/* $Id: VMDK.cpp 36633 2011-04-08 21:43:41Z vboxsync $ */ /** @file * VMDK disk image, core code. */ /* * Copyright (C) 2006-2010 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_VD_VMDK #include #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Constants And Macros, Structures and Typedefs * *******************************************************************************/ /** Maximum encoded string size (including NUL) we allow for VMDK images. * Deliberately not set high to avoid running out of descriptor space. */ #define VMDK_ENCODED_COMMENT_MAX 1024 /** VMDK descriptor DDB entry for PCHS cylinders. */ #define VMDK_DDB_GEO_PCHS_CYLINDERS "ddb.geometry.cylinders" /** VMDK descriptor DDB entry for PCHS heads. */ #define VMDK_DDB_GEO_PCHS_HEADS "ddb.geometry.heads" /** VMDK descriptor DDB entry for PCHS sectors. */ #define VMDK_DDB_GEO_PCHS_SECTORS "ddb.geometry.sectors" /** VMDK descriptor DDB entry for LCHS cylinders. */ #define VMDK_DDB_GEO_LCHS_CYLINDERS "ddb.geometry.biosCylinders" /** VMDK descriptor DDB entry for LCHS heads. */ #define VMDK_DDB_GEO_LCHS_HEADS "ddb.geometry.biosHeads" /** VMDK descriptor DDB entry for LCHS sectors. */ #define VMDK_DDB_GEO_LCHS_SECTORS "ddb.geometry.biosSectors" /** VMDK descriptor DDB entry for image UUID. */ #define VMDK_DDB_IMAGE_UUID "ddb.uuid.image" /** VMDK descriptor DDB entry for image modification UUID. */ #define VMDK_DDB_MODIFICATION_UUID "ddb.uuid.modification" /** VMDK descriptor DDB entry for parent image UUID. */ #define VMDK_DDB_PARENT_UUID "ddb.uuid.parent" /** VMDK descriptor DDB entry for parent image modification UUID. */ #define VMDK_DDB_PARENT_MODIFICATION_UUID "ddb.uuid.parentmodification" /** No compression for streamOptimized files. */ #define VMDK_COMPRESSION_NONE 0 /** Deflate compression for streamOptimized files. */ #define VMDK_COMPRESSION_DEFLATE 1 /** Marker that the actual GD value is stored in the footer. */ #define VMDK_GD_AT_END 0xffffffffffffffffULL /** Marker for end-of-stream in streamOptimized images. */ #define VMDK_MARKER_EOS 0 /** Marker for grain table block in streamOptimized images. */ #define VMDK_MARKER_GT 1 /** Marker for grain directory block in streamOptimized images. */ #define VMDK_MARKER_GD 2 /** Marker for footer in streamOptimized images. */ #define VMDK_MARKER_FOOTER 3 /** Dummy marker for "don't check the marker value". */ #define VMDK_MARKER_IGNORE 0xffffffffU /** * Magic number for hosted images created by VMware Workstation 4, VMware * Workstation 5, VMware Server or VMware Player. Not necessarily sparse. */ #define VMDK_SPARSE_MAGICNUMBER 0x564d444b /* 'V' 'M' 'D' 'K' */ /** * VMDK hosted binary extent header. The "Sparse" is a total misnomer, as * this header is also used for monolithic flat images. */ #pragma pack(1) typedef struct SparseExtentHeader { uint32_t magicNumber; uint32_t version; uint32_t flags; uint64_t capacity; uint64_t grainSize; uint64_t descriptorOffset; uint64_t descriptorSize; uint32_t numGTEsPerGT; uint64_t rgdOffset; uint64_t gdOffset; uint64_t overHead; bool uncleanShutdown; char singleEndLineChar; char nonEndLineChar; char doubleEndLineChar1; char doubleEndLineChar2; uint16_t compressAlgorithm; uint8_t pad[433]; } SparseExtentHeader; #pragma pack() /** VMDK capacity for a single chunk when 2G splitting is turned on. Should be * divisible by the default grain size (64K) */ #define VMDK_2G_SPLIT_SIZE (2047 * 1024 * 1024) /** VMDK streamOptimized file format marker. The type field may or may not * be actually valid, but there's always data to read there. */ #pragma pack(1) typedef struct VMDKMARKER { uint64_t uSector; uint32_t cbSize; uint32_t uType; } VMDKMARKER, *PVMDKMARKER; #pragma pack() #ifdef VBOX_WITH_VMDK_ESX /** @todo the ESX code is not tested, not used, and lacks error messages. */ /** * Magic number for images created by VMware GSX Server 3 or ESX Server 3. */ #define VMDK_ESX_SPARSE_MAGICNUMBER 0x44574f43 /* 'C' 'O' 'W' 'D' */ #pragma pack(1) typedef struct COWDisk_Header { uint32_t magicNumber; uint32_t version; uint32_t flags; uint32_t numSectors; uint32_t grainSize; uint32_t gdOffset; uint32_t numGDEntries; uint32_t freeSector; /* The spec incompletely documents quite a few further fields, but states * that they are unused by the current format. Replace them by padding. */ char reserved1[1604]; uint32_t savedGeneration; char reserved2[8]; uint32_t uncleanShutdown; char padding[396]; } COWDisk_Header; #pragma pack() #endif /* VBOX_WITH_VMDK_ESX */ /** Convert sector number/size to byte offset/size. */ #define VMDK_SECTOR2BYTE(u) ((uint64_t)(u) << 9) /** Convert byte offset/size to sector number/size. */ #define VMDK_BYTE2SECTOR(u) ((u) >> 9) /** * VMDK extent type. */ typedef enum VMDKETYPE { /** Hosted sparse extent. */ VMDKETYPE_HOSTED_SPARSE = 1, /** Flat extent. */ VMDKETYPE_FLAT, /** Zero extent. */ VMDKETYPE_ZERO, /** VMFS extent, used by ESX. */ VMDKETYPE_VMFS #ifdef VBOX_WITH_VMDK_ESX , /** ESX sparse extent. */ VMDKETYPE_ESX_SPARSE #endif /* VBOX_WITH_VMDK_ESX */ } VMDKETYPE, *PVMDKETYPE; /** * VMDK access type for a extent. */ typedef enum VMDKACCESS { /** No access allowed. */ VMDKACCESS_NOACCESS = 0, /** Read-only access. */ VMDKACCESS_READONLY, /** Read-write access. */ VMDKACCESS_READWRITE } VMDKACCESS, *PVMDKACCESS; /** Forward declaration for PVMDKIMAGE. */ typedef struct VMDKIMAGE *PVMDKIMAGE; /** * Extents files entry. Used for opening a particular file only once. */ typedef struct VMDKFILE { /** Pointer to filename. Local copy. */ const char *pszFilename; /** File open flags for consistency checking. */ unsigned fOpen; /** Flag whether this file has been opened for async I/O. */ bool fAsyncIO; /** Handle for sync/async file abstraction.*/ PVDIOSTORAGE pStorage; /** Reference counter. */ unsigned uReferences; /** Flag whether the file should be deleted on last close. */ bool fDelete; /** Pointer to the image we belong to (for debugging purposes). */ PVMDKIMAGE pImage; /** Pointer to next file descriptor. */ struct VMDKFILE *pNext; /** Pointer to the previous file descriptor. */ struct VMDKFILE *pPrev; } VMDKFILE, *PVMDKFILE; /** * VMDK extent data structure. */ typedef struct VMDKEXTENT { /** File handle. */ PVMDKFILE pFile; /** Base name of the image extent. */ const char *pszBasename; /** Full name of the image extent. */ const char *pszFullname; /** Number of sectors in this extent. */ uint64_t cSectors; /** Number of sectors per block (grain in VMDK speak). */ uint64_t cSectorsPerGrain; /** Starting sector number of descriptor. */ uint64_t uDescriptorSector; /** Size of descriptor in sectors. */ uint64_t cDescriptorSectors; /** Starting sector number of grain directory. */ uint64_t uSectorGD; /** Starting sector number of redundant grain directory. */ uint64_t uSectorRGD; /** Total number of metadata sectors. */ uint64_t cOverheadSectors; /** Nominal size (i.e. as described by the descriptor) of this extent. */ uint64_t cNominalSectors; /** Sector offset (i.e. as described by the descriptor) of this extent. */ uint64_t uSectorOffset; /** Number of entries in a grain table. */ uint32_t cGTEntries; /** Number of sectors reachable via a grain directory entry. */ uint32_t cSectorsPerGDE; /** Number of entries in the grain directory. */ uint32_t cGDEntries; /** Pointer to the next free sector. Legacy information. Do not use. */ uint32_t uFreeSector; /** Number of this extent in the list of images. */ uint32_t uExtent; /** Pointer to the descriptor (NULL if no descriptor in this extent). */ char *pDescData; /** Pointer to the grain directory. */ uint32_t *pGD; /** Pointer to the redundant grain directory. */ uint32_t *pRGD; /** VMDK version of this extent. 1=1.0/1.1 */ uint32_t uVersion; /** Type of this extent. */ VMDKETYPE enmType; /** Access to this extent. */ VMDKACCESS enmAccess; /** Flag whether this extent is marked as unclean. */ bool fUncleanShutdown; /** Flag whether the metadata in the extent header needs to be updated. */ bool fMetaDirty; /** Flag whether there is a footer in this extent. */ bool fFooter; /** Compression type for this extent. */ uint16_t uCompression; /** Append position for writing new grain. Only for sparse extents. */ uint64_t uAppendPosition; /** Last grain which was accessed. Only for streamOptimized extents. */ uint32_t uLastGrainAccess; /** Starting sector corresponding to the grain buffer. */ uint32_t uGrainSectorAbs; /** Grain number corresponding to the grain buffer. */ uint32_t uGrain; /** Actual size of the compressed data, only valid for reading. */ uint32_t cbGrainStreamRead; /** Size of compressed grain buffer for streamOptimized extents. */ size_t cbCompGrain; /** Compressed grain buffer for streamOptimized extents, with marker. */ void *pvCompGrain; /** Decompressed grain buffer for streamOptimized extents. */ void *pvGrain; /** Reference to the image in which this extent is used. Do not use this * on a regular basis to avoid passing pImage references to functions * explicitly. */ struct VMDKIMAGE *pImage; } VMDKEXTENT, *PVMDKEXTENT; /** * Grain table cache size. Allocated per image. */ #define VMDK_GT_CACHE_SIZE 256 /** * Grain table block size. Smaller than an actual grain table block to allow * more grain table blocks to be cached without having to allocate excessive * amounts of memory for the cache. */ #define VMDK_GT_CACHELINE_SIZE 128 /** * Maximum number of lines in a descriptor file. Not worth the effort of * making it variable. Descriptor files are generally very short (~20 lines), * with the exception of sparse files split in 2G chunks, which need for the * maximum size (almost 2T) exactly 1025 lines for the disk database. */ #define VMDK_DESCRIPTOR_LINES_MAX 1100U /** * Parsed descriptor information. Allows easy access and update of the * descriptor (whether separate file or not). Free form text files suck. */ typedef struct VMDKDESCRIPTOR { /** Line number of first entry of the disk descriptor. */ unsigned uFirstDesc; /** Line number of first entry in the extent description. */ unsigned uFirstExtent; /** Line number of first disk database entry. */ unsigned uFirstDDB; /** Total number of lines. */ unsigned cLines; /** Total amount of memory available for the descriptor. */ size_t cbDescAlloc; /** Set if descriptor has been changed and not yet written to disk. */ bool fDirty; /** Array of pointers to the data in the descriptor. */ char *aLines[VMDK_DESCRIPTOR_LINES_MAX]; /** Array of line indices pointing to the next non-comment line. */ unsigned aNextLines[VMDK_DESCRIPTOR_LINES_MAX]; } VMDKDESCRIPTOR, *PVMDKDESCRIPTOR; /** * Cache entry for translating extent/sector to a sector number in that * extent. */ typedef struct VMDKGTCACHEENTRY { /** Extent number for which this entry is valid. */ uint32_t uExtent; /** GT data block number. */ uint64_t uGTBlock; /** Data part of the cache entry. */ uint32_t aGTData[VMDK_GT_CACHELINE_SIZE]; } VMDKGTCACHEENTRY, *PVMDKGTCACHEENTRY; /** * Cache data structure for blocks of grain table entries. For now this is a * fixed size direct mapping cache, but this should be adapted to the size of * the sparse image and maybe converted to a set-associative cache. The * implementation below implements a write-through cache with write allocate. */ typedef struct VMDKGTCACHE { /** Cache entries. */ VMDKGTCACHEENTRY aGTCache[VMDK_GT_CACHE_SIZE]; /** Number of cache entries (currently unused). */ unsigned cEntries; } VMDKGTCACHE, *PVMDKGTCACHE; /** * Complete VMDK image data structure. Mainly a collection of extents and a few * extra global data fields. */ typedef struct VMDKIMAGE { /** Image name. */ const char *pszFilename; /** Descriptor file if applicable. */ PVMDKFILE pFile; /** I/O interface. */ PVDINTERFACE pInterfaceIO; /** I/O interface callbacks. */ PVDINTERFACEIOINT pInterfaceIOCallbacks; /** Pointer to the per-disk VD interface list. */ PVDINTERFACE pVDIfsDisk; /** Pointer to the per-image VD interface list. */ PVDINTERFACE pVDIfsImage; /** Error interface. */ PVDINTERFACE pInterfaceError; /** Error interface callbacks. */ PVDINTERFACEERROR pInterfaceErrorCallbacks; /** Pointer to the image extents. */ PVMDKEXTENT pExtents; /** Number of image extents. */ unsigned cExtents; /** Pointer to the files list, for opening a file referenced multiple * times only once (happens mainly with raw partition access). */ PVMDKFILE pFiles; /** * Pointer to an array of segment entries for async I/O. * This is an optimization because the task number to submit is not known * and allocating/freeing an array in the read/write functions every time * is too expensive. */ PPDMDATASEG paSegments; /** Entries available in the segments array. */ unsigned cSegments; /** Open flags passed by VBoxHD layer. */ unsigned uOpenFlags; /** Image flags defined during creation or determined during open. */ unsigned uImageFlags; /** Total size of the image. */ uint64_t cbSize; /** Physical geometry of this image. */ VDGEOMETRY PCHSGeometry; /** Logical geometry of this image. */ VDGEOMETRY LCHSGeometry; /** Image UUID. */ RTUUID ImageUuid; /** Image modification UUID. */ RTUUID ModificationUuid; /** Parent image UUID. */ RTUUID ParentUuid; /** Parent image modification UUID. */ RTUUID ParentModificationUuid; /** Pointer to grain table cache, if this image contains sparse extents. */ PVMDKGTCACHE pGTCache; /** Pointer to the descriptor (NULL if no separate descriptor file). */ char *pDescData; /** Allocation size of the descriptor file. */ size_t cbDescAlloc; /** Parsed descriptor file content. */ VMDKDESCRIPTOR Descriptor; } VMDKIMAGE; /** State for the input/output callout of the inflate reader/deflate writer. */ typedef struct VMDKCOMPRESSIO { /* Image this operation relates to. */ PVMDKIMAGE pImage; /* Current read position. */ ssize_t iOffset; /* Size of the compressed grain buffer (available data). */ size_t cbCompGrain; /* Pointer to the compressed grain buffer. */ void *pvCompGrain; } VMDKCOMPRESSIO; /** Tracks async grain allocation. */ typedef struct VMDKGRAINALLOCASYNC { /** Flag whether the allocation failed. */ bool fIoErr; /** Current number of transfers pending. * If reached 0 and there is an error the old state is restored. */ unsigned cIoXfersPending; /** Sector number */ uint64_t uSector; /** Flag whether the grain table needs to be updated. */ bool fGTUpdateNeeded; /** Extent the allocation happens. */ PVMDKEXTENT pExtent; /** Position of the new grain, required for the grain table update. */ uint64_t uGrainOffset; /** Grain table sector. */ uint64_t uGTSector; /** Backup grain table sector. */ uint64_t uRGTSector; } VMDKGRAINALLOCASYNC, *PVMDKGRAINALLOCASYNC; /******************************************************************************* * Static Variables * *******************************************************************************/ /** NULL-terminated array of supported file extensions. */ static const VDFILEEXTENSION s_aVmdkFileExtensions[] = { {"vmdk", VDTYPE_HDD}, {NULL, VDTYPE_INVALID} }; /******************************************************************************* * Internal Functions * *******************************************************************************/ static void vmdkFreeStreamBuffers(PVMDKEXTENT pExtent); static void vmdkFreeExtentData(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, bool fDelete); static int vmdkCreateExtents(PVMDKIMAGE pImage, unsigned cExtents); static int vmdkFlushImage(PVMDKIMAGE pImage); static int vmdkSetImageComment(PVMDKIMAGE pImage, const char *pszComment); static int vmdkFreeImage(PVMDKIMAGE pImage, bool fDelete); static int vmdkAllocGrainAsyncComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq); /** * Internal: signal an error to the frontend. */ DECLINLINE(int) vmdkError(PVMDKIMAGE pImage, int rc, RT_SRC_POS_DECL, const char *pszFormat, ...) { va_list va; va_start(va, pszFormat); if (pImage->pInterfaceError && pImage->pInterfaceErrorCallbacks) pImage->pInterfaceErrorCallbacks->pfnError(pImage->pInterfaceError->pvUser, rc, RT_SRC_POS_ARGS, pszFormat, va); va_end(va); return rc; } /** * Internal: signal an informational message to the frontend. */ DECLINLINE(int) vmdkMessage(PVMDKIMAGE pImage, const char *pszFormat, ...) { int rc = VINF_SUCCESS; va_list va; va_start(va, pszFormat); if (pImage->pInterfaceError && pImage->pInterfaceErrorCallbacks) rc = pImage->pInterfaceErrorCallbacks->pfnMessage(pImage->pInterfaceError->pvUser, pszFormat, va); va_end(va); return rc; } /** * Internal: open a file (using a file descriptor cache to ensure each file * is only opened once - anything else can cause locking problems). */ static int vmdkFileOpen(PVMDKIMAGE pImage, PVMDKFILE *ppVmdkFile, const char *pszFilename, uint32_t fOpen, bool fAsyncIO) { int rc = VINF_SUCCESS; PVMDKFILE pVmdkFile; for (pVmdkFile = pImage->pFiles; pVmdkFile != NULL; pVmdkFile = pVmdkFile->pNext) { if (!strcmp(pszFilename, pVmdkFile->pszFilename)) { Assert(fOpen == pVmdkFile->fOpen); pVmdkFile->uReferences++; *ppVmdkFile = pVmdkFile; return rc; } } /* If we get here, there's no matching entry in the cache. */ pVmdkFile = (PVMDKFILE)RTMemAllocZ(sizeof(VMDKFILE)); if (!VALID_PTR(pVmdkFile)) { *ppVmdkFile = NULL; return VERR_NO_MEMORY; } pVmdkFile->pszFilename = RTStrDup(pszFilename); if (!VALID_PTR(pVmdkFile->pszFilename)) { RTMemFree(pVmdkFile); *ppVmdkFile = NULL; return VERR_NO_MEMORY; } pVmdkFile->fOpen = fOpen; pVmdkFile->fAsyncIO = fAsyncIO; rc = pImage->pInterfaceIOCallbacks->pfnOpen(pImage->pInterfaceIO->pvUser, pszFilename, fOpen, &pVmdkFile->pStorage); if (RT_SUCCESS(rc)) { pVmdkFile->uReferences = 1; pVmdkFile->pImage = pImage; pVmdkFile->pNext = pImage->pFiles; if (pImage->pFiles) pImage->pFiles->pPrev = pVmdkFile; pImage->pFiles = pVmdkFile; *ppVmdkFile = pVmdkFile; } else { RTStrFree((char *)(void *)pVmdkFile->pszFilename); RTMemFree(pVmdkFile); *ppVmdkFile = NULL; } return rc; } /** * Internal: close a file, updating the file descriptor cache. */ static int vmdkFileClose(PVMDKIMAGE pImage, PVMDKFILE *ppVmdkFile, bool fDelete) { int rc = VINF_SUCCESS; PVMDKFILE pVmdkFile = *ppVmdkFile; AssertPtr(pVmdkFile); pVmdkFile->fDelete |= fDelete; Assert(pVmdkFile->uReferences); pVmdkFile->uReferences--; if (pVmdkFile->uReferences == 0) { PVMDKFILE pPrev; PVMDKFILE pNext; /* Unchain the element from the list. */ pPrev = pVmdkFile->pPrev; pNext = pVmdkFile->pNext; if (pNext) pNext->pPrev = pPrev; if (pPrev) pPrev->pNext = pNext; else pImage->pFiles = pNext; rc = pImage->pInterfaceIOCallbacks->pfnClose(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage); if (RT_SUCCESS(rc) && pVmdkFile->fDelete) rc = pImage->pInterfaceIOCallbacks->pfnDelete(pImage->pInterfaceIO->pvUser, pVmdkFile->pszFilename); RTStrFree((char *)(void *)pVmdkFile->pszFilename); RTMemFree(pVmdkFile); } *ppVmdkFile = NULL; return rc; } /** * Internal: rename a file (sync) */ DECLINLINE(int) vmdkFileMove(PVMDKIMAGE pImage, const char *pszSrc, const char *pszDst, unsigned fMove) { return pImage->pInterfaceIOCallbacks->pfnMove(pImage->pInterfaceIO->pvUser, pszSrc, pszDst, fMove); } /** * Internal: get the size of a file (sync/async) */ DECLINLINE(int) vmdkFileGetSize(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile, uint64_t *pcbSize) { return pImage->pInterfaceIOCallbacks->pfnGetSize(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage, pcbSize); } /** * Internal: set the size of a file (sync/async) */ DECLINLINE(int) vmdkFileSetSize(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile, uint64_t cbSize) { return pImage->pInterfaceIOCallbacks->pfnSetSize(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage, cbSize); } /** * Internal: read from a file (sync) */ DECLINLINE(int) vmdkFileReadSync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile, uint64_t uOffset, void *pvBuf, size_t cbToRead, size_t *pcbRead) { return pImage->pInterfaceIOCallbacks->pfnReadSync(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage, uOffset, pvBuf, cbToRead, pcbRead); } /** * Internal: write to a file (sync) */ DECLINLINE(int) vmdkFileWriteSync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile, uint64_t uOffset, const void *pvBuf, size_t cbToWrite, size_t *pcbWritten) { return pImage->pInterfaceIOCallbacks->pfnWriteSync(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage, uOffset, pvBuf, cbToWrite, pcbWritten); } /** * Internal: flush a file (sync) */ DECLINLINE(int) vmdkFileFlush(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile) { return pImage->pInterfaceIOCallbacks->pfnFlushSync(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage); } /** * Internal: read user data (async) */ DECLINLINE(int) vmdkFileReadUserAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile, uint64_t uOffset, PVDIOCTX pIoCtx, size_t cbRead) { return pImage->pInterfaceIOCallbacks->pfnReadUserAsync(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage, uOffset, pIoCtx, cbRead); } /** * Internal: write user data (async) */ DECLINLINE(int) vmdkFileWriteUserAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile, uint64_t uOffset, PVDIOCTX pIoCtx, size_t cbWrite, PFNVDXFERCOMPLETED pfnComplete, void *pvCompleteUser) { return pImage->pInterfaceIOCallbacks->pfnWriteUserAsync(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage, uOffset, pIoCtx, cbWrite, pfnComplete, pvCompleteUser); } /** * Internal: read metadata (async) */ DECLINLINE(int) vmdkFileReadMetaAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile, uint64_t uOffset, void *pvBuffer, size_t cbBuffer, PVDIOCTX pIoCtx, PPVDMETAXFER ppMetaXfer, PFNVDXFERCOMPLETED pfnComplete, void *pvCompleteUser) { return pImage->pInterfaceIOCallbacks->pfnReadMetaAsync(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage, uOffset, pvBuffer, cbBuffer, pIoCtx, ppMetaXfer, pfnComplete, pvCompleteUser); } /** * Internal: write metadata (async) */ DECLINLINE(int) vmdkFileWriteMetaAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile, uint64_t uOffset, void *pvBuffer, size_t cbBuffer, PVDIOCTX pIoCtx, PFNVDXFERCOMPLETED pfnComplete, void *pvCompleteUser) { return pImage->pInterfaceIOCallbacks->pfnWriteMetaAsync(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage, uOffset, pvBuffer, cbBuffer, pIoCtx, pfnComplete, pvCompleteUser); } /** * Internal: releases a metadata transfer handle (async) */ DECLINLINE(void) vmdkFileMetaXferRelease(PVMDKIMAGE pImage, PVDMETAXFER pMetaXfer) { pImage->pInterfaceIOCallbacks->pfnMetaXferRelease(pImage->pInterfaceIO->pvUser, pMetaXfer); } /** * Internal: flush a file (async) */ DECLINLINE(int) vmdkFileFlushAsync(PVMDKIMAGE pImage, PVMDKFILE pVmdkFile, PVDIOCTX pIoCtx) { return pImage->pInterfaceIOCallbacks->pfnFlushAsync(pImage->pInterfaceIO->pvUser, pVmdkFile->pStorage, pIoCtx, NULL, NULL); } /** * Internal: sets the buffer to a specific byte (async) */ DECLINLINE(int) vmdkFileIoCtxSet(PVMDKIMAGE pImage, PVDIOCTX pIoCtx, int ch, size_t cbSet) { return pImage->pInterfaceIOCallbacks->pfnIoCtxSet(pImage->pInterfaceIO->pvUser, pIoCtx, ch, cbSet); } static DECLCALLBACK(int) vmdkFileInflateHelper(void *pvUser, void *pvBuf, size_t cbBuf, size_t *pcbBuf) { VMDKCOMPRESSIO *pInflateState = (VMDKCOMPRESSIO *)pvUser; size_t cbInjected = 0; Assert(cbBuf); if (pInflateState->iOffset < 0) { *(uint8_t *)pvBuf = RTZIPTYPE_ZLIB; pvBuf = (uint8_t *)pvBuf + 1; cbBuf--; cbInjected = 1; pInflateState->iOffset = RT_OFFSETOF(VMDKMARKER, uType); } if (!cbBuf) { if (pcbBuf) *pcbBuf = cbInjected; return VINF_SUCCESS; } cbBuf = RT_MIN(cbBuf, pInflateState->cbCompGrain - pInflateState->iOffset); memcpy(pvBuf, (uint8_t *)pInflateState->pvCompGrain + pInflateState->iOffset, cbBuf); pInflateState->iOffset += cbBuf; Assert(pcbBuf); *pcbBuf = cbBuf + cbInjected; return VINF_SUCCESS; } /** * Internal: read from a file and inflate the compressed data, * distinguishing between async and normal operation */ DECLINLINE(int) vmdkFileInflateSync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint64_t uOffset, void *pvBuf, size_t cbToRead, const void *pcvMarker, uint64_t *puLBA, uint32_t *pcbMarkerData) { if (pExtent->pFile->fAsyncIO) { AssertMsgFailed(("TODO\n")); return VERR_NOT_SUPPORTED; } else { int rc; PRTZIPDECOMP pZip = NULL; VMDKMARKER *pMarker = (VMDKMARKER *)pExtent->pvCompGrain; size_t cbCompSize, cbActuallyRead; if (!pcvMarker) { rc = vmdkFileReadSync(pImage, pExtent->pFile, uOffset, pMarker, RT_OFFSETOF(VMDKMARKER, uType), NULL); if (RT_FAILURE(rc)) return rc; } else memcpy(pMarker, pcvMarker, RT_OFFSETOF(VMDKMARKER, uType)); cbCompSize = RT_LE2H_U32(pMarker->cbSize); if (cbCompSize == 0) { AssertMsgFailed(("VMDK: corrupted marker\n")); return VERR_VD_VMDK_INVALID_FORMAT; } /* Sanity check - the expansion ratio should be much less than 2. */ Assert(cbCompSize < 2 * cbToRead); if (cbCompSize >= 2 * cbToRead) return VERR_VD_VMDK_INVALID_FORMAT; /* Compressed grain marker. Data follows immediately. */ rc = vmdkFileReadSync(pImage, pExtent->pFile, uOffset + RT_OFFSETOF(VMDKMARKER, uType), (uint8_t *)pExtent->pvCompGrain + RT_OFFSETOF(VMDKMARKER, uType), RT_ALIGN_Z( cbCompSize + RT_OFFSETOF(VMDKMARKER, uType), 512) - RT_OFFSETOF(VMDKMARKER, uType), NULL); if (puLBA) *puLBA = RT_LE2H_U64(pMarker->uSector); if (pcbMarkerData) *pcbMarkerData = RT_ALIGN( cbCompSize + RT_OFFSETOF(VMDKMARKER, uType), 512); VMDKCOMPRESSIO InflateState; InflateState.pImage = pImage; InflateState.iOffset = -1; InflateState.cbCompGrain = cbCompSize + RT_OFFSETOF(VMDKMARKER, uType); InflateState.pvCompGrain = pExtent->pvCompGrain; rc = RTZipDecompCreate(&pZip, &InflateState, vmdkFileInflateHelper); if (RT_FAILURE(rc)) return rc; rc = RTZipDecompress(pZip, pvBuf, cbToRead, &cbActuallyRead); RTZipDecompDestroy(pZip); if (RT_FAILURE(rc)) return rc; if (cbActuallyRead != cbToRead) rc = VERR_VD_VMDK_INVALID_FORMAT; return rc; } } static DECLCALLBACK(int) vmdkFileDeflateHelper(void *pvUser, const void *pvBuf, size_t cbBuf) { VMDKCOMPRESSIO *pDeflateState = (VMDKCOMPRESSIO *)pvUser; Assert(cbBuf); if (pDeflateState->iOffset < 0) { pvBuf = (const uint8_t *)pvBuf + 1; cbBuf--; pDeflateState->iOffset = RT_OFFSETOF(VMDKMARKER, uType); } if (!cbBuf) return VINF_SUCCESS; if (pDeflateState->iOffset + cbBuf > pDeflateState->cbCompGrain) return VERR_BUFFER_OVERFLOW; memcpy((uint8_t *)pDeflateState->pvCompGrain + pDeflateState->iOffset, pvBuf, cbBuf); pDeflateState->iOffset += cbBuf; return VINF_SUCCESS; } /** * Internal: deflate the uncompressed data and write to a file, * distinguishing between async and normal operation */ DECLINLINE(int) vmdkFileDeflateSync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint64_t uOffset, const void *pvBuf, size_t cbToWrite, uint64_t uLBA, uint32_t *pcbMarkerData) { if (pExtent->pFile->fAsyncIO) { AssertMsgFailed(("TODO\n")); return VERR_NOT_SUPPORTED; } else { int rc; PRTZIPCOMP pZip = NULL; VMDKCOMPRESSIO DeflateState; DeflateState.pImage = pImage; DeflateState.iOffset = -1; DeflateState.cbCompGrain = pExtent->cbCompGrain; DeflateState.pvCompGrain = pExtent->pvCompGrain; rc = RTZipCompCreate(&pZip, &DeflateState, vmdkFileDeflateHelper, RTZIPTYPE_ZLIB, RTZIPLEVEL_DEFAULT); if (RT_FAILURE(rc)) return rc; rc = RTZipCompress(pZip, pvBuf, cbToWrite); if (RT_SUCCESS(rc)) rc = RTZipCompFinish(pZip); RTZipCompDestroy(pZip); if (RT_SUCCESS(rc)) { Assert( DeflateState.iOffset > 0 && (size_t)DeflateState.iOffset <= DeflateState.cbCompGrain); /* pad with zeroes to get to a full sector size */ uint32_t uSize = DeflateState.iOffset; if (uSize % 512) { uint32_t uSizeAlign = RT_ALIGN(uSize, 512); memset((uint8_t *)pExtent->pvCompGrain + uSize, '\0', uSizeAlign - uSize); uSize = uSizeAlign; } if (pcbMarkerData) *pcbMarkerData = uSize; /* Compressed grain marker. Data follows immediately. */ VMDKMARKER *pMarker = (VMDKMARKER *)pExtent->pvCompGrain; pMarker->uSector = RT_H2LE_U64(uLBA); pMarker->cbSize = RT_H2LE_U32( DeflateState.iOffset - RT_OFFSETOF(VMDKMARKER, uType)); rc = vmdkFileWriteSync(pImage, pExtent->pFile, uOffset, pMarker, uSize, NULL); if (RT_FAILURE(rc)) return rc; } return rc; } } /** * Internal: check if all files are closed, prevent leaking resources. */ static int vmdkFileCheckAllClose(PVMDKIMAGE pImage) { int rc = VINF_SUCCESS, rc2; PVMDKFILE pVmdkFile; Assert(pImage->pFiles == NULL); for (pVmdkFile = pImage->pFiles; pVmdkFile != NULL; pVmdkFile = pVmdkFile->pNext) { LogRel(("VMDK: leaking reference to file \"%s\"\n", pVmdkFile->pszFilename)); pImage->pFiles = pVmdkFile->pNext; rc2 = vmdkFileClose(pImage, &pVmdkFile, pVmdkFile->fDelete); if (RT_SUCCESS(rc)) rc = rc2; } return rc; } /** * Internal: truncate a string (at a UTF8 code point boundary) and encode the * critical non-ASCII characters. */ static char *vmdkEncodeString(const char *psz) { char szEnc[VMDK_ENCODED_COMMENT_MAX + 3]; char *pszDst = szEnc; AssertPtr(psz); for (; *psz; psz = RTStrNextCp(psz)) { char *pszDstPrev = pszDst; RTUNICP Cp = RTStrGetCp(psz); if (Cp == '\\') { pszDst = RTStrPutCp(pszDst, Cp); pszDst = RTStrPutCp(pszDst, Cp); } else if (Cp == '\n') { pszDst = RTStrPutCp(pszDst, '\\'); pszDst = RTStrPutCp(pszDst, 'n'); } else if (Cp == '\r') { pszDst = RTStrPutCp(pszDst, '\\'); pszDst = RTStrPutCp(pszDst, 'r'); } else pszDst = RTStrPutCp(pszDst, Cp); if (pszDst - szEnc >= VMDK_ENCODED_COMMENT_MAX - 1) { pszDst = pszDstPrev; break; } } *pszDst = '\0'; return RTStrDup(szEnc); } /** * Internal: decode a string and store it into the specified string. */ static int vmdkDecodeString(const char *pszEncoded, char *psz, size_t cb) { int rc = VINF_SUCCESS; char szBuf[4]; if (!cb) return VERR_BUFFER_OVERFLOW; AssertPtr(psz); for (; *pszEncoded; pszEncoded = RTStrNextCp(pszEncoded)) { char *pszDst = szBuf; RTUNICP Cp = RTStrGetCp(pszEncoded); if (Cp == '\\') { pszEncoded = RTStrNextCp(pszEncoded); RTUNICP CpQ = RTStrGetCp(pszEncoded); if (CpQ == 'n') RTStrPutCp(pszDst, '\n'); else if (CpQ == 'r') RTStrPutCp(pszDst, '\r'); else if (CpQ == '\0') { rc = VERR_VD_VMDK_INVALID_HEADER; break; } else RTStrPutCp(pszDst, CpQ); } else pszDst = RTStrPutCp(pszDst, Cp); /* Need to leave space for terminating NUL. */ if ((size_t)(pszDst - szBuf) + 1 >= cb) { rc = VERR_BUFFER_OVERFLOW; break; } memcpy(psz, szBuf, pszDst - szBuf); psz += pszDst - szBuf; } *psz = '\0'; return rc; } /** * Internal: free all buffers associated with grain directories. */ static void vmdkFreeGrainDirectory(PVMDKEXTENT pExtent) { if (pExtent->pGD) { RTMemFree(pExtent->pGD); pExtent->pGD = NULL; } if (pExtent->pRGD) { RTMemFree(pExtent->pRGD); pExtent->pRGD = NULL; } } /** * Internal: allocate the compressed/uncompressed buffers for streamOptimized * images. */ static int vmdkAllocStreamBuffers(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) { int rc = VINF_SUCCESS; if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { /* streamOptimized extents need a compressed grain buffer, which must * be big enough to hold uncompressible data (which needs ~8 bytes * more than the uncompressed data), the marker and padding. */ pExtent->cbCompGrain = RT_ALIGN_Z( VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) + 8 + sizeof(VMDKMARKER), 512); pExtent->pvCompGrain = RTMemAlloc(pExtent->cbCompGrain); if (!pExtent->pvCompGrain) { rc = VERR_NO_MEMORY; goto out; } /* streamOptimized extents need a decompressed grain buffer. */ pExtent->pvGrain = RTMemAlloc(VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); if (!pExtent->pvGrain) { rc = VERR_NO_MEMORY; goto out; } } out: if (RT_FAILURE(rc)) vmdkFreeStreamBuffers(pExtent); return rc; } /** * Internal: allocate all buffers associated with grain directories. */ static int vmdkAllocGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) { int rc = VINF_SUCCESS; size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t); uint32_t *pGD = NULL, *pRGD = NULL; pGD = (uint32_t *)RTMemAllocZ(cbGD); if (!pGD) { rc = VERR_NO_MEMORY; goto out; } pExtent->pGD = pGD; if (pExtent->uSectorRGD) { pRGD = (uint32_t *)RTMemAllocZ(cbGD); if (!pRGD) { rc = VERR_NO_MEMORY; goto out; } pExtent->pRGD = pRGD; } out: if (RT_FAILURE(rc)) vmdkFreeGrainDirectory(pExtent); return rc; } static int vmdkReadGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) { int rc = VINF_SUCCESS; unsigned i; uint32_t *pGDTmp, *pRGDTmp; size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t); if (pExtent->enmType != VMDKETYPE_HOSTED_SPARSE) goto out; if ( pExtent->uSectorGD == VMDK_GD_AT_END || pExtent->uSectorRGD == VMDK_GD_AT_END) { rc = VERR_INTERNAL_ERROR; goto out; } rc = vmdkAllocGrainDirectory(pImage, pExtent); if (RT_FAILURE(rc)) goto out; /* The VMDK 1.1 spec seems to talk about compressed grain directories, * but in reality they are not compressed. */ rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(pExtent->uSectorGD), pExtent->pGD, cbGD, NULL); AssertRC(rc); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not read grain directory in '%s': %Rrc"), pExtent->pszFullname); goto out; } for (i = 0, pGDTmp = pExtent->pGD; i < pExtent->cGDEntries; i++, pGDTmp++) *pGDTmp = RT_LE2H_U32(*pGDTmp); if (pExtent->uSectorRGD) { /* The VMDK 1.1 spec seems to talk about compressed grain directories, * but in reality they are not compressed. */ rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(pExtent->uSectorRGD), pExtent->pRGD, cbGD, NULL); AssertRC(rc); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not read redundant grain directory in '%s'"), pExtent->pszFullname); goto out; } for (i = 0, pRGDTmp = pExtent->pRGD; i < pExtent->cGDEntries; i++, pRGDTmp++) *pRGDTmp = RT_LE2H_U32(*pRGDTmp); /* Check grain table and redundant grain table for consistency. */ size_t cbGT = pExtent->cGTEntries * sizeof(uint32_t); uint32_t *pTmpGT1 = (uint32_t *)RTMemTmpAlloc(cbGT); if (!pTmpGT1) { rc = VERR_NO_MEMORY; goto out; } uint32_t *pTmpGT2 = (uint32_t *)RTMemTmpAlloc(cbGT); if (!pTmpGT2) { RTMemTmpFree(pTmpGT1); rc = VERR_NO_MEMORY; goto out; } for (i = 0, pGDTmp = pExtent->pGD, pRGDTmp = pExtent->pRGD; i < pExtent->cGDEntries; i++, pGDTmp++, pRGDTmp++) { /* If no grain table is allocated skip the entry. */ if (*pGDTmp == 0 && *pRGDTmp == 0) continue; if (*pGDTmp == 0 || *pRGDTmp == 0 || *pGDTmp == *pRGDTmp) { /* Just one grain directory entry refers to a not yet allocated * grain table or both grain directory copies refer to the same * grain table. Not allowed. */ RTMemTmpFree(pTmpGT1); RTMemTmpFree(pTmpGT2); rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: inconsistent references to grain directory in '%s'"), pExtent->pszFullname); goto out; } /* The VMDK 1.1 spec seems to talk about compressed grain tables, * but in reality they are not compressed. */ rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(*pGDTmp), pTmpGT1, cbGT, NULL); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading grain table in '%s'"), pExtent->pszFullname); RTMemTmpFree(pTmpGT1); RTMemTmpFree(pTmpGT2); goto out; } /* The VMDK 1.1 spec seems to talk about compressed grain tables, * but in reality they are not compressed. */ rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(*pRGDTmp), pTmpGT2, cbGT, NULL); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading backup grain table in '%s'"), pExtent->pszFullname); RTMemTmpFree(pTmpGT1); RTMemTmpFree(pTmpGT2); goto out; } if (memcmp(pTmpGT1, pTmpGT2, cbGT)) { RTMemTmpFree(pTmpGT1); RTMemTmpFree(pTmpGT2); rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: inconsistency between grain table and backup grain table in '%s'"), pExtent->pszFullname); goto out; } } /** @todo figure out what to do for unclean VMDKs. */ RTMemTmpFree(pTmpGT1); RTMemTmpFree(pTmpGT2); } out: if (RT_FAILURE(rc)) vmdkFreeGrainDirectory(pExtent); return rc; } static int vmdkCreateGrainDirectory(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint64_t uStartSector, bool fPreAlloc) { int rc = VINF_SUCCESS; unsigned i; size_t cbGD = pExtent->cGDEntries * sizeof(uint32_t); size_t cbGDRounded = RT_ALIGN_64(pExtent->cGDEntries * sizeof(uint32_t), 512); size_t cbGTRounded; uint64_t cbOverhead; if (fPreAlloc) { cbGTRounded = RT_ALIGN_64(pExtent->cGDEntries * pExtent->cGTEntries * sizeof(uint32_t), 512); cbOverhead = VMDK_SECTOR2BYTE(uStartSector) + cbGDRounded + cbGTRounded; } else { /* Use a dummy start sector for layout computation. */ if (uStartSector == VMDK_GD_AT_END) uStartSector = 1; cbGTRounded = 0; cbOverhead = VMDK_SECTOR2BYTE(uStartSector) + cbGDRounded; } /* For streamOptimized extents there is only one grain directory, * and for all others take redundant grain directory into account. */ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { cbOverhead = RT_ALIGN_64(cbOverhead, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); } else { cbOverhead += cbGDRounded + cbGTRounded; cbOverhead = RT_ALIGN_64(cbOverhead, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)); rc = vmdkFileSetSize(pImage, pExtent->pFile, cbOverhead); } if (RT_FAILURE(rc)) goto out; pExtent->uAppendPosition = cbOverhead; pExtent->cOverheadSectors = VMDK_BYTE2SECTOR(cbOverhead); if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { pExtent->uSectorRGD = 0; pExtent->uSectorGD = uStartSector; } else { pExtent->uSectorRGD = uStartSector; pExtent->uSectorGD = uStartSector + VMDK_BYTE2SECTOR(cbGDRounded + cbGTRounded); } rc = vmdkAllocStreamBuffers(pImage, pExtent); if (RT_FAILURE(rc)) goto out; rc = vmdkAllocGrainDirectory(pImage, pExtent); if (RT_FAILURE(rc)) goto out; if (fPreAlloc) { uint32_t uGTSectorLE; uint64_t uOffsetSectors; if (pExtent->pRGD) { uOffsetSectors = pExtent->uSectorRGD + VMDK_BYTE2SECTOR(cbGDRounded); for (i = 0; i < pExtent->cGDEntries; i++) { pExtent->pRGD[i] = uOffsetSectors; uGTSectorLE = RT_H2LE_U64(uOffsetSectors); /* Write the redundant grain directory entry to disk. */ rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + i * sizeof(uGTSectorLE), &uGTSectorLE, sizeof(uGTSectorLE), NULL); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write new redundant grain directory entry in '%s'"), pExtent->pszFullname); goto out; } uOffsetSectors += VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t)); } } uOffsetSectors = pExtent->uSectorGD + VMDK_BYTE2SECTOR(cbGDRounded); for (i = 0; i < pExtent->cGDEntries; i++) { pExtent->pGD[i] = uOffsetSectors; uGTSectorLE = RT_H2LE_U64(uOffsetSectors); /* Write the grain directory entry to disk. */ rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(pExtent->uSectorGD) + i * sizeof(uGTSectorLE), &uGTSectorLE, sizeof(uGTSectorLE), NULL); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write new grain directory entry in '%s'"), pExtent->pszFullname); goto out; } uOffsetSectors += VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t)); } } out: if (RT_FAILURE(rc)) vmdkFreeGrainDirectory(pExtent); return rc; } static int vmdkStringUnquote(PVMDKIMAGE pImage, const char *pszStr, char **ppszUnquoted, char **ppszNext) { char *pszQ; char *pszUnquoted; /* Skip over whitespace. */ while (*pszStr == ' ' || *pszStr == '\t') pszStr++; if (*pszStr != '"') { pszQ = (char *)pszStr; while (*pszQ && *pszQ != ' ' && *pszQ != '\t') pszQ++; } else { pszStr++; pszQ = (char *)strchr(pszStr, '"'); if (pszQ == NULL) return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrectly quoted value in descriptor in '%s'"), pImage->pszFilename); } pszUnquoted = (char *)RTMemTmpAlloc(pszQ - pszStr + 1); if (!pszUnquoted) return VERR_NO_MEMORY; memcpy(pszUnquoted, pszStr, pszQ - pszStr); pszUnquoted[pszQ - pszStr] = '\0'; *ppszUnquoted = pszUnquoted; if (ppszNext) *ppszNext = pszQ + 1; return VINF_SUCCESS; } static int vmdkDescInitStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, const char *pszLine) { char *pEnd = pDescriptor->aLines[pDescriptor->cLines]; ssize_t cbDiff = strlen(pszLine) + 1; if ( pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1 && pEnd - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff) return vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); memcpy(pEnd, pszLine, cbDiff); pDescriptor->cLines++; pDescriptor->aLines[pDescriptor->cLines] = pEnd + cbDiff; pDescriptor->fDirty = true; return VINF_SUCCESS; } static bool vmdkDescGetStr(PVMDKDESCRIPTOR pDescriptor, unsigned uStart, const char *pszKey, const char **ppszValue) { size_t cbKey = strlen(pszKey); const char *pszValue; while (uStart != 0) { if (!strncmp(pDescriptor->aLines[uStart], pszKey, cbKey)) { /* Key matches, check for a '=' (preceded by whitespace). */ pszValue = pDescriptor->aLines[uStart] + cbKey; while (*pszValue == ' ' || *pszValue == '\t') pszValue++; if (*pszValue == '=') { *ppszValue = pszValue + 1; break; } } uStart = pDescriptor->aNextLines[uStart]; } return !!uStart; } static int vmdkDescSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, unsigned uStart, const char *pszKey, const char *pszValue) { char *pszTmp; size_t cbKey = strlen(pszKey); unsigned uLast = 0; while (uStart != 0) { if (!strncmp(pDescriptor->aLines[uStart], pszKey, cbKey)) { /* Key matches, check for a '=' (preceded by whitespace). */ pszTmp = pDescriptor->aLines[uStart] + cbKey; while (*pszTmp == ' ' || *pszTmp == '\t') pszTmp++; if (*pszTmp == '=') { pszTmp++; while (*pszTmp == ' ' || *pszTmp == '\t') pszTmp++; break; } } if (!pDescriptor->aNextLines[uStart]) uLast = uStart; uStart = pDescriptor->aNextLines[uStart]; } if (uStart) { if (pszValue) { /* Key already exists, replace existing value. */ size_t cbOldVal = strlen(pszTmp); size_t cbNewVal = strlen(pszValue); ssize_t cbDiff = cbNewVal - cbOldVal; /* Check for buffer overflow. */ if ( pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff) return vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); memmove(pszTmp + cbNewVal, pszTmp + cbOldVal, pDescriptor->aLines[pDescriptor->cLines] - pszTmp - cbOldVal); memcpy(pszTmp, pszValue, cbNewVal + 1); for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++) pDescriptor->aLines[i] += cbDiff; } else { memmove(pDescriptor->aLines[uStart], pDescriptor->aLines[uStart+1], pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uStart+1] + 1); for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++) { pDescriptor->aLines[i-1] = pDescriptor->aLines[i]; if (pDescriptor->aNextLines[i]) pDescriptor->aNextLines[i-1] = pDescriptor->aNextLines[i] - 1; else pDescriptor->aNextLines[i-1] = 0; } pDescriptor->cLines--; /* Adjust starting line numbers of following descriptor sections. */ if (uStart < pDescriptor->uFirstExtent) pDescriptor->uFirstExtent--; if (uStart < pDescriptor->uFirstDDB) pDescriptor->uFirstDDB--; } } else { /* Key doesn't exist, append after the last entry in this category. */ if (!pszValue) { /* Key doesn't exist, and it should be removed. Simply a no-op. */ return VINF_SUCCESS; } cbKey = strlen(pszKey); size_t cbValue = strlen(pszValue); ssize_t cbDiff = cbKey + 1 + cbValue + 1; /* Check for buffer overflow. */ if ( (pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1) || ( pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff)) return vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); for (unsigned i = pDescriptor->cLines + 1; i > uLast + 1; i--) { pDescriptor->aLines[i] = pDescriptor->aLines[i - 1]; if (pDescriptor->aNextLines[i - 1]) pDescriptor->aNextLines[i] = pDescriptor->aNextLines[i - 1] + 1; else pDescriptor->aNextLines[i] = 0; } uStart = uLast + 1; pDescriptor->aNextLines[uLast] = uStart; pDescriptor->aNextLines[uStart] = 0; pDescriptor->cLines++; pszTmp = pDescriptor->aLines[uStart]; memmove(pszTmp + cbDiff, pszTmp, pDescriptor->aLines[pDescriptor->cLines] - pszTmp); memcpy(pDescriptor->aLines[uStart], pszKey, cbKey); pDescriptor->aLines[uStart][cbKey] = '='; memcpy(pDescriptor->aLines[uStart] + cbKey + 1, pszValue, cbValue + 1); for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++) pDescriptor->aLines[i] += cbDiff; /* Adjust starting line numbers of following descriptor sections. */ if (uStart <= pDescriptor->uFirstExtent) pDescriptor->uFirstExtent++; if (uStart <= pDescriptor->uFirstDDB) pDescriptor->uFirstDDB++; } pDescriptor->fDirty = true; return VINF_SUCCESS; } static int vmdkDescBaseGetU32(PVMDKDESCRIPTOR pDescriptor, const char *pszKey, uint32_t *puValue) { const char *pszValue; if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDesc, pszKey, &pszValue)) return VERR_VD_VMDK_VALUE_NOT_FOUND; return RTStrToUInt32Ex(pszValue, NULL, 10, puValue); } static int vmdkDescBaseGetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, const char *pszKey, const char **ppszValue) { const char *pszValue; char *pszValueUnquoted; if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDesc, pszKey, &pszValue)) return VERR_VD_VMDK_VALUE_NOT_FOUND; int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL); if (RT_FAILURE(rc)) return rc; *ppszValue = pszValueUnquoted; return rc; } static int vmdkDescBaseSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, const char *pszKey, const char *pszValue) { char *pszValueQuoted; RTStrAPrintf(&pszValueQuoted, "\"%s\"", pszValue); if (!pszValueQuoted) return VERR_NO_STR_MEMORY; int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc, pszKey, pszValueQuoted); RTStrFree(pszValueQuoted); return rc; } static void vmdkDescExtRemoveDummy(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor) { unsigned uEntry = pDescriptor->uFirstExtent; ssize_t cbDiff; if (!uEntry) return; cbDiff = strlen(pDescriptor->aLines[uEntry]) + 1; /* Move everything including \0 in the entry marking the end of buffer. */ memmove(pDescriptor->aLines[uEntry], pDescriptor->aLines[uEntry + 1], pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[uEntry + 1] + 1); for (unsigned i = uEntry + 1; i <= pDescriptor->cLines; i++) { pDescriptor->aLines[i - 1] = pDescriptor->aLines[i] - cbDiff; if (pDescriptor->aNextLines[i]) pDescriptor->aNextLines[i - 1] = pDescriptor->aNextLines[i] - 1; else pDescriptor->aNextLines[i - 1] = 0; } pDescriptor->cLines--; if (pDescriptor->uFirstDDB) pDescriptor->uFirstDDB--; return; } static int vmdkDescExtInsert(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, VMDKACCESS enmAccess, uint64_t cNominalSectors, VMDKETYPE enmType, const char *pszBasename, uint64_t uSectorOffset) { static const char *apszAccess[] = { "NOACCESS", "RDONLY", "RW" }; static const char *apszType[] = { "", "SPARSE", "FLAT", "ZERO", "VMFS" }; char *pszTmp; unsigned uStart = pDescriptor->uFirstExtent, uLast = 0; char szExt[1024]; ssize_t cbDiff; Assert((unsigned)enmAccess < RT_ELEMENTS(apszAccess)); Assert((unsigned)enmType < RT_ELEMENTS(apszType)); /* Find last entry in extent description. */ while (uStart) { if (!pDescriptor->aNextLines[uStart]) uLast = uStart; uStart = pDescriptor->aNextLines[uStart]; } if (enmType == VMDKETYPE_ZERO) { RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s ", apszAccess[enmAccess], cNominalSectors, apszType[enmType]); } else if (enmType == VMDKETYPE_FLAT) { RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s \"%s\" %llu", apszAccess[enmAccess], cNominalSectors, apszType[enmType], pszBasename, uSectorOffset); } else { RTStrPrintf(szExt, sizeof(szExt), "%s %llu %s \"%s\"", apszAccess[enmAccess], cNominalSectors, apszType[enmType], pszBasename); } cbDiff = strlen(szExt) + 1; /* Check for buffer overflow. */ if ( (pDescriptor->cLines >= VMDK_DESCRIPTOR_LINES_MAX - 1) || ( pDescriptor->aLines[pDescriptor->cLines] - pDescriptor->aLines[0] > (ptrdiff_t)pDescriptor->cbDescAlloc - cbDiff)) return vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); for (unsigned i = pDescriptor->cLines + 1; i > uLast + 1; i--) { pDescriptor->aLines[i] = pDescriptor->aLines[i - 1]; if (pDescriptor->aNextLines[i - 1]) pDescriptor->aNextLines[i] = pDescriptor->aNextLines[i - 1] + 1; else pDescriptor->aNextLines[i] = 0; } uStart = uLast + 1; pDescriptor->aNextLines[uLast] = uStart; pDescriptor->aNextLines[uStart] = 0; pDescriptor->cLines++; pszTmp = pDescriptor->aLines[uStart]; memmove(pszTmp + cbDiff, pszTmp, pDescriptor->aLines[pDescriptor->cLines] - pszTmp); memcpy(pDescriptor->aLines[uStart], szExt, cbDiff); for (unsigned i = uStart + 1; i <= pDescriptor->cLines; i++) pDescriptor->aLines[i] += cbDiff; /* Adjust starting line numbers of following descriptor sections. */ if (uStart <= pDescriptor->uFirstDDB) pDescriptor->uFirstDDB++; pDescriptor->fDirty = true; return VINF_SUCCESS; } static int vmdkDescDDBGetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, const char *pszKey, const char **ppszValue) { const char *pszValue; char *pszValueUnquoted; if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey, &pszValue)) return VERR_VD_VMDK_VALUE_NOT_FOUND; int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL); if (RT_FAILURE(rc)) return rc; *ppszValue = pszValueUnquoted; return rc; } static int vmdkDescDDBGetU32(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, const char *pszKey, uint32_t *puValue) { const char *pszValue; char *pszValueUnquoted; if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey, &pszValue)) return VERR_VD_VMDK_VALUE_NOT_FOUND; int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL); if (RT_FAILURE(rc)) return rc; rc = RTStrToUInt32Ex(pszValueUnquoted, NULL, 10, puValue); RTMemTmpFree(pszValueUnquoted); return rc; } static int vmdkDescDDBGetUuid(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, const char *pszKey, PRTUUID pUuid) { const char *pszValue; char *pszValueUnquoted; if (!vmdkDescGetStr(pDescriptor, pDescriptor->uFirstDDB, pszKey, &pszValue)) return VERR_VD_VMDK_VALUE_NOT_FOUND; int rc = vmdkStringUnquote(pImage, pszValue, &pszValueUnquoted, NULL); if (RT_FAILURE(rc)) return rc; rc = RTUuidFromStr(pUuid, pszValueUnquoted); RTMemTmpFree(pszValueUnquoted); return rc; } static int vmdkDescDDBSetStr(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, const char *pszKey, const char *pszVal) { int rc; char *pszValQuoted; if (pszVal) { RTStrAPrintf(&pszValQuoted, "\"%s\"", pszVal); if (!pszValQuoted) return VERR_NO_STR_MEMORY; } else pszValQuoted = NULL; rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey, pszValQuoted); if (pszValQuoted) RTStrFree(pszValQuoted); return rc; } static int vmdkDescDDBSetUuid(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, const char *pszKey, PCRTUUID pUuid) { char *pszUuid; RTStrAPrintf(&pszUuid, "\"%RTuuid\"", pUuid); if (!pszUuid) return VERR_NO_STR_MEMORY; int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey, pszUuid); RTStrFree(pszUuid); return rc; } static int vmdkDescDDBSetU32(PVMDKIMAGE pImage, PVMDKDESCRIPTOR pDescriptor, const char *pszKey, uint32_t uValue) { char *pszValue; RTStrAPrintf(&pszValue, "\"%d\"", uValue); if (!pszValue) return VERR_NO_STR_MEMORY; int rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDDB, pszKey, pszValue); RTStrFree(pszValue); return rc; } static int vmdkPreprocessDescriptor(PVMDKIMAGE pImage, char *pDescData, size_t cbDescData, PVMDKDESCRIPTOR pDescriptor) { int rc = VINF_SUCCESS; unsigned cLine = 0, uLastNonEmptyLine = 0; char *pTmp = pDescData; pDescriptor->cbDescAlloc = cbDescData; while (*pTmp != '\0') { pDescriptor->aLines[cLine++] = pTmp; if (cLine >= VMDK_DESCRIPTOR_LINES_MAX) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor too big in '%s'"), pImage->pszFilename); goto out; } while (*pTmp != '\0' && *pTmp != '\n') { if (*pTmp == '\r') { if (*(pTmp + 1) != '\n') { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: unsupported end of line in descriptor in '%s'"), pImage->pszFilename); goto out; } else { /* Get rid of CR character. */ *pTmp = '\0'; } } pTmp++; } /* Get rid of LF character. */ if (*pTmp == '\n') { *pTmp = '\0'; pTmp++; } } pDescriptor->cLines = cLine; /* Pointer right after the end of the used part of the buffer. */ pDescriptor->aLines[cLine] = pTmp; if ( strcmp(pDescriptor->aLines[0], "# Disk DescriptorFile") && strcmp(pDescriptor->aLines[0], "# Disk Descriptor File")) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor does not start as expected in '%s'"), pImage->pszFilename); goto out; } /* Initialize those, because we need to be able to reopen an image. */ pDescriptor->uFirstDesc = 0; pDescriptor->uFirstExtent = 0; pDescriptor->uFirstDDB = 0; for (unsigned i = 0; i < cLine; i++) { if (*pDescriptor->aLines[i] != '#' && *pDescriptor->aLines[i] != '\0') { if ( !strncmp(pDescriptor->aLines[i], "RW", 2) || !strncmp(pDescriptor->aLines[i], "RDONLY", 6) || !strncmp(pDescriptor->aLines[i], "NOACCESS", 8) ) { /* An extent descriptor. */ if (!pDescriptor->uFirstDesc || pDescriptor->uFirstDDB) { /* Incorrect ordering of entries. */ rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename); goto out; } if (!pDescriptor->uFirstExtent) { pDescriptor->uFirstExtent = i; uLastNonEmptyLine = 0; } } else if (!strncmp(pDescriptor->aLines[i], "ddb.", 4)) { /* A disk database entry. */ if (!pDescriptor->uFirstDesc || !pDescriptor->uFirstExtent) { /* Incorrect ordering of entries. */ rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename); goto out; } if (!pDescriptor->uFirstDDB) { pDescriptor->uFirstDDB = i; uLastNonEmptyLine = 0; } } else { /* A normal entry. */ if (pDescriptor->uFirstExtent || pDescriptor->uFirstDDB) { /* Incorrect ordering of entries. */ rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect ordering of entries in descriptor in '%s'"), pImage->pszFilename); goto out; } if (!pDescriptor->uFirstDesc) { pDescriptor->uFirstDesc = i; uLastNonEmptyLine = 0; } } if (uLastNonEmptyLine) pDescriptor->aNextLines[uLastNonEmptyLine] = i; uLastNonEmptyLine = i; } } out: return rc; } static int vmdkDescSetPCHSGeometry(PVMDKIMAGE pImage, PCVDGEOMETRY pPCHSGeometry) { int rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_PCHS_CYLINDERS, pPCHSGeometry->cCylinders); if (RT_FAILURE(rc)) return rc; rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_PCHS_HEADS, pPCHSGeometry->cHeads); if (RT_FAILURE(rc)) return rc; rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_PCHS_SECTORS, pPCHSGeometry->cSectors); return rc; } static int vmdkDescSetLCHSGeometry(PVMDKIMAGE pImage, PCVDGEOMETRY pLCHSGeometry) { int rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_LCHS_CYLINDERS, pLCHSGeometry->cCylinders); if (RT_FAILURE(rc)) return rc; rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_LCHS_HEADS, pLCHSGeometry->cHeads); if (RT_FAILURE(rc)) return rc; rc = vmdkDescDDBSetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_LCHS_SECTORS, pLCHSGeometry->cSectors); return rc; } static int vmdkCreateDescriptor(PVMDKIMAGE pImage, char *pDescData, size_t cbDescData, PVMDKDESCRIPTOR pDescriptor) { int rc; pDescriptor->uFirstDesc = 0; pDescriptor->uFirstExtent = 0; pDescriptor->uFirstDDB = 0; pDescriptor->cLines = 0; pDescriptor->cbDescAlloc = cbDescData; pDescriptor->fDirty = false; pDescriptor->aLines[pDescriptor->cLines] = pDescData; memset(pDescriptor->aNextLines, '\0', sizeof(pDescriptor->aNextLines)); rc = vmdkDescInitStr(pImage, pDescriptor, "# Disk DescriptorFile"); if (RT_FAILURE(rc)) goto out; rc = vmdkDescInitStr(pImage, pDescriptor, "version=1"); if (RT_FAILURE(rc)) goto out; pDescriptor->uFirstDesc = pDescriptor->cLines - 1; rc = vmdkDescInitStr(pImage, pDescriptor, ""); if (RT_FAILURE(rc)) goto out; rc = vmdkDescInitStr(pImage, pDescriptor, "# Extent description"); if (RT_FAILURE(rc)) goto out; rc = vmdkDescInitStr(pImage, pDescriptor, "NOACCESS 0 ZERO "); if (RT_FAILURE(rc)) goto out; pDescriptor->uFirstExtent = pDescriptor->cLines - 1; rc = vmdkDescInitStr(pImage, pDescriptor, ""); if (RT_FAILURE(rc)) goto out; /* The trailing space is created by VMware, too. */ rc = vmdkDescInitStr(pImage, pDescriptor, "# The disk Data Base "); if (RT_FAILURE(rc)) goto out; rc = vmdkDescInitStr(pImage, pDescriptor, "#DDB"); if (RT_FAILURE(rc)) goto out; rc = vmdkDescInitStr(pImage, pDescriptor, ""); if (RT_FAILURE(rc)) goto out; rc = vmdkDescInitStr(pImage, pDescriptor, "ddb.virtualHWVersion = \"4\""); if (RT_FAILURE(rc)) goto out; pDescriptor->uFirstDDB = pDescriptor->cLines - 1; /* Now that the framework is in place, use the normal functions to insert * the remaining keys. */ char szBuf[9]; RTStrPrintf(szBuf, sizeof(szBuf), "%08x", RTRandU32()); rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc, "CID", szBuf); if (RT_FAILURE(rc)) goto out; rc = vmdkDescSetStr(pImage, pDescriptor, pDescriptor->uFirstDesc, "parentCID", "ffffffff"); if (RT_FAILURE(rc)) goto out; rc = vmdkDescDDBSetStr(pImage, pDescriptor, "ddb.adapterType", "ide"); if (RT_FAILURE(rc)) goto out; out: return rc; } static int vmdkParseDescriptor(PVMDKIMAGE pImage, char *pDescData, size_t cbDescData) { int rc; unsigned cExtents; unsigned uLine; unsigned i; rc = vmdkPreprocessDescriptor(pImage, pDescData, cbDescData, &pImage->Descriptor); if (RT_FAILURE(rc)) return rc; /* Check version, must be 1. */ uint32_t uVersion; rc = vmdkDescBaseGetU32(&pImage->Descriptor, "version", &uVersion); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error finding key 'version' in descriptor in '%s'"), pImage->pszFilename); if (uVersion != 1) return vmdkError(pImage, VERR_VD_VMDK_UNSUPPORTED_VERSION, RT_SRC_POS, N_("VMDK: unsupported format version in descriptor in '%s'"), pImage->pszFilename); /* Get image creation type and determine image flags. */ const char *pszCreateType = NULL; /* initialized to make gcc shut up */ rc = vmdkDescBaseGetStr(pImage, &pImage->Descriptor, "createType", &pszCreateType); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot get image type from descriptor in '%s'"), pImage->pszFilename); if ( !strcmp(pszCreateType, "twoGbMaxExtentSparse") || !strcmp(pszCreateType, "twoGbMaxExtentFlat")) pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_SPLIT_2G; else if ( !strcmp(pszCreateType, "partitionedDevice") || !strcmp(pszCreateType, "fullDevice")) pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_RAWDISK; else if (!strcmp(pszCreateType, "streamOptimized")) pImage->uImageFlags |= VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED; else if (!strcmp(pszCreateType, "vmfs")) pImage->uImageFlags |= VD_IMAGE_FLAGS_FIXED | VD_VMDK_IMAGE_FLAGS_ESX; RTStrFree((char *)(void *)pszCreateType); /* Count the number of extent config entries. */ for (uLine = pImage->Descriptor.uFirstExtent, cExtents = 0; uLine != 0; uLine = pImage->Descriptor.aNextLines[uLine], cExtents++) /* nothing */; if (!pImage->pDescData && cExtents != 1) { /* Monolithic image, must have only one extent (already opened). */ return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: monolithic image may only have one extent in '%s'"), pImage->pszFilename); } if (pImage->pDescData) { /* Non-monolithic image, extents need to be allocated. */ rc = vmdkCreateExtents(pImage, cExtents); if (RT_FAILURE(rc)) return rc; } for (i = 0, uLine = pImage->Descriptor.uFirstExtent; i < cExtents; i++, uLine = pImage->Descriptor.aNextLines[uLine]) { char *pszLine = pImage->Descriptor.aLines[uLine]; /* Access type of the extent. */ if (!strncmp(pszLine, "RW", 2)) { pImage->pExtents[i].enmAccess = VMDKACCESS_READWRITE; pszLine += 2; } else if (!strncmp(pszLine, "RDONLY", 6)) { pImage->pExtents[i].enmAccess = VMDKACCESS_READONLY; pszLine += 6; } else if (!strncmp(pszLine, "NOACCESS", 8)) { pImage->pExtents[i].enmAccess = VMDKACCESS_NOACCESS; pszLine += 8; } else return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); if (*pszLine++ != ' ') return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); /* Nominal size of the extent. */ rc = RTStrToUInt64Ex(pszLine, &pszLine, 10, &pImage->pExtents[i].cNominalSectors); if (RT_FAILURE(rc)) return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); if (*pszLine++ != ' ') return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); /* Type of the extent. */ #ifdef VBOX_WITH_VMDK_ESX /** @todo Add the ESX extent types. Not necessary for now because * the ESX extent types are only used inside an ESX server. They are * automatically converted if the VMDK is exported. */ #endif /* VBOX_WITH_VMDK_ESX */ if (!strncmp(pszLine, "SPARSE", 6)) { pImage->pExtents[i].enmType = VMDKETYPE_HOSTED_SPARSE; pszLine += 6; } else if (!strncmp(pszLine, "FLAT", 4)) { pImage->pExtents[i].enmType = VMDKETYPE_FLAT; pszLine += 4; } else if (!strncmp(pszLine, "ZERO", 4)) { pImage->pExtents[i].enmType = VMDKETYPE_ZERO; pszLine += 4; } else if (!strncmp(pszLine, "VMFS", 4)) { pImage->pExtents[i].enmType = VMDKETYPE_VMFS; pszLine += 4; } else return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); if (pImage->pExtents[i].enmType == VMDKETYPE_ZERO) { /* This one has no basename or offset. */ if (*pszLine == ' ') pszLine++; if (*pszLine != '\0') return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); pImage->pExtents[i].pszBasename = NULL; } else { /* All other extent types have basename and optional offset. */ if (*pszLine++ != ' ') return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); /* Basename of the image. Surrounded by quotes. */ char *pszBasename; rc = vmdkStringUnquote(pImage, pszLine, &pszBasename, &pszLine); if (RT_FAILURE(rc)) return rc; pImage->pExtents[i].pszBasename = pszBasename; if (*pszLine == ' ') { pszLine++; if (*pszLine != '\0') { /* Optional offset in extent specified. */ rc = RTStrToUInt64Ex(pszLine, &pszLine, 10, &pImage->pExtents[i].uSectorOffset); if (RT_FAILURE(rc)) return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); } } if (*pszLine != '\0') return vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: parse error in extent description in '%s'"), pImage->pszFilename); } } /* Determine PCHS geometry (autogenerate if necessary). */ rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_PCHS_CYLINDERS, &pImage->PCHSGeometry.cCylinders); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) pImage->PCHSGeometry.cCylinders = 0; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename); rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_PCHS_HEADS, &pImage->PCHSGeometry.cHeads); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) pImage->PCHSGeometry.cHeads = 0; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename); rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_PCHS_SECTORS, &pImage->PCHSGeometry.cSectors); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) pImage->PCHSGeometry.cSectors = 0; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting PCHS geometry from extent description in '%s'"), pImage->pszFilename); if ( pImage->PCHSGeometry.cCylinders == 0 || pImage->PCHSGeometry.cHeads == 0 || pImage->PCHSGeometry.cHeads > 16 || pImage->PCHSGeometry.cSectors == 0 || pImage->PCHSGeometry.cSectors > 63) { /* Mark PCHS geometry as not yet valid (can't do the calculation here * as the total image size isn't known yet). */ pImage->PCHSGeometry.cCylinders = 0; pImage->PCHSGeometry.cHeads = 16; pImage->PCHSGeometry.cSectors = 63; } /* Determine LCHS geometry (set to 0 if not specified). */ rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_LCHS_CYLINDERS, &pImage->LCHSGeometry.cCylinders); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) pImage->LCHSGeometry.cCylinders = 0; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename); rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_LCHS_HEADS, &pImage->LCHSGeometry.cHeads); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) pImage->LCHSGeometry.cHeads = 0; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename); rc = vmdkDescDDBGetU32(pImage, &pImage->Descriptor, VMDK_DDB_GEO_LCHS_SECTORS, &pImage->LCHSGeometry.cSectors); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) pImage->LCHSGeometry.cSectors = 0; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting LCHS geometry from extent description in '%s'"), pImage->pszFilename); if ( pImage->LCHSGeometry.cCylinders == 0 || pImage->LCHSGeometry.cHeads == 0 || pImage->LCHSGeometry.cSectors == 0) { pImage->LCHSGeometry.cCylinders = 0; pImage->LCHSGeometry.cHeads = 0; pImage->LCHSGeometry.cSectors = 0; } /* Get image UUID. */ rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_IMAGE_UUID, &pImage->ImageUuid); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) { /* Image without UUID. Probably created by VMware and not yet used * by VirtualBox. Can only be added for images opened in read/write * mode, so don't bother producing a sensible UUID otherwise. */ if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) RTUuidClear(&pImage->ImageUuid); else { rc = RTUuidCreate(&pImage->ImageUuid); if (RT_FAILURE(rc)) return rc; rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_IMAGE_UUID, &pImage->ImageUuid); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image UUID in descriptor in '%s'"), pImage->pszFilename); } } else if (RT_FAILURE(rc)) return rc; /* Get image modification UUID. */ rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_MODIFICATION_UUID, &pImage->ModificationUuid); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) { /* Image without UUID. Probably created by VMware and not yet used * by VirtualBox. Can only be added for images opened in read/write * mode, so don't bother producing a sensible UUID otherwise. */ if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) RTUuidClear(&pImage->ModificationUuid); else { rc = RTUuidCreate(&pImage->ModificationUuid); if (RT_FAILURE(rc)) return rc; rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_MODIFICATION_UUID, &pImage->ModificationUuid); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image modification UUID in descriptor in '%s'"), pImage->pszFilename); } } else if (RT_FAILURE(rc)) return rc; /* Get UUID of parent image. */ rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_UUID, &pImage->ParentUuid); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) { /* Image without UUID. Probably created by VMware and not yet used * by VirtualBox. Can only be added for images opened in read/write * mode, so don't bother producing a sensible UUID otherwise. */ if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) RTUuidClear(&pImage->ParentUuid); else { rc = RTUuidClear(&pImage->ParentUuid); if (RT_FAILURE(rc)) return rc; rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_UUID, &pImage->ParentUuid); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent UUID in descriptor in '%s'"), pImage->pszFilename); } } else if (RT_FAILURE(rc)) return rc; /* Get parent image modification UUID. */ rc = vmdkDescDDBGetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_MODIFICATION_UUID, &pImage->ParentModificationUuid); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) { /* Image without UUID. Probably created by VMware and not yet used * by VirtualBox. Can only be added for images opened in read/write * mode, so don't bother producing a sensible UUID otherwise. */ if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) RTUuidClear(&pImage->ParentModificationUuid); else { RTUuidClear(&pImage->ParentModificationUuid); rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_MODIFICATION_UUID, &pImage->ParentModificationUuid); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent modification UUID in descriptor in '%s'"), pImage->pszFilename); } } else if (RT_FAILURE(rc)) return rc; return VINF_SUCCESS; } /** * Internal : Prepares the descriptor to write to the image. */ static int vmdkDescriptorPrepare(PVMDKIMAGE pImage, uint64_t cbLimit, void **ppvData, size_t *pcbData) { int rc = VINF_SUCCESS; /* * Allocate temporary descriptor buffer. * In case there is no limit allocate a default * and increase if required. */ size_t cbDescriptor = cbLimit ? cbLimit : 4 * _1K; char *pszDescriptor = (char *)RTMemAllocZ(cbDescriptor); unsigned offDescriptor = 0; if (!pszDescriptor) return VERR_NO_MEMORY; for (unsigned i = 0; i < pImage->Descriptor.cLines; i++) { const char *psz = pImage->Descriptor.aLines[i]; size_t cb = strlen(psz); /* * Increase the descriptor if there is no limit and * there is not enough room left for this line. */ if (offDescriptor + cb + 1 > cbDescriptor) { if (cbLimit) { rc = vmdkError(pImage, VERR_BUFFER_OVERFLOW, RT_SRC_POS, N_("VMDK: descriptor too long in '%s'"), pImage->pszFilename); break; } else { char *pszDescriptorNew = NULL; LogFlow(("Increasing descriptor cache\n")); pszDescriptorNew = (char *)RTMemRealloc(pszDescriptor, cbDescriptor + cb + 4 * _1K); if (!pszDescriptorNew) { rc = VERR_NO_MEMORY; break; } pszDescriptor = pszDescriptorNew; cbDescriptor += cb + 4 * _1K; } } if (cb > 0) { memcpy(pszDescriptor + offDescriptor, psz, cb); offDescriptor += cb; } memcpy(pszDescriptor + offDescriptor, "\n", 1); offDescriptor++; } if (RT_SUCCESS(rc)) { *ppvData = pszDescriptor; *pcbData = offDescriptor; } else if (pszDescriptor) RTMemFree(pszDescriptor); return rc; } /** * Internal: write/update the descriptor part of the image. */ static int vmdkWriteDescriptor(PVMDKIMAGE pImage) { int rc = VINF_SUCCESS; uint64_t cbLimit; uint64_t uOffset; PVMDKFILE pDescFile; void *pvDescriptor; size_t cbDescriptor; if (pImage->pDescData) { /* Separate descriptor file. */ uOffset = 0; cbLimit = 0; pDescFile = pImage->pFile; } else { /* Embedded descriptor file. */ uOffset = VMDK_SECTOR2BYTE(pImage->pExtents[0].uDescriptorSector); cbLimit = VMDK_SECTOR2BYTE(pImage->pExtents[0].cDescriptorSectors); pDescFile = pImage->pExtents[0].pFile; } /* Bail out if there is no file to write to. */ if (pDescFile == NULL) return VERR_INVALID_PARAMETER; rc = vmdkDescriptorPrepare(pImage, cbLimit, &pvDescriptor, &cbDescriptor); if (RT_SUCCESS(rc)) { rc = vmdkFileWriteSync(pImage, pDescFile, uOffset, pvDescriptor, cbLimit ? cbLimit : cbDescriptor, NULL); if (RT_FAILURE(rc)) rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error writing descriptor in '%s'"), pImage->pszFilename); if (RT_SUCCESS(rc) && !cbLimit) { rc = vmdkFileSetSize(pImage, pDescFile, cbDescriptor); if (RT_FAILURE(rc)) rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error truncating descriptor in '%s'"), pImage->pszFilename); } if (RT_SUCCESS(rc)) pImage->Descriptor.fDirty = false; RTMemFree(pvDescriptor); } return rc; } /** * Internal: write/update the descriptor part of the image - async version. */ static int vmdkWriteDescriptorAsync(PVMDKIMAGE pImage, PVDIOCTX pIoCtx) { int rc = VINF_SUCCESS; uint64_t cbLimit; uint64_t uOffset; PVMDKFILE pDescFile; void *pvDescriptor; size_t cbDescriptor; if (pImage->pDescData) { /* Separate descriptor file. */ uOffset = 0; cbLimit = 0; pDescFile = pImage->pFile; } else { /* Embedded descriptor file. */ uOffset = VMDK_SECTOR2BYTE(pImage->pExtents[0].uDescriptorSector); cbLimit = VMDK_SECTOR2BYTE(pImage->pExtents[0].cDescriptorSectors); pDescFile = pImage->pExtents[0].pFile; } /* Bail out if there is no file to write to. */ if (pDescFile == NULL) return VERR_INVALID_PARAMETER; rc = vmdkDescriptorPrepare(pImage, cbLimit, &pvDescriptor, &cbDescriptor); if (RT_SUCCESS(rc)) { rc = vmdkFileWriteMetaAsync(pImage, pDescFile, uOffset, pvDescriptor, cbLimit ? cbLimit : cbDescriptor, pIoCtx, NULL, NULL); if ( RT_FAILURE(rc) && rc != VERR_VD_ASYNC_IO_IN_PROGRESS) rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error writing descriptor in '%s'"), pImage->pszFilename); } if (RT_SUCCESS(rc) && !cbLimit) { rc = vmdkFileSetSize(pImage, pDescFile, cbDescriptor); if (RT_FAILURE(rc)) rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error truncating descriptor in '%s'"), pImage->pszFilename); } if (RT_SUCCESS(rc)) pImage->Descriptor.fDirty = false; RTMemFree(pvDescriptor); return rc; } /** * Internal: validate the consistency check values in a binary header. */ static int vmdkValidateHeader(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, const SparseExtentHeader *pHeader) { int rc = VINF_SUCCESS; if (RT_LE2H_U32(pHeader->magicNumber) != VMDK_SPARSE_MAGICNUMBER) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect magic in sparse extent header in '%s'"), pExtent->pszFullname); return rc; } if (RT_LE2H_U32(pHeader->version) != 1 && RT_LE2H_U32(pHeader->version) != 3) { rc = vmdkError(pImage, VERR_VD_VMDK_UNSUPPORTED_VERSION, RT_SRC_POS, N_("VMDK: incorrect version in sparse extent header in '%s', not a VMDK 1.0/1.1 conforming file"), pExtent->pszFullname); return rc; } if ( (RT_LE2H_U32(pHeader->flags) & 1) && ( pHeader->singleEndLineChar != '\n' || pHeader->nonEndLineChar != ' ' || pHeader->doubleEndLineChar1 != '\r' || pHeader->doubleEndLineChar2 != '\n') ) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: corrupted by CR/LF translation in '%s'"), pExtent->pszFullname); return rc; } return rc; } /** * Internal: read metadata belonging to an extent with binary header, i.e. * as found in monolithic files. */ static int vmdkReadBinaryMetaExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, bool fMagicAlreadyRead) { SparseExtentHeader Header; uint64_t cSectorsPerGDE; uint64_t cbFile = 0; int rc; if (!fMagicAlreadyRead) rc = vmdkFileReadSync(pImage, pExtent->pFile, 0, &Header, sizeof(Header), NULL); else { Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER); rc = vmdkFileReadSync(pImage, pExtent->pFile, RT_OFFSETOF(SparseExtentHeader, version), &Header.version, sizeof(Header) - RT_OFFSETOF(SparseExtentHeader, version), NULL); } AssertRC(rc); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading extent header in '%s'"), pExtent->pszFullname); goto out; } rc = vmdkValidateHeader(pImage, pExtent, &Header); if (RT_FAILURE(rc)) goto out; if ( RT_LE2H_U32(Header.flags & RT_BIT(17)) && RT_LE2H_U64(Header.gdOffset) == VMDK_GD_AT_END) pExtent->fFooter = true; if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) || ( pExtent->fFooter && !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))) { rc = vmdkFileGetSize(pImage, pExtent->pFile, &cbFile); AssertRC(rc); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot get size of '%s'"), pExtent->pszFullname); goto out; } } if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) pExtent->uAppendPosition = RT_ALIGN_64(cbFile, 512); if ( pExtent->fFooter && ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))) { /* Read the footer, which comes before the end-of-stream marker. */ rc = vmdkFileReadSync(pImage, pExtent->pFile, cbFile - 2*512, &Header, sizeof(Header), NULL); AssertRC(rc); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading extent footer in '%s'"), pExtent->pszFullname); goto out; } rc = vmdkValidateHeader(pImage, pExtent, &Header); if (RT_FAILURE(rc)) goto out; /* Prohibit any writes to this extent. */ pExtent->uAppendPosition = 0; } pExtent->uVersion = RT_LE2H_U32(Header.version); pExtent->enmType = VMDKETYPE_HOSTED_SPARSE; /* Just dummy value, changed later. */ pExtent->cSectors = RT_LE2H_U64(Header.capacity); pExtent->cSectorsPerGrain = RT_LE2H_U64(Header.grainSize); pExtent->uDescriptorSector = RT_LE2H_U64(Header.descriptorOffset); pExtent->cDescriptorSectors = RT_LE2H_U64(Header.descriptorSize); if (pExtent->uDescriptorSector && !pExtent->cDescriptorSectors) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: inconsistent embedded descriptor config in '%s'"), pExtent->pszFullname); goto out; } pExtent->cGTEntries = RT_LE2H_U32(Header.numGTEsPerGT); if (RT_LE2H_U32(Header.flags) & RT_BIT(1)) { pExtent->uSectorRGD = RT_LE2H_U64(Header.rgdOffset); pExtent->uSectorGD = RT_LE2H_U64(Header.gdOffset); } else { pExtent->uSectorGD = RT_LE2H_U64(Header.gdOffset); pExtent->uSectorRGD = 0; } if ( ( pExtent->uSectorGD == VMDK_GD_AT_END || pExtent->uSectorRGD == VMDK_GD_AT_END) && ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL))) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: cannot resolve grain directory offset in '%s'"), pExtent->pszFullname); goto out; } pExtent->cOverheadSectors = RT_LE2H_U64(Header.overHead); pExtent->fUncleanShutdown = !!Header.uncleanShutdown; pExtent->uCompression = RT_LE2H_U16(Header.compressAlgorithm); cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain; if (!cSectorsPerGDE || cSectorsPerGDE > UINT32_MAX) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: incorrect grain directory size in '%s'"), pExtent->pszFullname); goto out; } pExtent->cSectorsPerGDE = cSectorsPerGDE; pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE; /* Fix up the number of descriptor sectors, as some flat images have * really just one, and this causes failures when inserting the UUID * values and other extra information. */ if (pExtent->cDescriptorSectors != 0 && pExtent->cDescriptorSectors < 4) { /* Do it the easy way - just fix it for flat images which have no * other complicated metadata which needs space too. */ if ( pExtent->uDescriptorSector + 4 < pExtent->cOverheadSectors && pExtent->cGTEntries * pExtent->cGDEntries == 0) pExtent->cDescriptorSectors = 4; } out: if (RT_FAILURE(rc)) vmdkFreeExtentData(pImage, pExtent, false); return rc; } /** * Internal: read additional metadata belonging to an extent. For those * extents which have no additional metadata just verify the information. */ static int vmdkReadMetaExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) { int rc = VINF_SUCCESS; /* disabled the check as there are too many truncated vmdk images out there */ #ifdef VBOX_WITH_VMDK_STRICT_SIZE_CHECK uint64_t cbExtentSize; /* The image must be a multiple of a sector in size and contain the data * area (flat images only). If not, it means the image is at least * truncated, or even seriously garbled. */ rc = vmdkFileGetSize(pImage, pExtent->pFile, &cbExtentSize); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error getting size in '%s'"), pExtent->pszFullname); goto out; } if ( cbExtentSize != RT_ALIGN_64(cbExtentSize, 512) && (pExtent->enmType != VMDKETYPE_FLAT || pExtent->cNominalSectors + pExtent->uSectorOffset > VMDK_BYTE2SECTOR(cbExtentSize))) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: file size is not a multiple of 512 in '%s', file is truncated or otherwise garbled"), pExtent->pszFullname); goto out; } #endif /* VBOX_WITH_VMDK_STRICT_SIZE_CHECK */ if (pExtent->enmType != VMDKETYPE_HOSTED_SPARSE) goto out; /* The spec says that this must be a power of two and greater than 8, * but probably they meant not less than 8. */ if ( (pExtent->cSectorsPerGrain & (pExtent->cSectorsPerGrain - 1)) || pExtent->cSectorsPerGrain < 8) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: invalid extent grain size %u in '%s'"), pExtent->cSectorsPerGrain, pExtent->pszFullname); goto out; } /* This code requires that a grain table must hold a power of two multiple * of the number of entries per GT cache entry. */ if ( (pExtent->cGTEntries & (pExtent->cGTEntries - 1)) || pExtent->cGTEntries < VMDK_GT_CACHELINE_SIZE) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: grain table cache size problem in '%s'"), pExtent->pszFullname); goto out; } rc = vmdkAllocStreamBuffers(pImage, pExtent); if (RT_FAILURE(rc)) goto out; /* Prohibit any writes to this streamOptimized extent. */ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) pExtent->uAppendPosition = 0; if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) || !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)) rc = vmdkReadGrainDirectory(pImage, pExtent); else { pExtent->uGrainSectorAbs = pExtent->cOverheadSectors; pExtent->cbGrainStreamRead = 0; } out: if (RT_FAILURE(rc)) vmdkFreeExtentData(pImage, pExtent, false); return rc; } /** * Internal: write/update the metadata for a sparse extent. */ static int vmdkWriteMetaSparseExtent(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint64_t uOffset) { SparseExtentHeader Header; memset(&Header, '\0', sizeof(Header)); Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER); Header.version = RT_H2LE_U32(pExtent->uVersion); Header.flags = RT_H2LE_U32(RT_BIT(0)); if (pExtent->pRGD) Header.flags |= RT_H2LE_U32(RT_BIT(1)); if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) Header.flags |= RT_H2LE_U32(RT_BIT(16) | RT_BIT(17)); Header.capacity = RT_H2LE_U64(pExtent->cSectors); Header.grainSize = RT_H2LE_U64(pExtent->cSectorsPerGrain); Header.descriptorOffset = RT_H2LE_U64(pExtent->uDescriptorSector); Header.descriptorSize = RT_H2LE_U64(pExtent->cDescriptorSectors); Header.numGTEsPerGT = RT_H2LE_U32(pExtent->cGTEntries); if (pExtent->fFooter && uOffset == 0) { if (pExtent->pRGD) { Assert(pExtent->uSectorRGD); Header.rgdOffset = RT_H2LE_U64(VMDK_GD_AT_END); Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END); } else { Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END); } } else { if (pExtent->pRGD) { Assert(pExtent->uSectorRGD); Header.rgdOffset = RT_H2LE_U64(pExtent->uSectorRGD); Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD); } else { Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD); } } Header.overHead = RT_H2LE_U64(pExtent->cOverheadSectors); Header.uncleanShutdown = pExtent->fUncleanShutdown; Header.singleEndLineChar = '\n'; Header.nonEndLineChar = ' '; Header.doubleEndLineChar1 = '\r'; Header.doubleEndLineChar2 = '\n'; Header.compressAlgorithm = RT_H2LE_U16(pExtent->uCompression); int rc = vmdkFileWriteSync(pImage, pExtent->pFile, uOffset, &Header, sizeof(Header), NULL); AssertRC(rc); if (RT_FAILURE(rc)) rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error writing extent header in '%s'"), pExtent->pszFullname); return rc; } /** * Internal: write/update the metadata for a sparse extent - async version. */ static int vmdkWriteMetaSparseExtentAsync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint64_t uOffset, PVDIOCTX pIoCtx) { SparseExtentHeader Header; memset(&Header, '\0', sizeof(Header)); Header.magicNumber = RT_H2LE_U32(VMDK_SPARSE_MAGICNUMBER); Header.version = RT_H2LE_U32(pExtent->uVersion); Header.flags = RT_H2LE_U32(RT_BIT(0)); if (pExtent->pRGD) Header.flags |= RT_H2LE_U32(RT_BIT(1)); if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) Header.flags |= RT_H2LE_U32(RT_BIT(16) | RT_BIT(17)); Header.capacity = RT_H2LE_U64(pExtent->cSectors); Header.grainSize = RT_H2LE_U64(pExtent->cSectorsPerGrain); Header.descriptorOffset = RT_H2LE_U64(pExtent->uDescriptorSector); Header.descriptorSize = RT_H2LE_U64(pExtent->cDescriptorSectors); Header.numGTEsPerGT = RT_H2LE_U32(pExtent->cGTEntries); if (pExtent->fFooter && uOffset == 0) { if (pExtent->pRGD) { Assert(pExtent->uSectorRGD); Header.rgdOffset = RT_H2LE_U64(VMDK_GD_AT_END); Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END); } else { Header.gdOffset = RT_H2LE_U64(VMDK_GD_AT_END); } } else { if (pExtent->pRGD) { Assert(pExtent->uSectorRGD); Header.rgdOffset = RT_H2LE_U64(pExtent->uSectorRGD); Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD); } else { Header.gdOffset = RT_H2LE_U64(pExtent->uSectorGD); } } Header.overHead = RT_H2LE_U64(pExtent->cOverheadSectors); Header.uncleanShutdown = pExtent->fUncleanShutdown; Header.singleEndLineChar = '\n'; Header.nonEndLineChar = ' '; Header.doubleEndLineChar1 = '\r'; Header.doubleEndLineChar2 = '\n'; Header.compressAlgorithm = RT_H2LE_U16(pExtent->uCompression); int rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile, uOffset, &Header, sizeof(Header), pIoCtx, NULL, NULL); if (RT_FAILURE(rc) && (rc != VERR_VD_ASYNC_IO_IN_PROGRESS)) rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error writing extent header in '%s'"), pExtent->pszFullname); return rc; } #ifdef VBOX_WITH_VMDK_ESX /** * Internal: unused code to read the metadata of a sparse ESX extent. * * Such extents never leave ESX server, so this isn't ever used. */ static int vmdkReadMetaESXSparseExtent(PVMDKEXTENT pExtent) { COWDisk_Header Header; uint64_t cSectorsPerGDE; int rc = vmdkFileReadSync(pImage, pExtent->pFile, 0, &Header, sizeof(Header), NULL); AssertRC(rc); if (RT_FAILURE(rc)) goto out; if ( RT_LE2H_U32(Header.magicNumber) != VMDK_ESX_SPARSE_MAGICNUMBER || RT_LE2H_U32(Header.version) != 1 || RT_LE2H_U32(Header.flags) != 3) { rc = VERR_VD_VMDK_INVALID_HEADER; goto out; } pExtent->enmType = VMDKETYPE_ESX_SPARSE; pExtent->cSectors = RT_LE2H_U32(Header.numSectors); pExtent->cSectorsPerGrain = RT_LE2H_U32(Header.grainSize); /* The spec says that this must be between 1 sector and 1MB. This code * assumes it's a power of two, so check that requirement, too. */ if ( (pExtent->cSectorsPerGrain & (pExtent->cSectorsPerGrain - 1)) || pExtent->cSectorsPerGrain == 0 || pExtent->cSectorsPerGrain > 2048) { rc = VERR_VD_VMDK_INVALID_HEADER; goto out; } pExtent->uDescriptorSector = 0; pExtent->cDescriptorSectors = 0; pExtent->uSectorGD = RT_LE2H_U32(Header.gdOffset); pExtent->uSectorRGD = 0; pExtent->cOverheadSectors = 0; pExtent->cGTEntries = 4096; cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain; if (!cSectorsPerGDE || cSectorsPerGDE > UINT32_MAX) { rc = VERR_VD_VMDK_INVALID_HEADER; goto out; } pExtent->cSectorsPerGDE = cSectorsPerGDE; pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE; if (pExtent->cGDEntries != RT_LE2H_U32(Header.numGDEntries)) { /* Inconsistency detected. Computed number of GD entries doesn't match * stored value. Better be safe than sorry. */ rc = VERR_VD_VMDK_INVALID_HEADER; goto out; } pExtent->uFreeSector = RT_LE2H_U32(Header.freeSector); pExtent->fUncleanShutdown = !!Header.uncleanShutdown; rc = vmdkReadGrainDirectory(pImage, pExtent); out: if (RT_FAILURE(rc)) vmdkFreeExtentData(pImage, pExtent, false); return rc; } #endif /* VBOX_WITH_VMDK_ESX */ /** * Internal: free the buffers used for streamOptimized images. */ static void vmdkFreeStreamBuffers(PVMDKEXTENT pExtent) { if (pExtent->pvCompGrain) { RTMemFree(pExtent->pvCompGrain); pExtent->pvCompGrain = NULL; } if (pExtent->pvGrain) { RTMemFree(pExtent->pvGrain); pExtent->pvGrain = NULL; } } /** * Internal: free the memory used by the extent data structure, optionally * deleting the referenced files. */ static void vmdkFreeExtentData(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, bool fDelete) { vmdkFreeGrainDirectory(pExtent); if (pExtent->pDescData) { RTMemFree(pExtent->pDescData); pExtent->pDescData = NULL; } if (pExtent->pFile != NULL) { /* Do not delete raw extents, these have full and base names equal. */ vmdkFileClose(pImage, &pExtent->pFile, fDelete && pExtent->pszFullname && strcmp(pExtent->pszFullname, pExtent->pszBasename)); } if (pExtent->pszBasename) { RTMemTmpFree((void *)pExtent->pszBasename); pExtent->pszBasename = NULL; } if (pExtent->pszFullname) { RTStrFree((char *)(void *)pExtent->pszFullname); pExtent->pszFullname = NULL; } vmdkFreeStreamBuffers(pExtent); } /** * Internal: allocate grain table cache if necessary for this image. */ static int vmdkAllocateGrainTableCache(PVMDKIMAGE pImage) { PVMDKEXTENT pExtent; /* Allocate grain table cache if any sparse extent is present. */ for (unsigned i = 0; i < pImage->cExtents; i++) { pExtent = &pImage->pExtents[i]; if ( pExtent->enmType == VMDKETYPE_HOSTED_SPARSE #ifdef VBOX_WITH_VMDK_ESX || pExtent->enmType == VMDKETYPE_ESX_SPARSE #endif /* VBOX_WITH_VMDK_ESX */ ) { /* Allocate grain table cache. */ pImage->pGTCache = (PVMDKGTCACHE)RTMemAllocZ(sizeof(VMDKGTCACHE)); if (!pImage->pGTCache) return VERR_NO_MEMORY; for (unsigned j = 0; j < VMDK_GT_CACHE_SIZE; j++) { PVMDKGTCACHEENTRY pGCE = &pImage->pGTCache->aGTCache[j]; pGCE->uExtent = UINT32_MAX; } pImage->pGTCache->cEntries = VMDK_GT_CACHE_SIZE; break; } } return VINF_SUCCESS; } /** * Internal: allocate the given number of extents. */ static int vmdkCreateExtents(PVMDKIMAGE pImage, unsigned cExtents) { int rc = VINF_SUCCESS; PVMDKEXTENT pExtents = (PVMDKEXTENT)RTMemAllocZ(cExtents * sizeof(VMDKEXTENT)); if (pExtents) { for (unsigned i = 0; i < cExtents; i++) { pExtents[i].pFile = NULL; pExtents[i].pszBasename = NULL; pExtents[i].pszFullname = NULL; pExtents[i].pGD = NULL; pExtents[i].pRGD = NULL; pExtents[i].pDescData = NULL; pExtents[i].uVersion = 1; pExtents[i].uCompression = VMDK_COMPRESSION_NONE; pExtents[i].uExtent = i; pExtents[i].pImage = pImage; } pImage->pExtents = pExtents; pImage->cExtents = cExtents; } else rc = VERR_NO_MEMORY; return rc; } /** * Internal: Open an image, constructing all necessary data structures. */ static int vmdkOpenImage(PVMDKIMAGE pImage, unsigned uOpenFlags) { int rc; uint32_t u32Magic; PVMDKFILE pFile; PVMDKEXTENT pExtent; pImage->uOpenFlags = uOpenFlags; /* Try to get error interface. */ pImage->pInterfaceError = VDInterfaceGet(pImage->pVDIfsDisk, VDINTERFACETYPE_ERROR); if (pImage->pInterfaceError) pImage->pInterfaceErrorCallbacks = VDGetInterfaceError(pImage->pInterfaceError); /* Get I/O interface. */ pImage->pInterfaceIO = VDInterfaceGet(pImage->pVDIfsImage, VDINTERFACETYPE_IOINT); AssertPtrReturn(pImage->pInterfaceIO, VERR_INVALID_PARAMETER); pImage->pInterfaceIOCallbacks = VDGetInterfaceIOInt(pImage->pInterfaceIO); AssertPtrReturn(pImage->pInterfaceIOCallbacks, VERR_INVALID_PARAMETER); /* * Open the image. * We don't have to check for asynchronous access because * we only support raw access and the opened file is a description * file were no data is stored. */ rc = vmdkFileOpen(pImage, &pFile, pImage->pszFilename, VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */), false /* fAsyncIO */); if (RT_FAILURE(rc)) { /* Do NOT signal an appropriate error here, as the VD layer has the * choice of retrying the open if it failed. */ goto out; } pImage->pFile = pFile; /* Read magic (if present). */ rc = vmdkFileReadSync(pImage, pFile, 0, &u32Magic, sizeof(u32Magic), NULL); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error reading the magic number in '%s'"), pImage->pszFilename); goto out; } /* Handle the file according to its magic number. */ if (RT_LE2H_U32(u32Magic) == VMDK_SPARSE_MAGICNUMBER) { /* It's a hosted single-extent image. */ rc = vmdkCreateExtents(pImage, 1); if (RT_FAILURE(rc)) goto out; /* The opened file is passed to the extent. No separate descriptor * file, so no need to keep anything open for the image. */ pExtent = &pImage->pExtents[0]; pExtent->pFile = pFile; pImage->pFile = NULL; pExtent->pszFullname = RTPathAbsDup(pImage->pszFilename); if (!pExtent->pszFullname) { rc = VERR_NO_MEMORY; goto out; } rc = vmdkReadBinaryMetaExtent(pImage, pExtent, true /* fMagicAlreadyRead */); if (RT_FAILURE(rc)) goto out; /* As we're dealing with a monolithic image here, there must * be a descriptor embedded in the image file. */ if (!pExtent->uDescriptorSector || !pExtent->cDescriptorSectors) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: monolithic image without descriptor in '%s'"), pImage->pszFilename); goto out; } /* HACK: extend the descriptor if it is unusually small and it fits in * the unused space after the image header. Allows opening VMDK files * with extremely small descriptor in read/write mode. */ if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) && pExtent->cDescriptorSectors < 3 && (int64_t)pExtent->uSectorGD - pExtent->uDescriptorSector >= 4 && (!pExtent->uSectorRGD || (int64_t)pExtent->uSectorRGD - pExtent->uDescriptorSector >= 4)) { pExtent->cDescriptorSectors = 4; pExtent->fMetaDirty = true; } /* Read the descriptor from the extent. */ pExtent->pDescData = (char *)RTMemAllocZ(VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors)); if (!pExtent->pDescData) { rc = VERR_NO_MEMORY; goto out; } rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(pExtent->uDescriptorSector), pExtent->pDescData, VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors), NULL); AssertRC(rc); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: read error for descriptor in '%s'"), pExtent->pszFullname); goto out; } rc = vmdkParseDescriptor(pImage, pExtent->pDescData, VMDK_SECTOR2BYTE(pExtent->cDescriptorSectors)); if (RT_FAILURE(rc)) goto out; if ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED && uOpenFlags & VD_OPEN_FLAGS_ASYNC_IO) { rc = VERR_NOT_SUPPORTED; goto out; } rc = vmdkReadMetaExtent(pImage, pExtent); if (RT_FAILURE(rc)) goto out; /* Mark the extent as unclean if opened in read-write mode. */ if ( !(uOpenFlags & VD_OPEN_FLAGS_READONLY) && !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) { pExtent->fUncleanShutdown = true; pExtent->fMetaDirty = true; } } else { /* Allocate at least 10K, and make sure that there is 5K free space * in case new entries need to be added to the descriptor. Never * allocate more than 128K, because that's no valid descriptor file * and will result in the correct "truncated read" error handling. */ uint64_t cbFileSize; rc = vmdkFileGetSize(pImage, pFile, &cbFileSize); if (RT_FAILURE(rc)) goto out; /* If the descriptor file is shorter than 50 bytes it can't be valid. */ if (cbFileSize < 50) { rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: descriptor in '%s' is too short"), pImage->pszFilename); goto out; } uint64_t cbSize = cbFileSize; if (cbSize % VMDK_SECTOR2BYTE(10)) cbSize += VMDK_SECTOR2BYTE(20) - cbSize % VMDK_SECTOR2BYTE(10); else cbSize += VMDK_SECTOR2BYTE(10); cbSize = RT_MIN(cbSize, _128K); pImage->cbDescAlloc = RT_MAX(VMDK_SECTOR2BYTE(20), cbSize); pImage->pDescData = (char *)RTMemAllocZ(pImage->cbDescAlloc); if (!pImage->pDescData) { rc = VERR_NO_MEMORY; goto out; } /* Don't reread the place where the magic would live in a sparse * image if it's a descriptor based one. */ memcpy(pImage->pDescData, &u32Magic, sizeof(u32Magic)); size_t cbRead; rc = vmdkFileReadSync(pImage, pImage->pFile, sizeof(u32Magic), pImage->pDescData + sizeof(u32Magic), RT_MIN(pImage->cbDescAlloc - sizeof(u32Magic), cbFileSize - sizeof(u32Magic)), &cbRead); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: read error for descriptor in '%s'"), pImage->pszFilename); goto out; } cbRead += sizeof(u32Magic); if (cbRead == pImage->cbDescAlloc) { /* Likely the read is truncated. Better fail a bit too early * (normally the descriptor is much smaller than our buffer). */ rc = vmdkError(pImage, VERR_VD_VMDK_INVALID_HEADER, RT_SRC_POS, N_("VMDK: cannot read descriptor in '%s'"), pImage->pszFilename); goto out; } rc = vmdkParseDescriptor(pImage, pImage->pDescData, pImage->cbDescAlloc); if (RT_FAILURE(rc)) goto out; /* * We have to check for the asynchronous open flag. The * extents are parsed and the type of all are known now. * Check if every extent is either FLAT or ZERO. */ if (uOpenFlags & VD_OPEN_FLAGS_ASYNC_IO) { unsigned cFlatExtents = 0; for (unsigned i = 0; i < pImage->cExtents; i++) { pExtent = &pImage->pExtents[i]; if (( pExtent->enmType != VMDKETYPE_FLAT && pExtent->enmType != VMDKETYPE_ZERO && pExtent->enmType != VMDKETYPE_VMFS) || ((pImage->pExtents[i].enmType == VMDKETYPE_FLAT) && (cFlatExtents > 0))) { /* * Opened image contains at least one none flat or zero extent. * Return error but don't set error message as the caller * has the chance to open in non async I/O mode. */ rc = VERR_NOT_SUPPORTED; goto out; } if (pExtent->enmType == VMDKETYPE_FLAT) cFlatExtents++; } } for (unsigned i = 0; i < pImage->cExtents; i++) { pExtent = &pImage->pExtents[i]; if (pExtent->pszBasename) { /* Hack to figure out whether the specified name in the * extent descriptor is absolute. Doesn't always work, but * should be good enough for now. */ char *pszFullname; /** @todo implement proper path absolute check. */ if (pExtent->pszBasename[0] == RTPATH_SLASH) { pszFullname = RTStrDup(pExtent->pszBasename); if (!pszFullname) { rc = VERR_NO_MEMORY; goto out; } } else { char *pszDirname = RTStrDup(pImage->pszFilename); if (!pszDirname) { rc = VERR_NO_MEMORY; goto out; } RTPathStripFilename(pszDirname); pszFullname = RTPathJoinA(pszDirname, pExtent->pszBasename); RTStrFree(pszDirname); if (!pszFullname) { rc = VERR_NO_STR_MEMORY; goto out; } } pExtent->pszFullname = pszFullname; } else pExtent->pszFullname = NULL; switch (pExtent->enmType) { case VMDKETYPE_HOSTED_SPARSE: rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname, VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */), false /* fAsyncIO */); if (RT_FAILURE(rc)) { /* Do NOT signal an appropriate error here, as the VD * layer has the choice of retrying the open if it * failed. */ goto out; } rc = vmdkReadBinaryMetaExtent(pImage, pExtent, false /* fMagicAlreadyRead */); if (RT_FAILURE(rc)) goto out; rc = vmdkReadMetaExtent(pImage, pExtent); if (RT_FAILURE(rc)) goto out; /* Mark extent as unclean if opened in read-write mode. */ if (!(uOpenFlags & VD_OPEN_FLAGS_READONLY)) { pExtent->fUncleanShutdown = true; pExtent->fMetaDirty = true; } break; case VMDKETYPE_VMFS: case VMDKETYPE_FLAT: rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname, VDOpenFlagsToFileOpenFlags(uOpenFlags, false /* fCreate */), true /* fAsyncIO */); if (RT_FAILURE(rc)) { /* Do NOT signal an appropriate error here, as the VD * layer has the choice of retrying the open if it * failed. */ goto out; } break; case VMDKETYPE_ZERO: /* Nothing to do. */ break; default: AssertMsgFailed(("unknown vmdk extent type %d\n", pExtent->enmType)); } } } /* Make sure this is not reached accidentally with an error status. */ AssertRC(rc); /* Determine PCHS geometry if not set. */ if (pImage->PCHSGeometry.cCylinders == 0) { uint64_t cCylinders = VMDK_BYTE2SECTOR(pImage->cbSize) / pImage->PCHSGeometry.cHeads / pImage->PCHSGeometry.cSectors; pImage->PCHSGeometry.cCylinders = (unsigned)RT_MIN(cCylinders, 16383); if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) && !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) { rc = vmdkDescSetPCHSGeometry(pImage, &pImage->PCHSGeometry); AssertRC(rc); } } /* Update the image metadata now in case has changed. */ rc = vmdkFlushImage(pImage); if (RT_FAILURE(rc)) goto out; /* Figure out a few per-image constants from the extents. */ pImage->cbSize = 0; for (unsigned i = 0; i < pImage->cExtents; i++) { pExtent = &pImage->pExtents[i]; if ( pExtent->enmType == VMDKETYPE_HOSTED_SPARSE #ifdef VBOX_WITH_VMDK_ESX || pExtent->enmType == VMDKETYPE_ESX_SPARSE #endif /* VBOX_WITH_VMDK_ESX */ ) { /* Here used to be a check whether the nominal size of an extent * is a multiple of the grain size. The spec says that this is * always the case, but unfortunately some files out there in the * wild violate the spec (e.g. ReactOS 0.3.1). */ } pImage->cbSize += VMDK_SECTOR2BYTE(pExtent->cNominalSectors); } for (unsigned i = 0; i < pImage->cExtents; i++) { pExtent = &pImage->pExtents[i]; if ( pImage->pExtents[i].enmType == VMDKETYPE_FLAT || pImage->pExtents[i].enmType == VMDKETYPE_ZERO) { pImage->uImageFlags |= VD_IMAGE_FLAGS_FIXED; break; } } if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) || !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)) rc = vmdkAllocateGrainTableCache(pImage); out: if (RT_FAILURE(rc)) vmdkFreeImage(pImage, false); return rc; } /** * Internal: create VMDK images for raw disk/partition access. */ static int vmdkCreateRawImage(PVMDKIMAGE pImage, const PVBOXHDDRAW pRaw, uint64_t cbSize) { int rc = VINF_SUCCESS; PVMDKEXTENT pExtent; if (pRaw->fRawDisk) { /* Full raw disk access. This requires setting up a descriptor * file and open the (flat) raw disk. */ rc = vmdkCreateExtents(pImage, 1); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename); pExtent = &pImage->pExtents[0]; /* Create raw disk descriptor file. */ rc = vmdkFileOpen(pImage, &pImage->pFile, pImage->pszFilename, VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, true /* fCreate */), false /* fAsyncIO */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pImage->pszFilename); /* Set up basename for extent description. Cannot use StrDup. */ size_t cbBasename = strlen(pRaw->pszRawDisk) + 1; char *pszBasename = (char *)RTMemTmpAlloc(cbBasename); if (!pszBasename) return VERR_NO_MEMORY; memcpy(pszBasename, pRaw->pszRawDisk, cbBasename); pExtent->pszBasename = pszBasename; /* For raw disks the full name is identical to the base name. */ pExtent->pszFullname = RTStrDup(pszBasename); if (!pExtent->pszFullname) return VERR_NO_MEMORY; pExtent->enmType = VMDKETYPE_FLAT; pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize); pExtent->uSectorOffset = 0; pExtent->enmAccess = VMDKACCESS_READWRITE; pExtent->fMetaDirty = false; /* Open flat image, the raw disk. */ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname, VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags & ~VD_OPEN_FLAGS_READONLY, false /* fCreate */), false /* fAsyncIO */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not open raw disk file '%s'"), pExtent->pszFullname); } else { /* Raw partition access. This requires setting up a descriptor * file, write the partition information to a flat extent and * open all the (flat) raw disk partitions. */ /* First pass over the partition data areas to determine how many * extents we need. One data area can require up to 2 extents, as * it might be necessary to skip over unpartitioned space. */ unsigned cExtents = 0; uint64_t uStart = 0; for (unsigned i = 0; i < pRaw->cPartDescs; i++) { PVBOXHDDRAWPARTDESC pPart = &pRaw->pPartDescs[i]; if (uStart > pPart->uStart) return vmdkError(pImage, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("VMDK: incorrect partition data area ordering set up by the caller in '%s'"), pImage->pszFilename); if (uStart < pPart->uStart) cExtents++; uStart = pPart->uStart + pPart->cbData; cExtents++; } /* Another extent for filling up the rest of the image. */ if (uStart != cbSize) cExtents++; rc = vmdkCreateExtents(pImage, cExtents); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename); /* Create raw partition descriptor file. */ rc = vmdkFileOpen(pImage, &pImage->pFile, pImage->pszFilename, VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, true /* fCreate */), false /* fAsyncIO */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pImage->pszFilename); /* Create base filename for the partition table extent. */ /** @todo remove fixed buffer without creating memory leaks. */ char pszPartition[1024]; const char *pszBase = RTPathFilename(pImage->pszFilename); const char *pszExt = RTPathExt(pszBase); if (pszExt == NULL) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: invalid filename '%s'"), pImage->pszFilename); char *pszBaseBase = RTStrDup(pszBase); if (!pszBaseBase) return VERR_NO_MEMORY; RTPathStripExt(pszBaseBase); RTStrPrintf(pszPartition, sizeof(pszPartition), "%s-pt%s", pszBaseBase, pszExt); RTStrFree(pszBaseBase); /* Second pass over the partitions, now define all extents. */ uint64_t uPartOffset = 0; cExtents = 0; uStart = 0; for (unsigned i = 0; i < pRaw->cPartDescs; i++) { PVBOXHDDRAWPARTDESC pPart = &pRaw->pPartDescs[i]; pExtent = &pImage->pExtents[cExtents++]; if (uStart < pPart->uStart) { pExtent->pszBasename = NULL; pExtent->pszFullname = NULL; pExtent->enmType = VMDKETYPE_ZERO; pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->uStart - uStart); pExtent->uSectorOffset = 0; pExtent->enmAccess = VMDKACCESS_READWRITE; pExtent->fMetaDirty = false; /* go to next extent */ pExtent = &pImage->pExtents[cExtents++]; } uStart = pPart->uStart + pPart->cbData; if (pPart->pvPartitionData) { /* Set up basename for extent description. Can't use StrDup. */ size_t cbBasename = strlen(pszPartition) + 1; char *pszBasename = (char *)RTMemTmpAlloc(cbBasename); if (!pszBasename) return VERR_NO_MEMORY; memcpy(pszBasename, pszPartition, cbBasename); pExtent->pszBasename = pszBasename; /* Set up full name for partition extent. */ char *pszDirname = RTStrDup(pImage->pszFilename); if (!pszDirname) return VERR_NO_STR_MEMORY; RTPathStripFilename(pszDirname); char *pszFullname = RTPathJoinA(pszDirname, pExtent->pszBasename); RTStrFree(pszDirname); if (!pszDirname) return VERR_NO_STR_MEMORY; pExtent->pszFullname = pszFullname; pExtent->enmType = VMDKETYPE_FLAT; pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData); pExtent->uSectorOffset = uPartOffset; pExtent->enmAccess = VMDKACCESS_READWRITE; pExtent->fMetaDirty = false; /* Create partition table flat image. */ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname, VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, true /* fCreate */), false /* fAsyncIO */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new partition data file '%s'"), pExtent->pszFullname); rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uPartOffset), pPart->pvPartitionData, pPart->cbData, NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not write partition data to '%s'"), pExtent->pszFullname); uPartOffset += VMDK_BYTE2SECTOR(pPart->cbData); } else { if (pPart->pszRawDevice) { /* Set up basename for extent descr. Can't use StrDup. */ size_t cbBasename = strlen(pPart->pszRawDevice) + 1; char *pszBasename = (char *)RTMemTmpAlloc(cbBasename); if (!pszBasename) return VERR_NO_MEMORY; memcpy(pszBasename, pPart->pszRawDevice, cbBasename); pExtent->pszBasename = pszBasename; /* For raw disks full name is identical to base name. */ pExtent->pszFullname = RTStrDup(pszBasename); if (!pExtent->pszFullname) return VERR_NO_MEMORY; pExtent->enmType = VMDKETYPE_FLAT; pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData); pExtent->uSectorOffset = VMDK_BYTE2SECTOR(pPart->uStartOffset); pExtent->enmAccess = VMDKACCESS_READWRITE; pExtent->fMetaDirty = false; /* Open flat image, the raw partition. */ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname, VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags & ~VD_OPEN_FLAGS_READONLY, false /* fCreate */), false /* fAsyncIO */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not open raw partition file '%s'"), pExtent->pszFullname); } else { pExtent->pszBasename = NULL; pExtent->pszFullname = NULL; pExtent->enmType = VMDKETYPE_ZERO; pExtent->cNominalSectors = VMDK_BYTE2SECTOR(pPart->cbData); pExtent->uSectorOffset = 0; pExtent->enmAccess = VMDKACCESS_READWRITE; pExtent->fMetaDirty = false; } } } /* Another extent for filling up the rest of the image. */ if (uStart != cbSize) { pExtent = &pImage->pExtents[cExtents++]; pExtent->pszBasename = NULL; pExtent->pszFullname = NULL; pExtent->enmType = VMDKETYPE_ZERO; pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize - uStart); pExtent->uSectorOffset = 0; pExtent->enmAccess = VMDKACCESS_READWRITE; pExtent->fMetaDirty = false; } } rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType", pRaw->fRawDisk ? "fullDevice" : "partitionedDevice"); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename); return rc; } /** * Internal: create a regular (i.e. file-backed) VMDK image. */ static int vmdkCreateRegularImage(PVMDKIMAGE pImage, uint64_t cbSize, unsigned uImageFlags, PFNVDPROGRESS pfnProgress, void *pvUser, unsigned uPercentStart, unsigned uPercentSpan) { int rc = VINF_SUCCESS; unsigned cExtents = 1; uint64_t cbOffset = 0; uint64_t cbRemaining = cbSize; if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G) { cExtents = cbSize / VMDK_2G_SPLIT_SIZE; /* Do proper extent computation: need one smaller extent if the total * size isn't evenly divisible by the split size. */ if (cbSize % VMDK_2G_SPLIT_SIZE) cExtents++; } rc = vmdkCreateExtents(pImage, cExtents); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename); /* Basename strings needed for constructing the extent names. */ char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename); AssertPtr(pszBasenameSubstr); size_t cbBasenameSubstr = strlen(pszBasenameSubstr) + 1; /* Create separate descriptor file if necessary. */ if (cExtents != 1 || (uImageFlags & VD_IMAGE_FLAGS_FIXED)) { rc = vmdkFileOpen(pImage, &pImage->pFile, pImage->pszFilename, VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, true /* fCreate */), false /* fAsyncIO */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new sparse descriptor file '%s'"), pImage->pszFilename); } else pImage->pFile = NULL; /* Set up all extents. */ for (unsigned i = 0; i < cExtents; i++) { PVMDKEXTENT pExtent = &pImage->pExtents[i]; uint64_t cbExtent = cbRemaining; /* Set up fullname/basename for extent description. Cannot use StrDup * for basename, as it is not guaranteed that the memory can be freed * with RTMemTmpFree, which must be used as in other code paths * StrDup is not usable. */ if (cExtents == 1 && !(uImageFlags & VD_IMAGE_FLAGS_FIXED)) { char *pszBasename = (char *)RTMemTmpAlloc(cbBasenameSubstr); if (!pszBasename) return VERR_NO_MEMORY; memcpy(pszBasename, pszBasenameSubstr, cbBasenameSubstr); pExtent->pszBasename = pszBasename; } else { char *pszBasenameExt = RTPathExt(pszBasenameSubstr); char *pszBasenameBase = RTStrDup(pszBasenameSubstr); RTPathStripExt(pszBasenameBase); char *pszTmp; size_t cbTmp; if (uImageFlags & VD_IMAGE_FLAGS_FIXED) { if (cExtents == 1) RTStrAPrintf(&pszTmp, "%s-flat%s", pszBasenameBase, pszBasenameExt); else RTStrAPrintf(&pszTmp, "%s-f%03d%s", pszBasenameBase, i+1, pszBasenameExt); } else RTStrAPrintf(&pszTmp, "%s-s%03d%s", pszBasenameBase, i+1, pszBasenameExt); RTStrFree(pszBasenameBase); if (!pszTmp) return VERR_NO_STR_MEMORY; cbTmp = strlen(pszTmp) + 1; char *pszBasename = (char *)RTMemTmpAlloc(cbTmp); if (!pszBasename) return VERR_NO_MEMORY; memcpy(pszBasename, pszTmp, cbTmp); RTStrFree(pszTmp); pExtent->pszBasename = pszBasename; if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G) cbExtent = RT_MIN(cbRemaining, VMDK_2G_SPLIT_SIZE); } char *pszBasedirectory = RTStrDup(pImage->pszFilename); if (!pszBasedirectory) return VERR_NO_STR_MEMORY; RTPathStripFilename(pszBasedirectory); char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename); RTStrFree(pszBasedirectory); if (!pszFullname) return VERR_NO_STR_MEMORY; pExtent->pszFullname = pszFullname; /* Create file for extent. */ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname, VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, true /* fCreate */), false /* fAsyncIO */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname); if (uImageFlags & VD_IMAGE_FLAGS_FIXED) { rc = vmdkFileSetSize(pImage, pExtent->pFile, cbExtent); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set size of new file '%s'"), pExtent->pszFullname); /* Fill image with zeroes. We do this for every fixed-size image since on some systems * (for example Windows Vista), it takes ages to write a block near the end of a sparse * file and the guest could complain about an ATA timeout. */ /** @todo Starting with Linux 2.6.23, there is an fallocate() system call. * Currently supported file systems are ext4 and ocfs2. */ /* Allocate a temporary zero-filled buffer. Use a bigger block size to optimize writing */ const size_t cbBuf = 128 * _1K; void *pvBuf = RTMemTmpAllocZ(cbBuf); if (!pvBuf) return VERR_NO_MEMORY; uint64_t uOff = 0; /* Write data to all image blocks. */ while (uOff < cbExtent) { unsigned cbChunk = (unsigned)RT_MIN(cbExtent, cbBuf); rc = vmdkFileWriteSync(pImage, pExtent->pFile, uOff, pvBuf, cbChunk, NULL); if (RT_FAILURE(rc)) { RTMemFree(pvBuf); return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: writing block failed for '%s'"), pImage->pszFilename); } uOff += cbChunk; if (pfnProgress) { rc = pfnProgress(pvUser, uPercentStart + uOff * uPercentSpan / cbExtent); if (RT_FAILURE(rc)) { RTMemFree(pvBuf); return rc; } } } RTMemTmpFree(pvBuf); } /* Place descriptor file information (where integrated). */ if (cExtents == 1 && !(uImageFlags & VD_IMAGE_FLAGS_FIXED)) { pExtent->uDescriptorSector = 1; pExtent->cDescriptorSectors = VMDK_BYTE2SECTOR(pImage->cbDescAlloc); /* The descriptor is part of the (only) extent. */ pExtent->pDescData = pImage->pDescData; pImage->pDescData = NULL; } if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED)) { uint64_t cSectorsPerGDE, cSectorsPerGD; pExtent->enmType = VMDKETYPE_HOSTED_SPARSE; pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbExtent, _64K)); pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K); pExtent->cGTEntries = