)));
1542
1543 /*
1544 * If the block is not allocated the content of the entry is ~0
1545 */
1546 if (pImage->pBlockAllocationTable[cBlockAllocationTableEntry] == ~0U)
1547 rc = VERR_VD_BLOCK_FREE;
1548 else
1549 {
1550 uVhdOffset = ((uint64_t)pImage->pBlockAllocationTable[cBlockAllocationTableEntry] + pImage->cDataBlockBitmapSectors + cBATEntryIndex) * VHD_SECTOR_SIZE;
1551 LogFlowFunc(("uVhdOffset=%llu cbToRead=%u\n", uVhdOffset, cbToRead));
1552
1553 /* Read in the block's bitmap. */
1554 PVDMETAXFER pMetaXfer;
1555 rc = vdIfIoIntFileReadMeta(pImage->pIfIo, pImage->pStorage,
1556 ((uint64_t)pImage->pBlockAllocationTable[cBlockAllocationTableEntry]) * VHD_SECTOR_SIZE,
1557 pImage->pu8Bitmap, pImage->cbDataBlockBitmap,
1558 pIoCtx, &pMetaXfer, NULL, NULL);
1559
1560 if (RT_SUCCESS(rc))
1561 {
1562 uint32_t cSectors = 0;
1563
1564 vdIfIoIntMetaXferRelease(pImage->pIfIo, pMetaXfer);
1565 if (vhdBlockBitmapSectorContainsData(pImage, cBATEntryIndex))
1566 {
1567 cBATEntryIndex++;
1568 cSectors = 1;
1569
1570 /*
1571 * The first sector being read is marked dirty, read as much as we
1572 * can from child. Note that only sectors that are marked dirty
1573 * must be read from child.
1574 */
1575 while ( (cSectors < (cbToRead / VHD_SECTOR_SIZE))
1576 && vhdBlockBitmapSectorContainsData(pImage, cBATEntryIndex))
1577 {
1578 cBATEntryIndex++;
1579 cSectors++;
1580 }
1581
1582 cbToRead = cSectors * VHD_SECTOR_SIZE;
1583
1584 LogFlowFunc(("uVhdOffset=%llu cbToRead=%u\n", uVhdOffset, cbToRead));
1585 rc = vdIfIoIntFileReadUser(pImage->pIfIo, pImage->pStorage,
1586 uVhdOffset, pIoCtx, cbToRead);
1587 }
1588 else
1589 {
1590 /*
1591 * The first sector being read is marked clean, so we should read from
1592 * our parent instead, but only as much as there are the following
1593 * clean sectors, because the block may still contain dirty sectors
1594 * further on. We just need to compute the number of clean sectors
1595 * and pass it to our caller along with the notification that they
1596 * should be read from the parent.
1597 */
1598 cBATEntryIndex++;
1599 cSectors = 1;
1600
1601 while ( (cSectors < (cbToRead / VHD_SECTOR_SIZE))
1602 && !vhdBlockBitmapSectorContainsData(pImage, cBATEntryIndex))
1603 {
1604 cBATEntryIndex++;
1605 cSectors++;
1606 }
1607
1608 cbToRead = cSectors * VHD_SECTOR_SIZE;
1609 LogFunc(("Sectors free: uVhdOffset=%llu cbToRead=%u\n", uVhdOffset, cbToRead));
1610 rc = VERR_VD_BLOCK_FREE;
1611 }
1612 }
1613 else
1614 AssertMsg(rc == VERR_VD_NOT_ENOUGH_METADATA, ("Reading block bitmap failed rc=%Rrc\n", rc));
1615 }
1616 }
1617 else
1618 rc = vdIfIoIntFileReadUser(pImage->pIfIo, pImage->pStorage, uOffset, pIoCtx, cbToRead);
1619
1620 if (pcbActuallyRead)
1621 *pcbActuallyRead = cbToRead;
1622
1623 LogFlowFunc(("returns rc=%Rrc\n", rc));
1624 return rc;
1625}
1626
1627/** @interface_method_impl{VDIMAGEBACKEND,pfnWrite} */
1628static DECLCALLBACK(int) vhdWrite(void *pBackendData, uint64_t uOffset, size_t cbToWrite,
1629 PVDIOCTX pIoCtx, size_t *pcbWriteProcess, size_t *pcbPreRead,
1630 size_t *pcbPostRead, unsigned fWrite)
1631{
1632 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1633 int rc = VINF_SUCCESS;
1634
1635 LogFlowFunc(("pBackendData=%p uOffset=%llu pIoCtx=%#p cbToWrite=%u pcbWriteProcess=%p pcbPreRead=%p pcbPostRead=%p fWrite=%u\n",
1636 pBackendData, uOffset, pIoCtx, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead, fWrite));
1637
1638 AssertPtr(pImage);
1639 Assert(!(uOffset % VHD_SECTOR_SIZE));
1640 Assert(!(cbToWrite % VHD_SECTOR_SIZE));
1641 AssertReturn((VALID_PTR(pIoCtx) && cbToWrite), VERR_INVALID_PARAMETER);
1642 AssertReturn(uOffset + cbToWrite <= pImage->cbSize, VERR_INVALID_PARAMETER);
1643
1644 if (pImage->pBlockAllocationTable)
1645 {
1646 /*
1647 * Get the data block first.
1648 */
1649 uint32_t cSector = uOffset / VHD_SECTOR_SIZE;
1650 uint32_t cBlockAllocationTableEntry = cSector / pImage->cSectorsPerDataBlock;
1651 uint32_t cBATEntryIndex = cSector % pImage->cSectorsPerDataBlock;
1652 uint64_t uVhdOffset;
1653
1654 /*
1655 * Clip write range.
1656 */
1657 cbToWrite = RT_MIN(cbToWrite, (pImage->cbDataBlock - (cBATEntryIndex * VHD_SECTOR_SIZE)));
1658
1659 /*
1660 * If the block is not allocated the content of the entry is ~0
1661 * and we need to allocate a new block. Note that while blocks are
1662 * allocated with a relatively big granularity, each sector has its
1663 * own bitmap entry, indicating whether it has been written or not.
1664 * So that means for the purposes of the higher level that the
1665 * granularity is invisible. This means there's no need to return
1666 * VERR_VD_BLOCK_FREE unless the block hasn't been allocated yet.
1667 */
1668 if (pImage->pBlockAllocationTable[cBlockAllocationTableEntry] == ~0U)
1669 {
1670 /* Check if the block allocation should be suppressed. */
1671 if ( (fWrite & VD_WRITE_NO_ALLOC)
1672 || (cbToWrite != pImage->cbDataBlock))
1673 {
1674 *pcbPreRead = cBATEntryIndex * VHD_SECTOR_SIZE;
1675 *pcbPostRead = pImage->cSectorsPerDataBlock * VHD_SECTOR_SIZE - cbToWrite - *pcbPreRead;
1676
1677 if (pcbWriteProcess)
1678 *pcbWriteProcess = cbToWrite;
1679 return VERR_VD_BLOCK_FREE;
1680 }
1681
1682 PVHDIMAGEEXPAND pExpand;
1683 pExpand = (PVHDIMAGEEXPAND)RTMemAllocZ(RT_UOFFSETOF_DYN(VHDIMAGEEXPAND,
1684 au8Bitmap[pImage->cDataBlockBitmapSectors * VHD_SECTOR_SIZE]));
1685 bool fIoInProgress = false;
1686
1687 if (!pExpand)
1688 return VERR_NO_MEMORY;
1689
1690 pExpand->cbEofOld = pImage->uCurrentEndOfFile;
1691 pExpand->idxBatAllocated = cBlockAllocationTableEntry;
1692 pExpand->idxBlockBe = RT_H2BE_U32(pImage->uCurrentEndOfFile / VHD_SECTOR_SIZE);
1693
1694 /* Set the bits for all sectors having been written. */
1695 for (uint32_t iSector = 0; iSector < (cbToWrite / VHD_SECTOR_SIZE); iSector++)
1696 {
1697 /* No need to check for a changed value because this is an initial write. */
1698 vhdBlockBitmapSectorSet(pImage, pExpand->au8Bitmap, cBATEntryIndex);
1699 cBATEntryIndex++;
1700 }
1701
1702 do
1703 {
1704 /*
1705 * Start with the sector bitmap.
1706 */
1707 rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage,
1708 pImage->uCurrentEndOfFile,
1709 pExpand->au8Bitmap,
1710 pImage->cDataBlockBitmapSectors * VHD_SECTOR_SIZE, pIoCtx,
1711 vhdAsyncExpansionDataBlockBitmapComplete,
1712 pExpand);
1713 if (RT_SUCCESS(rc))
1714 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_BLOCKBITMAP_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_SUCCESS);
1715 else if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
1716 fIoInProgress = true;
1717 else
1718 {
1719 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_BLOCKBITMAP_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1720 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_USERBLOCK_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1721 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_BAT_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1722 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_FOOTER_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1723 break;
1724 }
1725
1726
1727 /*
1728 * Write the new block at the current end of the file.
1729 */
1730 rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pImage->pStorage,
1731 pImage->uCurrentEndOfFile + (pImage->cDataBlockBitmapSectors + (cSector % pImage->cSectorsPerDataBlock)) * VHD_SECTOR_SIZE,
1732 pIoCtx, cbToWrite,
1733 vhdAsyncExpansionDataComplete,
1734 pExpand);
1735 if (RT_SUCCESS(rc))
1736 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_USERBLOCK_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_SUCCESS);
1737 else if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
1738 fIoInProgress = true;
1739 else
1740 {
1741 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_USERBLOCK_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1742 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_BAT_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1743 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_FOOTER_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1744 break;
1745 }
1746
1747 /*
1748 * Write entry in the BAT.
1749 */
1750 rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage,
1751 pImage->uBlockAllocationTableOffset + cBlockAllocationTableEntry * sizeof(uint32_t),
1752 &pExpand->idxBlockBe, sizeof(uint32_t), pIoCtx,
1753 vhdAsyncExpansionBatUpdateComplete,
1754 pExpand);
1755 if (RT_SUCCESS(rc))
1756 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_BAT_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_SUCCESS);
1757 else if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
1758 fIoInProgress = true;
1759 else
1760 {
1761 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_BAT_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1762 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_FOOTER_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1763 break;
1764 }
1765
1766 /*
1767 * Set the new end of the file and link the new block into the BAT.
1768 */
1769 pImage->uCurrentEndOfFile += pImage->cDataBlockBitmapSectors * VHD_SECTOR_SIZE + pImage->cbDataBlock;
1770
1771 /* Update the footer. */
1772 rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage,
1773 pImage->uCurrentEndOfFile,
1774 &pImage->vhdFooterCopy,
1775 sizeof(VHDFooter), pIoCtx,
1776 vhdAsyncExpansionFooterUpdateComplete,
1777 pExpand);
1778 if (RT_SUCCESS(rc))
1779 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_FOOTER_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_SUCCESS);
1780 else if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
1781 fIoInProgress = true;
1782 else
1783 {
1784 VHDIMAGEEXPAND_STATUS_SET(pExpand->fFlags, VHDIMAGEEXPAND_FOOTER_STATUS_SHIFT, VHDIMAGEEXPAND_STEP_FAILED);
1785 break;
1786 }
1787
1788 } while (0);
1789
1790 if (!fIoInProgress)
1791 vhdAsyncExpansionComplete(pImage, pIoCtx, pExpand);
1792 else
1793 rc = VERR_VD_ASYNC_IO_IN_PROGRESS;
1794 }
1795 else
1796 {
1797 /*
1798 * Calculate the real offset in the file.
1799 */
1800 uVhdOffset = ((uint64_t)pImage->pBlockAllocationTable[cBlockAllocationTableEntry] + pImage->cDataBlockBitmapSectors + cBATEntryIndex) * VHD_SECTOR_SIZE;
1801
1802 /* Read in the block's bitmap. */
1803 PVDMETAXFER pMetaXfer;
1804 rc = vdIfIoIntFileReadMeta(pImage->pIfIo, pImage->pStorage,
1805 ((uint64_t)pImage->pBlockAllocationTable[cBlockAllocationTableEntry]) * VHD_SECTOR_SIZE,
1806 pImage->pu8Bitmap,
1807 pImage->cbDataBlockBitmap, pIoCtx,
1808 &pMetaXfer, NULL, NULL);
1809 if (RT_SUCCESS(rc))
1810 {
1811 vdIfIoIntMetaXferRelease(pImage->pIfIo, pMetaXfer);
1812
1813 /* Write data. */
1814 rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pImage->pStorage,
1815 uVhdOffset, pIoCtx, cbToWrite,
1816 NULL, NULL);
1817 if (RT_SUCCESS(rc) || rc == VERR_VD_ASYNC_IO_IN_PROGRESS)
1818 {
1819 bool fChanged = false;
1820
1821 /* Set the bits for all sectors having been written. */
1822 for (uint32_t iSector = 0; iSector < (cbToWrite / VHD_SECTOR_SIZE); iSector++)
1823 {
1824 fChanged |= vhdBlockBitmapSectorSet(pImage, pImage->pu8Bitmap, cBATEntryIndex);
1825 cBATEntryIndex++;
1826 }
1827
1828 /* Only write the bitmap if it was changed. */
1829 if (fChanged)
1830 {
1831 /*
1832 * Write the bitmap back.
1833 *
1834 * @note We don't have a completion callback here because we
1835 * can't do anything if the write fails for some reason.
1836 * The error will propagated to the device/guest
1837 * by the generic VD layer already and we don't need
1838 * to rollback anything here.
1839 */
1840 rc = vdIfIoIntFileWriteMeta(pImage->pIfIo, pImage->pStorage,
1841 ((uint64_t)pImage->pBlockAllocationTable[cBlockAllocationTableEntry]) * VHD_SECTOR_SIZE,
1842 pImage->pu8Bitmap,
1843 pImage->cbDataBlockBitmap,
1844 pIoCtx, NULL, NULL);
1845 }
1846 }
1847 }
1848 }
1849 }
1850 else
1851 rc = vdIfIoIntFileWriteUser(pImage->pIfIo, pImage->pStorage,
1852 uOffset, pIoCtx, cbToWrite, NULL, NULL);
1853
1854 if (pcbWriteProcess)
1855 *pcbWriteProcess = cbToWrite;
1856
1857 /* Stay on the safe side. Do not run the risk of confusing the higher
1858 * level, as that can be pretty lethal to image consistency. */
1859 *pcbPreRead = 0;
1860 *pcbPostRead = 0;
1861
1862 return rc;
1863}
1864
1865/** @interface_method_impl{VDIMAGEBACKEND,pfnFlush} */
1866static DECLCALLBACK(int) vhdFlush(void *pBackendData, PVDIOCTX pIoCtx)
1867{
1868 LogFlowFunc(("pBackendData=%#p\n", pBackendData));
1869 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1870
1871 /* No need to write anything here. Data is always updated on a write. */
1872 int rc = vdIfIoIntFileFlush(pImage->pIfIo, pImage->pStorage, pIoCtx, NULL, NULL);
1873 LogFlowFunc(("returns %Rrc\n", rc));
1874 return rc;
1875}
1876
1877/** @interface_method_impl{VDIMAGEBACKEND,pfnGetVersion} */
1878static DECLCALLBACK(unsigned) vhdGetVersion(void *pBackendData)
1879{
1880 LogFlowFunc(("pBackendData=%#p\n", pBackendData));
1881 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1882
1883 AssertPtrReturn(pImage, 0);
1884
1885 unsigned uVersion = 1; /**< @todo use correct version */
1886
1887 LogFlowFunc(("returns %u\n", uVersion));
1888 return uVersion;
1889}
1890
1891/** @interface_method_impl{VDIMAGEBACKEND,pfnGetFileSize} */
1892static DECLCALLBACK(uint64_t) vhdGetFileSize(void *pBackendData)
1893{
1894 LogFlowFunc(("pBackendData=%#p\n", pBackendData));
1895 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1896 uint64_t cb = 0;
1897
1898 AssertPtrReturn(pImage, 0);
1899
1900 if (pImage->pStorage)
1901 cb = pImage->uCurrentEndOfFile + sizeof(VHDFooter);
1902
1903 LogFlowFunc(("returns %lld\n", cb));
1904 return cb;
1905}
1906
1907/** @interface_method_impl{VDIMAGEBACKEND,pfnGetPCHSGeometry} */
1908static DECLCALLBACK(int) vhdGetPCHSGeometry(void *pBackendData, PVDGEOMETRY pPCHSGeometry)
1909{
1910 LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p\n", pBackendData, pPCHSGeometry));
1911 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1912 int rc = VINF_SUCCESS;
1913
1914 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
1915
1916 if (pImage->PCHSGeometry.cCylinders)
1917 *pPCHSGeometry = pImage->PCHSGeometry;
1918 else
1919 rc = VERR_VD_GEOMETRY_NOT_SET;
1920
1921 LogFlowFunc(("returns %Rrc (CHS=%u/%u/%u)\n", rc, pImage->PCHSGeometry.cCylinders,
1922 pImage->PCHSGeometry.cHeads, pImage->PCHSGeometry.cSectors));
1923 return rc;
1924}
1925
1926/** @interface_method_impl{VDIMAGEBACKEND,pfnSetPCHSGeometry} */
1927static DECLCALLBACK(int) vhdSetPCHSGeometry(void *pBackendData, PCVDGEOMETRY pPCHSGeometry)
1928{
1929 LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p PCHS=%u/%u/%u\n",
1930 pBackendData, pPCHSGeometry, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors));
1931 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1932 int rc = VINF_SUCCESS;
1933
1934 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
1935
1936 if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
1937 rc = VERR_VD_IMAGE_READ_ONLY;
1938 else
1939 pImage->PCHSGeometry = *pPCHSGeometry;
1940
1941 LogFlowFunc(("returns %Rrc\n", rc));
1942 return rc;
1943}
1944
1945/** @interface_method_impl{VDIMAGEBACKEND,pfnGetLCHSGeometry} */
1946static DECLCALLBACK(int) vhdGetLCHSGeometry(void *pBackendData, PVDGEOMETRY pLCHSGeometry)
1947{
1948 LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p\n", pBackendData, pLCHSGeometry));
1949 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1950 int rc = VINF_SUCCESS;
1951
1952 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
1953
1954 if (pImage->LCHSGeometry.cCylinders)
1955 *pLCHSGeometry = pImage->LCHSGeometry;
1956 else
1957 rc = VERR_VD_GEOMETRY_NOT_SET;
1958
1959 LogFlowFunc(("returns %Rrc (CHS=%u/%u/%u)\n", rc, pImage->LCHSGeometry.cCylinders,
1960 pImage->LCHSGeometry.cHeads, pImage->LCHSGeometry.cSectors));
1961 return rc;
1962}
1963
1964/** @interface_method_impl{VDIMAGEBACKEND,pfnSetLCHSGeometry} */
1965static DECLCALLBACK(int) vhdSetLCHSGeometry(void *pBackendData, PCVDGEOMETRY pLCHSGeometry)
1966{
1967 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
1968 int rc = VINF_SUCCESS;
1969
1970 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
1971
1972 if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
1973 rc = VERR_VD_IMAGE_READ_ONLY;
1974 else
1975 pImage->LCHSGeometry = *pLCHSGeometry;
1976
1977 LogFlowFunc(("returns %Rrc\n", rc));
1978 return rc;
1979}
1980
1981/** @copydoc VDIMAGEBACKEND::pfnQueryRegions */
1982static DECLCALLBACK(int) vhdQueryRegions(void *pBackendData, PCVDREGIONLIST *ppRegionList)
1983{
1984 LogFlowFunc(("pBackendData=%#p ppRegionList=%#p\n", pBackendData, ppRegionList));
1985 PVHDIMAGE pThis = (PVHDIMAGE)pBackendData;
1986
1987 AssertPtrReturn(pThis, VERR_VD_NOT_OPENED);
1988
1989 *ppRegionList = &pThis->RegionList;
1990 LogFlowFunc(("returns %Rrc\n", VINF_SUCCESS));
1991 return VINF_SUCCESS;
1992}
1993
1994/** @copydoc VDIMAGEBACKEND::pfnRegionListRelease */
1995static DECLCALLBACK(void) vhdRegionListRelease(void *pBackendData, PCVDREGIONLIST pRegionList)
1996{
1997 RT_NOREF1(pRegionList);
1998 LogFlowFunc(("pBackendData=%#p pRegionList=%#p\n", pBackendData, pRegionList));
1999 PVHDIMAGE pThis = (PVHDIMAGE)pBackendData;
2000 AssertPtr(pThis); RT_NOREF(pThis);
2001
2002 /* Nothing to do here. */
2003}
2004
2005/** @interface_method_impl{VDIMAGEBACKEND,pfnGetImageFlags} */
2006static DECLCALLBACK(unsigned) vhdGetImageFlags(void *pBackendData)
2007{
2008 LogFlowFunc(("pBackendData=%#p\n", pBackendData));
2009 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2010
2011 AssertPtrReturn(pImage, 0);
2012
2013 LogFlowFunc(("returns %#x\n", pImage->uImageFlags));
2014 return pImage->uImageFlags;
2015}
2016
2017/** @interface_method_impl{VDIMAGEBACKEND,pfnGetOpenFlags} */
2018static DECLCALLBACK(unsigned) vhdGetOpenFlags(void *pBackendData)
2019{
2020 LogFlowFunc(("pBackendData=%#p\n", pBackendData));
2021 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2022
2023 AssertPtrReturn(pImage, 0);
2024
2025 LogFlowFunc(("returns %#x\n", pImage->uOpenFlags));
2026 return pImage->uOpenFlags;
2027}
2028
2029/** @interface_method_impl{VDIMAGEBACKEND,pfnSetOpenFlags} */
2030static DECLCALLBACK(int) vhdSetOpenFlags(void *pBackendData, unsigned uOpenFlags)
2031{
2032 LogFlowFunc(("pBackendData=%#p\n uOpenFlags=%#x", pBackendData, uOpenFlags));
2033 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2034 int rc = VINF_SUCCESS;
2035
2036 /* Image must be opened and the new flags must be valid. */
2037 if (!pImage || (uOpenFlags & ~( VD_OPEN_FLAGS_READONLY | VD_OPEN_FLAGS_INFO
2038 | VD_OPEN_FLAGS_ASYNC_IO | VD_OPEN_FLAGS_SHAREABLE
2039 | VD_OPEN_FLAGS_SEQUENTIAL | VD_OPEN_FLAGS_SKIP_CONSISTENCY_CHECKS)))
2040 rc = VERR_INVALID_PARAMETER;
2041 else
2042 {
2043 /* Implement this operation via reopening the image. */
2044 rc = vhdFreeImage(pImage, false);
2045 if (RT_SUCCESS(rc))
2046 rc = vhdOpenImage(pImage, uOpenFlags);
2047 }
2048
2049 LogFlowFunc(("returns %Rrc\n", rc));
2050 return rc;
2051}
2052
2053/** @interface_method_impl{VDIMAGEBACKEND,pfnGetComment} */
2054static DECLCALLBACK(int) vhdGetComment(void *pBackendData, char *pszComment,
2055 size_t cbComment)
2056{
2057 RT_NOREF2(pszComment, cbComment);
2058 LogFlowFunc(("pBackendData=%#p pszComment=%#p cbComment=%zu\n", pBackendData, pszComment, cbComment));
2059 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2060
2061 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2062
2063 LogFlowFunc(("returns %Rrc comment='%s'\n", VERR_NOT_SUPPORTED, pszComment));
2064 return VERR_NOT_SUPPORTED;
2065}
2066
2067/** @interface_method_impl{VDIMAGEBACKEND,pfnSetComment} */
2068static DECLCALLBACK(int) vhdSetComment(void *pBackendData, const char *pszComment)
2069{
2070 RT_NOREF1(pszComment);
2071 LogFlowFunc(("pBackendData=%#p pszComment=\"%s\"\n", pBackendData, pszComment));
2072 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2073
2074 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2075
2076 int rc;
2077 if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
2078 rc = VERR_VD_IMAGE_READ_ONLY;
2079 else
2080 rc = VERR_NOT_SUPPORTED;
2081
2082 LogFlowFunc(("returns %Rrc\n", rc));
2083 return rc;
2084}
2085
2086/** @interface_method_impl{VDIMAGEBACKEND,pfnGetUuid} */
2087static DECLCALLBACK(int) vhdGetUuid(void *pBackendData, PRTUUID pUuid)
2088{
2089 LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
2090 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2091
2092 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2093
2094 *pUuid = pImage->ImageUuid;
2095
2096 LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid));
2097 return VINF_SUCCESS;
2098}
2099
2100/** @interface_method_impl{VDIMAGEBACKEND,pfnSetUuid} */
2101static DECLCALLBACK(int) vhdSetUuid(void *pBackendData, PCRTUUID pUuid)
2102{
2103 LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
2104 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2105 int rc = VINF_SUCCESS;
2106
2107 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2108
2109 if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY))
2110 {
2111 pImage->ImageUuid = *pUuid;
2112 /* Update the footer copy. It will get written to disk when the image is closed. */
2113 memcpy(&pImage->vhdFooterCopy.UniqueID, pUuid, 16);
2114 /* Update checksum. */
2115 pImage->vhdFooterCopy.Checksum = 0;
2116 pImage->vhdFooterCopy.Checksum = RT_H2BE_U32(vhdChecksum(&pImage->vhdFooterCopy, sizeof(VHDFooter)));
2117
2118 /* Need to update the dynamic disk header to update the disk footer copy at the beginning. */
2119 if (!(pImage->uImageFlags & VD_IMAGE_FLAGS_FIXED))
2120 pImage->fDynHdrNeedsUpdate = true;
2121 }
2122 else
2123 rc = VERR_VD_IMAGE_READ_ONLY;
2124
2125 LogFlowFunc(("returns %Rrc\n", rc));
2126 return rc;
2127}
2128
2129/** @interface_method_impl{VDIMAGEBACKEND,pfnGetModificationUuid} */
2130static DECLCALLBACK(int) vhdGetModificationUuid(void *pBackendData, PRTUUID pUuid)
2131{
2132 RT_NOREF1(pUuid);
2133 LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
2134 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2135
2136 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2137
2138 LogFlowFunc(("returns %Rrc (%RTuuid)\n", VERR_NOT_SUPPORTED, pUuid));
2139 return VERR_NOT_SUPPORTED;
2140}
2141
2142/** @interface_method_impl{VDIMAGEBACKEND,pfnSetModificationUuid} */
2143static DECLCALLBACK(int) vhdSetModificationUuid(void *pBackendData, PCRTUUID pUuid)
2144{
2145 RT_NOREF1(pUuid);
2146 LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
2147 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2148
2149 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2150
2151 int rc;
2152 if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
2153 rc = VERR_VD_IMAGE_READ_ONLY;
2154 else
2155 rc = VERR_NOT_SUPPORTED;
2156
2157 LogFlowFunc(("returns %Rrc\n", rc));
2158 return rc;
2159}
2160
2161/** @interface_method_impl{VDIMAGEBACKEND,pfnGetParentUuid} */
2162static DECLCALLBACK(int) vhdGetParentUuid(void *pBackendData, PRTUUID pUuid)
2163{
2164 LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
2165 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2166
2167 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2168
2169 *pUuid = pImage->ParentUuid;
2170
2171 LogFlowFunc(("returns %Rrc (%RTuuid)\n", VINF_SUCCESS, pUuid));
2172 return VINF_SUCCESS;
2173}
2174
2175/** @interface_method_impl{VDIMAGEBACKEND,pfnSetParentUuid} */
2176static DECLCALLBACK(int) vhdSetParentUuid(void *pBackendData, PCRTUUID pUuid)
2177{
2178 LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
2179 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2180 int rc = VINF_SUCCESS;
2181
2182 if (pImage && pImage->pStorage)
2183 {
2184 if (!(pImage->uImageFlags & VD_IMAGE_FLAGS_FIXED))
2185 {
2186 pImage->ParentUuid = *pUuid;
2187 pImage->fDynHdrNeedsUpdate = true;
2188 }
2189 else
2190 rc = VERR_VD_IMAGE_READ_ONLY;
2191 }
2192 else
2193 rc = VERR_VD_NOT_OPENED;
2194
2195 LogFlowFunc(("returns %Rrc\n", rc));
2196 return rc;
2197}
2198
2199/** @interface_method_impl{VDIMAGEBACKEND,pfnGetParentModificationUuid} */
2200static DECLCALLBACK(int) vhdGetParentModificationUuid(void *pBackendData, PRTUUID pUuid)
2201{
2202 RT_NOREF1(pUuid);
2203 LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid));
2204 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2205
2206 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2207
2208 LogFlowFunc(("returns %Rrc (%RTuuid)\n", VERR_NOT_SUPPORTED, pUuid));
2209 return VERR_NOT_SUPPORTED;
2210}
2211
2212/** @interface_method_impl{VDIMAGEBACKEND,pfnSetParentModificationUuid} */
2213static DECLCALLBACK(int) vhdSetParentModificationUuid(void *pBackendData, PCRTUUID pUuid)
2214{
2215 RT_NOREF1(pUuid);
2216 LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid));
2217 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2218
2219 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2220
2221 int rc;
2222 if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
2223 rc = VERR_VD_IMAGE_READ_ONLY;
2224 else
2225 rc = VERR_NOT_SUPPORTED;
2226
2227 LogFlowFunc(("returns %Rrc\n", rc));
2228 return rc;
2229}
2230
2231/** @interface_method_impl{VDIMAGEBACKEND,pfnDump} */
2232static DECLCALLBACK(void) vhdDump(void *pBackendData)
2233{
2234 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2235
2236 AssertPtrReturnVoid(pImage);
2237 vdIfErrorMessage(pImage->pIfError, "Header: Geometry PCHS=%u/%u/%u LCHS=%u/%u/%u cbSector=%u\n",
2238 pImage->PCHSGeometry.cCylinders, pImage->PCHSGeometry.cHeads, pImage->PCHSGeometry.cSectors,
2239 pImage->LCHSGeometry.cCylinders, pImage->LCHSGeometry.cHeads, pImage->LCHSGeometry.cSectors,
2240 VHD_SECTOR_SIZE);
2241 vdIfErrorMessage(pImage->pIfError, "Header: uuidCreation={%RTuuid}\n", &pImage->ImageUuid);
2242 vdIfErrorMessage(pImage->pIfError, "Header: uuidParent={%RTuuid}\n", &pImage->ParentUuid);
2243}
2244
2245/** @interface_method_impl{VDIMAGEBACKEND,pfnGetTimestamp} */
2246static DECLCALLBACK(int) vhdGetTimestamp(void *pBackendData, PRTTIMESPEC pTimestamp)
2247{
2248 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2249
2250 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2251
2252 int rc = vdIfIoIntFileGetModificationTime(pImage->pIfIo, pImage->pszFilename, pTimestamp);
2253
2254 LogFlowFunc(("returns %Rrc\n", rc));
2255 return rc;
2256}
2257
2258/** @interface_method_impl{VDIMAGEBACKEND,pfnGetParentTimestamp} */
2259static DECLCALLBACK(int) vhdGetParentTimestamp(void *pBackendData, PRTTIMESPEC pTimestamp)
2260{
2261 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2262
2263 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2264
2265 vhdTime2RtTime(pTimestamp, pImage->u32ParentTimestamp);
2266 LogFlowFunc(("returns %Rrc\n", VINF_SUCCESS));
2267 return VINF_SUCCESS;
2268}
2269
2270/** @interface_method_impl{VDIMAGEBACKEND,pfnSetParentTimestamp} */
2271static DECLCALLBACK(int) vhdSetParentTimestamp(void *pBackendData, PCRTTIMESPEC pTimestamp)
2272{
2273 int rc = VINF_SUCCESS;
2274 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2275
2276 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2277 if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
2278 rc = VERR_VD_IMAGE_READ_ONLY;
2279 else
2280 {
2281 pImage->u32ParentTimestamp = vhdRtTime2VhdTime(pTimestamp);
2282 pImage->fDynHdrNeedsUpdate = true;
2283 }
2284
2285 LogFlowFunc(("returns %Rrc\n", rc));
2286 return rc;
2287}
2288
2289/** @interface_method_impl{VDIMAGEBACKEND,pfnGetParentFilename} */
2290static DECLCALLBACK(int) vhdGetParentFilename(void *pBackendData, char **ppszParentFilename)
2291{
2292 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2293
2294 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2295 *ppszParentFilename = RTStrDup(pImage->pszParentFilename);
2296
2297 LogFlowFunc(("returns %Rrc\n", VINF_SUCCESS));
2298 return VINF_SUCCESS;
2299}
2300
2301/** @interface_method_impl{VDIMAGEBACKEND,pfnSetParentFilename} */
2302static DECLCALLBACK(int) vhdSetParentFilename(void *pBackendData, const char *pszParentFilename)
2303{
2304 int rc = VINF_SUCCESS;
2305 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2306
2307 AssertPtrReturn(pImage, VERR_VD_NOT_OPENED);
2308
2309 if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)
2310 rc = VERR_VD_IMAGE_READ_ONLY;
2311 else
2312 {
2313 if (pImage->pszParentFilename)
2314 RTStrFree(pImage->pszParentFilename);
2315 pImage->pszParentFilename = RTStrDup(pszParentFilename);
2316 if (!pImage->pszParentFilename)
2317 rc = VERR_NO_MEMORY;
2318 else
2319 pImage->fDynHdrNeedsUpdate = true;
2320 }
2321
2322 LogFlowFunc(("returns %Rrc\n", rc));
2323 return rc;
2324}
2325
2326/** @interface_method_impl{VDIMAGEBACKEND,pfnCompact} */
2327static DECLCALLBACK(int) vhdCompact(void *pBackendData, unsigned uPercentStart,
2328 unsigned uPercentSpan, PVDINTERFACE pVDIfsDisk,
2329 PVDINTERFACE pVDIfsImage, PVDINTERFACE pVDIfsOperation)
2330{
2331 RT_NOREF2(pVDIfsDisk, pVDIfsImage);
2332 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2333 int rc = VINF_SUCCESS;
2334 void *pvBuf = NULL;
2335 uint32_t *paBlocks = NULL;
2336 PVDINTERFACEPROGRESS pIfProgress = VDIfProgressGet(pVDIfsOperation);
2337
2338 DECLCALLBACKMEMBER(int, pfnParentRead)(void *, uint64_t, void *, size_t) = NULL;
2339 void *pvParent = NULL;
2340 PVDINTERFACEPARENTSTATE pIfParentState = VDIfParentStateGet(pVDIfsOperation);
2341 if (pIfParentState)
2342 {
2343 pfnParentRead = pIfParentState->pfnParentRead;
2344 pvParent = pIfParentState->Core.pvUser;
2345 }
2346
2347 do
2348 {
2349 AssertBreakStmt(pImage, rc = VERR_INVALID_PARAMETER);
2350
2351 AssertBreakStmt(!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY),
2352 rc = VERR_VD_IMAGE_READ_ONLY);
2353
2354 /* Reject fixed images as they don't have a BAT. */
2355 if (pImage->uImageFlags & VD_IMAGE_FLAGS_FIXED)
2356 {
2357 rc = VERR_NOT_SUPPORTED;
2358 break;
2359 }
2360
2361 if (pfnParentRead)
2362 {
2363 pvParent = RTMemTmpAlloc(pImage->cbDataBlock);
2364 AssertBreakStmt(pvParent, rc = VERR_NO_MEMORY);
2365 }
2366 pvBuf = RTMemTmpAlloc(pImage->cbDataBlock);
2367 AssertBreakStmt(pvBuf, rc = VERR_NO_MEMORY);
2368
2369 unsigned cBlocksAllocated = 0;
2370 unsigned cBlocksToMove = 0;
2371 unsigned cBlocks = pImage->cBlockAllocationTableEntries;
2372 uint32_t offBlocksStart = ~0U; /* Start offset of data blocks in sectors. */
2373 uint32_t *paBat = pImage->pBlockAllocationTable;
2374
2375 /* Count the number of allocated blocks and find the start offset for the data blocks. */
2376 for (unsigned i = 0; i < cBlocks; i++)
2377 if (paBat[i] != ~0U)
2378 {
2379 cBlocksAllocated++;
2380 if (paBat[i] < offBlocksStart)
2381 offBlocksStart = paBat[i];
2382 }
2383
2384 if (!cBlocksAllocated)
2385 {
2386 /* Nothing to do. */
2387 rc = VINF_SUCCESS;
2388 break;
2389 }
2390
2391 paBlocks = (uint32_t *)RTMemTmpAllocZ(cBlocksAllocated * sizeof(uint32_t));
2392 AssertBreakStmt(paBlocks, rc = VERR_NO_MEMORY);
2393
2394 /* Invalidate the back resolving array. */
2395 for (unsigned i = 0; i < cBlocksAllocated; i++)
2396 paBlocks[i] = ~0U;
2397
2398 /* Fill the back resolving table. */
2399 for (unsigned i = 0; i < cBlocks; i++)
2400 if (paBat[i] != ~0U)
2401 {
2402 unsigned idxBlock = (paBat[i] - offBlocksStart) / pImage->cSectorsPerDataBlock;
2403 if ( idxBlock < cBlocksAllocated
2404 && paBlocks[idxBlock] == ~0U)
2405 paBlocks[idxBlock] = i;
2406 else
2407 {
2408 /* The image is in an inconsistent state. Don't go further. */
2409 rc = VERR_INVALID_STATE;
2410 break;
2411 }
2412 }
2413
2414 if (RT_FAILURE(rc))
2415 break;
2416
2417 /* Find redundant information and update the block pointers
2418 * accordingly, creating bubbles. Keep disk up to date, as this
2419 * enables cancelling. */
2420 for (unsigned i = 0; i < cBlocks; i++)
2421 {
2422 if (paBat[i] != ~0U)
2423 {
2424 unsigned idxBlock = (paBat[i] - offBlocksStart) / pImage->cSectorsPerDataBlock;
2425
2426 /* Block present in image file, read relevant data. */
2427 uint64_t u64Offset = ((uint64_t)paBat[i] + pImage->cDataBlockBitmapSectors) * VHD_SECTOR_SIZE;
2428 rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage,
2429 u64Offset, pvBuf, pImage->cbDataBlock);
2430 if (RT_FAILURE(rc))
2431 break;
2432
2433 if (ASMBitFirstSet((volatile void *)pvBuf, (uint32_t)pImage->cbDataBlock * 8) == -1)
2434 {
2435 paBat[i] = UINT32_MAX;
2436 paBlocks[idxBlock] = ~0U;
2437 /* Adjust progress info, one block to be relocated. */
2438 cBlocksToMove++;
2439 }
2440 else if (pfnParentRead)
2441 {
2442 rc = pfnParentRead(pvParent, (uint64_t)i * pImage->cbDataBlock, pvParent, pImage->cbDataBlock);
2443 if (RT_FAILURE(rc))
2444 break;
2445 if (!memcmp(pvParent, pvBuf, pImage->cbDataBlock))
2446 {
2447 paBat[i] = ~0U;
2448 paBlocks[idxBlock] = ~0U;
2449 /* Adjust progress info, one block to be relocated. */
2450 cBlocksToMove++;
2451 }
2452 }
2453 }
2454
2455 vdIfProgress(pIfProgress, (uint64_t)i * uPercentSpan / (cBlocks + cBlocksToMove) + uPercentStart);
2456 }
2457
2458 if (RT_SUCCESS(rc))
2459 {
2460 /* Fill bubbles with other data (if available). */
2461 unsigned cBlocksMoved = 0;
2462 unsigned uBlockUsedPos = cBlocksAllocated;
2463 size_t cbBlock = pImage->cbDataBlock + pImage->cbDataBlockBitmap; /** < Size of whole block containing the bitmap and the user data. */
2464
2465 /* Allocate data buffer to hold the data block and allocation bitmap in front of the actual data. */
2466 RTMemTmpFree(pvBuf);
2467 pvBuf = RTMemTmpAllocZ(cbBlock);
2468 AssertBreakStmt(pvBuf, rc = VERR_NO_MEMORY);
2469
2470 for (unsigned i = 0; i < cBlocksAllocated; i++)
2471 {
2472 unsigned uBlock = paBlocks[i];
2473 if (uBlock == ~0U)
2474 {
2475 unsigned uBlockData = ~0U;
2476 while (uBlockUsedPos > i && uBlockData == ~0U)
2477 {
2478 uBlockUsedPos--;
2479 uBlockData = paBlocks[uBlockUsedPos];
2480 }
2481 /* Terminate early if there is no block which needs copying. */
2482 if (uBlockUsedPos == i)
2483 break;
2484 uint64_t u64Offset = (uint64_t)uBlockUsedPos * cbBlock
2485 + (offBlocksStart * VHD_SECTOR_SIZE);
2486 rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage,
2487 u64Offset, pvBuf, cbBlock);
2488 if (RT_FAILURE(rc))
2489 break;
2490
2491 u64Offset = (uint64_t)i * cbBlock
2492 + (offBlocksStart * VHD_SECTOR_SIZE);
2493 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
2494 u64Offset, pvBuf, cbBlock);
2495 if (RT_FAILURE(rc))
2496 break;
2497
2498 paBat[uBlockData] = i*(pImage->cSectorsPerDataBlock + pImage->cDataBlockBitmapSectors) + offBlocksStart;
2499
2500 /* Truncate the file but leave enough room for the footer to avoid
2501 * races if other processes fill the whole harddisk. */
2502 rc = vdIfIoIntFileSetSize(pImage->pIfIo, pImage->pStorage,
2503 pImage->uCurrentEndOfFile - cbBlock + VHD_SECTOR_SIZE);
2504 if (RT_FAILURE(rc))
2505 break;
2506
2507 /* Update pointers and write footer. */
2508 pImage->uCurrentEndOfFile -= cbBlock;
2509
2510 /* We're kinda screwed if this failes. */
2511 rc = vhdUpdateFooter(pImage);
2512 if (RT_FAILURE(rc))
2513 break;
2514
2515 paBlocks[i] = uBlockData;
2516 paBlocks[uBlockUsedPos] = ~0U;
2517 cBlocksMoved++;
2518 }
2519
2520 rc = vdIfProgress(pIfProgress, (uint64_t)(cBlocks + cBlocksMoved) * uPercentSpan / (cBlocks + cBlocksToMove) + uPercentStart);
2521 }
2522 }
2523
2524 /* Write the new BAT in any case. */
2525 rc = vhdFlushImage(pImage);
2526 } while (0);
2527
2528 if (paBlocks)
2529 RTMemTmpFree(paBlocks);
2530 if (pvParent)
2531 RTMemTmpFree(pvParent);
2532 if (pvBuf)
2533 RTMemTmpFree(pvBuf);
2534
2535 if (RT_SUCCESS(rc))
2536 vdIfProgress(pIfProgress, uPercentStart + uPercentSpan);
2537
2538 LogFlowFunc(("returns %Rrc\n", rc));
2539 return rc;
2540}
2541
2542/** @interface_method_impl{VDIMAGEBACKEND,pfnResize} */
2543static DECLCALLBACK(int) vhdResize(void *pBackendData, uint64_t cbSize,
2544 PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry,
2545 unsigned uPercentStart, unsigned uPercentSpan,
2546 PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage,
2547 PVDINTERFACE pVDIfsOperation)
2548{
2549 RT_NOREF5(uPercentSpan, uPercentStart, pVDIfsDisk, pVDIfsImage, pVDIfsOperation);
2550 PVHDIMAGE pImage = (PVHDIMAGE)pBackendData;
2551 int rc = VINF_SUCCESS;
2552
2553 /* Making the image smaller is not supported at the moment. */
2554 if (cbSize < pImage->cbSize)
2555 rc = VERR_VD_SHRINK_NOT_SUPPORTED;
2556 else if (pImage->uImageFlags & VD_IMAGE_FLAGS_FIXED)
2557 rc = VERR_NOT_SUPPORTED;
2558 else if (cbSize > pImage->cbSize)
2559 {
2560 unsigned cBlocksAllocated = 0;
2561 size_t cbBlock = pImage->cbDataBlock + pImage->cbDataBlockBitmap; /** < Size of a block including the sector bitmap. */
2562 uint32_t cBlocksNew = cbSize / pImage->cbDataBlock; /** < New number of blocks in the image after the resize */
2563 if (cbSize % pImage->cbDataBlock)
2564 cBlocksNew++;
2565
2566 uint32_t cBlocksOld = pImage->cBlockAllocationTableEntries; /** < Number of blocks before the resize. */
2567 uint64_t cbBlockspaceNew = RT_ALIGN_32(cBlocksNew * sizeof(uint32_t), VHD_SECTOR_SIZE); /** < Required space for the block array after the resize. */
2568 uint64_t offStartDataNew = RT_ALIGN_32(pImage->uBlockAllocationTableOffset + cbBlockspaceNew, VHD_SECTOR_SIZE); /** < New start offset for block data after the resize */
2569 uint64_t offStartDataOld = ~0ULL;
2570
2571 /* Go through the BAT and find the data start offset. */
2572 for (unsigned idxBlock = 0; idxBlock < pImage->cBlockAllocationTableEntries; idxBlock++)
2573 {
2574 if (pImage->pBlockAllocationTable[idxBlock] != ~0U)
2575 {
2576 uint64_t offStartBlock = (uint64_t)pImage->pBlockAllocationTable[idxBlock] * VHD_SECTOR_SIZE;
2577 if (offStartBlock < offStartDataOld)
2578 offStartDataOld = offStartBlock;
2579 cBlocksAllocated++;
2580 }
2581 }
2582
2583 if ( offStartDataOld != offStartDataNew
2584 && cBlocksAllocated > 0)
2585 {
2586 /* Calculate how many sectors nee to be relocated. */
2587 uint64_t cbOverlapping = offStartDataNew - offStartDataOld;
2588 unsigned cBlocksReloc = (unsigned)(cbOverlapping / cbBlock);
2589 if (cbOverlapping % cbBlock)
2590 cBlocksReloc++;
2591
2592 cBlocksReloc = RT_MIN(cBlocksReloc, cBlocksAllocated);
2593 offStartDataNew = offStartDataOld;
2594
2595 /* Do the relocation. */
2596 LogFlow(("Relocating %u blocks\n", cBlocksReloc));
2597
2598 /*
2599 * Get the blocks we need to relocate first, they are appended to the end
2600 * of the image.
2601 */
2602 void *pvBuf = NULL, *pvZero = NULL;
2603 do
2604 {
2605 /* Allocate data buffer. */
2606 pvBuf = RTMemAllocZ(cbBlock);
2607 if (!pvBuf)
2608 {
2609 rc = VERR_NO_MEMORY;
2610 break;
2611 }
2612
2613 /* Allocate buffer for overwriting with zeroes. */
2614 pvZero = RTMemAllocZ(cbBlock);
2615 if (!pvZero)
2616 {
2617 rc = VERR_NO_MEMORY;
2618 break;
2619 }
2620
2621 for (unsigned i = 0; i < cBlocksReloc; i++)
2622 {
2623 uint32_t uBlock = offStartDataNew / VHD_SECTOR_SIZE;
2624
2625 /* Search the index in the block table. */
2626 for (unsigned idxBlock = 0; idxBlock < cBlocksOld; idxBlock++)
2627 {
2628 if (pImage->pBlockAllocationTable[idxBlock] == uBlock)
2629 {
2630 /* Read data and append to the end of the image. */
2631 rc = vdIfIoIntFileReadSync(pImage->pIfIo, pImage->pStorage,
2632 offStartDataNew, pvBuf, cbBlock);
2633 if (RT_FAILURE(rc))
2634 break;
2635
2636 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
2637 pImage->uCurrentEndOfFile, pvBuf, cbBlock);
2638 if (RT_FAILURE(rc))
2639 break;
2640
2641 /* Zero out the old block area. */
2642 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
2643 offStartDataNew, pvZero, cbBlock);
2644 if (RT_FAILURE(rc))
2645 break;
2646
2647 /* Update block counter. */
2648 pImage->pBlockAllocationTable[idxBlock] = pImage->uCurrentEndOfFile / VHD_SECTOR_SIZE;
2649
2650 pImage->uCurrentEndOfFile += cbBlock;
2651
2652 /* Continue with the next block. */
2653 break;
2654 }
2655 }
2656
2657 if (RT_FAILURE(rc))
2658 break;
2659
2660 offStartDataNew += cbBlock;
2661 }
2662 } while (0);
2663
2664 if (pvBuf)
2665 RTMemFree(pvBuf);
2666 if (pvZero)
2667 RTMemFree(pvZero);
2668 }
2669
2670 /*
2671 * Relocation done, expand the block array and update the header with
2672 * the new data.
2673 */
2674 if (RT_SUCCESS(rc))
2675 {
2676 uint32_t *paBlocksNew = (uint32_t *)RTMemRealloc(pImage->pBlockAllocationTable, cBlocksNew * sizeof(uint32_t));
2677 if (paBlocksNew)
2678 {
2679 pImage->pBlockAllocationTable = paBlocksNew;
2680
2681 /* Mark the new blocks as unallocated. */
2682 for (unsigned idxBlock = cBlocksOld; idxBlock < cBlocksNew; idxBlock++)
2683 pImage->pBlockAllocationTable[idxBlock] = ~0U;
2684 }
2685 else
2686 rc = VERR_NO_MEMORY;
2687
2688 if (RT_SUCCESS(rc))
2689 {
2690 /* Write the block array before updating the rest. */
2691 rc = vdIfIoIntFileWriteSync(pImage->pIfIo, pImage->pStorage,
2692 pImage->uBlockAllocationTableOffset,
2693 pImage->pBlockAllocationTable,
2694 cBlocksNew * sizeof(uint32_t));
2695 }
2696
2697 if (RT_SUCCESS(rc))
2698 {
2699 /* Update size and new block count. */
2700 pImage->cBlockAllocationTableEntries = cBlocksNew;
2701 pImage->cbSize = cbSize;
2702
2703 /* Update geometry. */
2704 pImage->PCHSGeometry = *pPCHSGeometry;
2705 pImage->LCHSGeometry = *pLCHSGeometry;
2706 }
2707 }
2708
2709 /* Update header information in base image file. */
2710 pImage->fDynHdrNeedsUpdate = true;
2711 vhdFlushImage(pImage);
2712 }
2713 /* Same size doesn't change the image at all. */
2714
2715 LogFlowFunc(("returns %Rrc\n", rc));
2716 return rc;
2717}
2718
2719/** @interface_method_impl{VDIMAGEBACKEND,pfnRepair} */
2720static DECLCALLBACK(int) vhdRepair(const char *pszFilename, PVDINTERFACE pVDIfsDisk,
2721 PVDINTERFACE pVDIfsImage, uint32_t fFlags)
2722{
2723 LogFlowFunc(("pszFilename=\"%s\" pVDIfsDisk=%#p pVDIfsImage=%#p\n", pszFilename, pVDIfsDisk, pVDIfsImage));
2724 int rc;
2725 PVDINTERFACEERROR pIfError;
2726 PVDINTERFACEIOINT pIfIo;
2727 PVDIOSTORAGE pStorage;
2728 uint64_t cbFile;
2729 VHDFooter vhdFooter;
2730 VHDDynamicDiskHeader dynamicDiskHeader;
2731 uint32_t *paBat = NULL;
2732 uint32_t *pu32BlockBitmap = NULL;
2733
2734 pIfIo = VDIfIoIntGet(pVDIfsImage);
2735 AssertPtrReturn(pIfIo, VERR_INVALID_PARAMETER);
2736
2737 pIfError = VDIfErrorGet(pVDIfsDisk);
2738
2739 do
2740 {
2741 uint64_t offDynamicDiskHeader = 0;
2742 uint64_t offBat = 0;
2743 uint64_t offFooter = 0;
2744 uint32_t cBatEntries = 0;
2745 bool fDynamic = false;
2746 bool fRepairFooter = false;
2747 bool fRepairBat = false;
2748 bool fRepairDynHeader = false;
2749
2750 rc = vdIfIoIntFileOpen(pIfIo, pszFilename,
2751 VDOpenFlagsToFileOpenFlags( fFlags & VD_REPAIR_DRY_RUN
2752 ? VD_OPEN_FLAGS_READONLY
2753 : 0,
2754 false /* fCreate */),
2755 &pStorage);
2756 if (RT_FAILURE(rc))
2757 {
2758 rc = vdIfError(pIfError, rc, RT_SRC_POS, "Failed to open image \"%s\"", pszFilename);
2759 break;
2760 }
2761
2762 rc = vdIfIoIntFileGetSize(pIfIo, pStorage, &cbFile);
2763 if (RT_FAILURE(rc))
2764 {
2765 rc = vdIfError(pIfError, rc, RT_SRC_POS, "Failed to query image size");
2766 break;
2767 }
2768
2769 if (cbFile < sizeof(VHDFooter))
2770 {
2771 rc = vdIfError(pIfError, VERR_VD_INVALID_SIZE, RT_SRC_POS,
2772 "Image must be at least %u bytes (got %llu)",
2773 sizeof(VHDFooter), cbFile);
2774 break;
2775 }
2776
2777 rc = vdIfIoIntFileReadSync(pIfIo, pStorage, cbFile - sizeof(VHDFooter),
2778 &vhdFooter, sizeof(VHDFooter));
2779 if (RT_FAILURE(rc))
2780 {
2781 rc = vdIfError(pIfError, rc, RT_SRC_POS, "Failed to read footer of image");
2782 break;
2783 }
2784
2785 if (memcmp(vhdFooter.Cookie, VHD_FOOTER_COOKIE, VHD_FOOTER_COOKIE_SIZE) != 0)
2786 {
2787 /* Dynamic images have a backup at the beginning of the image. */
2788 rc = vdIfIoIntFileReadSync(pIfIo, pStorage, 0,
2789 &vhdFooter, sizeof(VHDFooter));
2790 if (RT_FAILURE(rc))
2791 {
2792 rc = vdIfError(pIfError, rc, RT_SRC_POS, "Failed to read header of image");
2793 break;
2794 }
2795
2796 /*
2797 * Check for the header, if this fails the image is either completely corrupted
2798 * and impossible to repair or in another format.
2799 */
2800 if (memcmp(vhdFooter.Cookie, VHD_FOOTER_COOKIE, VHD_FOOTER_COOKIE_SIZE) != 0)
2801 {
2802 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
2803 "No valid VHD structures found");
2804 break;
2805 }
2806 else
2807 vdIfErrorMessage(pIfError, "Missing footer structure, using backup\n");
2808
2809 /* Remember to fix the footer structure. */
2810 fRepairFooter = true;
2811 }
2812
2813 offFooter = cbFile - sizeof(VHDFooter);
2814
2815 /* Verify that checksums match. */
2816 uint32_t u32ChkSumOld = RT_BE2H_U32(vhdFooter.Checksum);
2817 vhdFooter.Checksum = 0;
2818 uint32_t u32ChkSum = vhdChecksum(&vhdFooter, sizeof(VHDFooter));
2819
2820 vhdFooter.Checksum = RT_H2BE_U32(u32ChkSum);
2821
2822 if (u32ChkSumOld != u32ChkSum)
2823 {
2824 vdIfErrorMessage(pIfError, "Checksum is invalid (should be %u got %u), repairing\n",
2825 u32ChkSum, u32ChkSumOld);
2826 fRepairFooter = true;
2827 break;
2828 }
2829
2830 switch (RT_BE2H_U32(vhdFooter.DiskType))
2831 {
2832 case VHD_FOOTER_DISK_TYPE_FIXED:
2833 fDynamic = false;
2834 break;
2835 case VHD_FOOTER_DISK_TYPE_DYNAMIC:
2836 fDynamic = true;
2837 break;
2838 case VHD_FOOTER_DISK_TYPE_DIFFERENCING:
2839 fDynamic = true;
2840 break;
2841 default:
2842 {
2843 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
2844 "VHD image type %u is not supported",
2845 RT_BE2H_U32(vhdFooter.DiskType));
2846 break;
2847 }
2848 }
2849
2850 /* Load and check dynamic disk header if required. */
2851 if (fDynamic)
2852 {
2853 size_t cbBlock;
2854
2855 offDynamicDiskHeader = RT_BE2H_U64(vhdFooter.DataOffset);
2856 if (offDynamicDiskHeader + sizeof(VHDDynamicDiskHeader) > cbFile)
2857 {
2858 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
2859 "VHD image type is not supported");
2860 break;
2861 }
2862
2863 rc = vdIfIoIntFileReadSync(pIfIo, pStorage, offDynamicDiskHeader,
2864 &dynamicDiskHeader, sizeof(VHDDynamicDiskHeader));
2865 if (RT_FAILURE(rc))
2866 {
2867 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
2868 "Failed to read dynamic disk header (at %llu), %Rrc",
2869 offDynamicDiskHeader, rc);
2870 break;
2871 }
2872
2873 /* Verify that checksums match. */
2874 u32ChkSumOld = RT_BE2H_U32(dynamicDiskHeader.Checksum);
2875 dynamicDiskHeader.Checksum = 0;
2876 u32ChkSum = vhdChecksum(&dynamicDiskHeader, sizeof(VHDDynamicDiskHeader));
2877
2878 dynamicDiskHeader.Checksum = RT_H2BE_U32(u32ChkSum);
2879
2880 if (u32ChkSumOld != u32ChkSum)
2881 {
2882 vdIfErrorMessage(pIfError, "Checksum of dynamic disk header is invalid (should be %u got %u), repairing\n",
2883 u32ChkSum, u32ChkSumOld);
2884 fRepairDynHeader = true;
2885 break;
2886 }
2887
2888 /* Read the block allocation table and fix any inconsistencies. */
2889 offBat = RT_BE2H_U64(dynamicDiskHeader.TableOffset);
2890 cBatEntries = RT_BE2H_U32(dynamicDiskHeader.MaxTableEntries);
2891 cbBlock = RT_BE2H_U32(dynamicDiskHeader.BlockSize);
2892 cbBlock += cbBlock / VHD_SECTOR_SIZE / 8;
2893
2894 if (offBat + cBatEntries * sizeof(uint32_t) > cbFile)
2895 {
2896 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
2897 "Block allocation table is not inside the image");
2898 break;
2899 }
2900
2901 paBat = (uint32_t *)RTMemAllocZ(cBatEntries * sizeof(uint32_t));
2902 if (!paBat)
2903 {
2904 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
2905 "Could not allocate memory for the block allocation table (%u bytes)",
2906 cBatEntries * sizeof(uint32_t));
2907 break;
2908 }
2909
2910 rc = vdIfIoIntFileReadSync(pIfIo, pStorage, offBat, paBat,
2911 cBatEntries * sizeof(uint32_t));
2912 if (RT_FAILURE(rc))
2913 {
2914 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
2915 "Could not read block allocation table (at %llu), %Rrc",
2916 offBat, rc);
2917 break;
2918 }
2919
2920 pu32BlockBitmap = (uint32_t *)RTMemAllocZ(RT_ALIGN_Z(cBatEntries / 8, 4));
2921 if (!pu32BlockBitmap)
2922 {
2923 rc = vdIfError(pIfError, VERR_NO_MEMORY, RT_SRC_POS,
2924 "Failed to allocate memory for block bitmap");
2925 break;
2926 }
2927
2928 uint32_t idxMinBlock = UINT32_C(0xffffffff);
2929 for (uint32_t i = 0; i < cBatEntries; i++)
2930 {
2931 paBat[i] = RT_BE2H_U32(paBat[i]);
2932 if (paBat[i] < idxMinBlock)
2933 idxMinBlock = paBat[i];
2934 }
2935
2936 vdIfErrorMessage(pIfError, "First data block at sector %u\n", idxMinBlock);
2937
2938 for (uint32_t i = 0; i < cBatEntries; i++)
2939 {
2940 if (paBat[i] != UINT32_C(0xffffffff))
2941 {
2942 uint64_t offBlock =(uint64_t)paBat[i] * VHD_SECTOR_SIZE;
2943
2944 /*
2945 * Check that the offsets are valid (inside of the image) and
2946 * that there are no double references.
2947 */
2948 if (offBlock + cbBlock > cbFile)
2949 {
2950 vdIfErrorMessage(pIfError, "Entry %u points to invalid offset %llu, clearing\n",
2951 i, offBlock);
2952 paBat[i] = UINT32_C(0xffffffff);
2953 fRepairBat = true;
2954 }
2955 else if (offBlock + cbBlock > offFooter)
2956 {
2957 vdIfErrorMessage(pIfError, "Entry %u intersects with footer, aligning footer\n",
2958 i);
2959 offFooter = offBlock + cbBlock;
2960 fRepairBat = true;
2961 }
2962
2963 if ( paBat[i] != UINT32_C(0xffffffff)
2964 && ASMBitTestAndSet(pu32BlockBitmap, (uint32_t)((paBat[i] - idxMinBlock) / (cbBlock / VHD_SECTOR_SIZE))))
2965 {
2966 vdIfErrorMessage(pIfError, "Entry %u points to an already referenced data block, clearing\n",
2967 i);
2968 paBat[i] = UINT32_C(0xffffffff);
2969 fRepairBat = true;
2970 }
2971 }
2972 }
2973 }
2974
2975 /* Write repaired structures now. */
2976 if (!(fRepairBat || fRepairDynHeader || fRepairFooter))
2977 vdIfErrorMessage(pIfError, "VHD image is in a consistent state, no repair required\n");
2978 else if (!(fFlags & VD_REPAIR_DRY_RUN))
2979 {
2980 if (fRepairBat)
2981 {
2982 for (uint32_t i = 0; i < cBatEntries; i++)
2983 paBat[i] = RT_H2BE_U32(paBat[i]);
2984
2985 vdIfErrorMessage(pIfError, "Writing repaired block allocation table...\n");
2986
2987 rc = vdIfIoIntFileWriteSync(pIfIo, pStorage, offBat, paBat,
2988 cBatEntries * sizeof(uint32_t));
2989 if (RT_FAILURE(rc))
2990 {
2991 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
2992 "Could not write repaired block allocation table (at %llu), %Rrc",
2993 offBat, rc);
2994 break;
2995 }
2996 }
2997
2998 if (fRepairDynHeader)
2999 {
3000 Assert(fDynamic);
3001
3002 vdIfErrorMessage(pIfError, "Writing repaired dynamic disk header...\n");
3003 rc = vdIfIoIntFileWriteSync(pIfIo, pStorage, offDynamicDiskHeader, &dynamicDiskHeader,
3004 sizeof(VHDDynamicDiskHeader));
3005 if (RT_FAILURE(rc))
3006 {
3007 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
3008 "Could not write repaired dynamic disk header (at %llu), %Rrc",
3009 offDynamicDiskHeader, rc);
3010 break;
3011 }
3012 }
3013
3014 if (fRepairFooter)
3015 {
3016 vdIfErrorMessage(pIfError, "Writing repaired Footer...\n");
3017
3018 if (fDynamic)
3019 {
3020 /* Write backup at image beginning. */
3021 rc = vdIfIoIntFileWriteSync(pIfIo, pStorage, 0, &vhdFooter,
3022 sizeof(VHDFooter));
3023 if (RT_FAILURE(rc))
3024 {
3025 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
3026 "Could not write repaired backup footer (at %llu), %Rrc",
3027 0, rc);
3028 break;
3029 }
3030 }
3031
3032 rc = vdIfIoIntFileWriteSync(pIfIo, pStorage, offFooter, &vhdFooter,
3033 sizeof(VHDFooter));
3034 if (RT_FAILURE(rc))
3035 {
3036 rc = vdIfError(pIfError, VERR_VD_IMAGE_REPAIR_IMPOSSIBLE, RT_SRC_POS,
3037 "Could not write repaired footer (at %llu), %Rrc",
3038 cbFile - sizeof(VHDFooter), rc);
3039 break;
3040 }
3041 }
3042
3043 vdIfErrorMessage(pIfError, "Corrupted VHD image repaired successfully\n");
3044 }
3045 } while(0);
3046
3047 if (paBat)
3048 RTMemFree(paBat);
3049
3050 if (pu32BlockBitmap)
3051 RTMemFree(pu32BlockBitmap);
3052
3053 if (pStorage)
3054 {
3055 int rc2 = vdIfIoIntFileClose(pIfIo, pStorage);
3056 if (RT_SUCCESS(rc))
3057 rc = rc2; /* Propagate status code only when repairing the image was successful. */
3058 }
3059
3060 LogFlowFunc(("returns %Rrc\n", rc));
3061 return rc;
3062}
3063
3064
3065const VDIMAGEBACKEND g_VhdBackend =
3066{
3067 /* u32Version */
3068 VD_IMGBACKEND_VERSION,
3069 /* pszBackendName */
3070 "VHD",
3071 /* uBackendCaps */
3072 VD_CAP_UUID | VD_CAP_DIFF | VD_CAP_FILE |
3073 VD_CAP_CREATE_FIXED | VD_CAP_CREATE_DYNAMIC |
3074 VD_CAP_ASYNC | VD_CAP_VFS | VD_CAP_PREFERRED,
3075 /* paFileExtensions */
3076 s_aVhdFileExtensions,
3077 /* paConfigInfo */
3078 NULL,
3079 /* pfnProbe */
3080 vhdProbe,
3081 /* pfnOpen */
3082 vhdOpen,
3083 /* pfnCreate */
3084 vhdCreate,
3085 /* pfnRename */
3086 vhdRename,
3087 /* pfnClose */
3088 vhdClose,
3089 /* pfnRead */
3090 vhdRead,
3091 /* pfnWrite */
3092 vhdWrite,
3093 /* pfnFlush */
3094 vhdFlush,
3095 /* pfnDiscard */
3096 NULL,
3097 /* pfnGetVersion */
3098 vhdGetVersion,
3099 /* pfnGetFileSize */
3100 vhdGetFileSize,
3101 /* pfnGetPCHSGeometry */
3102 vhdGetPCHSGeometry,
3103 /* pfnSetPCHSGeometry */
3104 vhdSetPCHSGeometry,
3105 /* pfnGetLCHSGeometry */
3106 vhdGetLCHSGeometry,
3107 /* pfnSetLCHSGeometry */
3108 vhdSetLCHSGeometry,
3109 /* pfnQueryRegions */
3110 vhdQueryRegions,
3111 /* pfnRegionListRelease */
3112 vhdRegionListRelease,
3113 /* pfnGetImageFlags */
3114 vhdGetImageFlags,
3115 /* pfnGetOpenFlags */
3116 vhdGetOpenFlags,
3117 /* pfnSetOpenFlags */
3118 vhdSetOpenFlags,
3119 /* pfnGetComment */
3120 vhdGetComment,
3121 /* pfnSetComment */
3122 vhdSetComment,
3123 /* pfnGetUuid */
3124 vhdGetUuid,
3125 /* pfnSetUuid */
3126 vhdSetUuid,
3127 /* pfnGetModificationUuid */
3128 vhdGetModificationUuid,
3129 /* pfnSetModificationUuid */
3130 vhdSetModificationUuid,
3131 /* pfnGetParentUuid */
3132 vhdGetParentUuid,
3133 /* pfnSetParentUuid */
3134 vhdSetParentUuid,
3135 /* pfnGetParentModificationUuid */
3136 vhdGetParentModificationUuid,
3137 /* pfnSetParentModificationUuid */
3138 vhdSetParentModificationUuid,
3139 /* pfnDump */
3140 vhdDump,
3141 /* pfnGetTimestamp */
3142 vhdGetTimestamp,
3143 /* pfnGetParentTimestamp */
3144 vhdGetParentTimestamp,
3145 /* pfnSetParentTimestamp */
3146 vhdSetParentTimestamp,
3147 /* pfnGetParentFilename */
3148 vhdGetParentFilename,
3149 /* pfnSetParentFilename */
3150 vhdSetParentFilename,
3151 /* pfnComposeLocation */
3152 genericFileComposeLocation,
3153 /* pfnComposeName */
3154 genericFileComposeName,
3155 /* pfnCompact */
3156 vhdCompact,
3157 /* pfnResize */
3158 vhdResize,
3159 /* pfnRepair */
3160 vhdRepair,
3161 /* pfnTraverseMetadata */
3162 NULL,
3163 /* u32VersionEnd */
3164 VD_IMGBACKEND_VERSION
3165};
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette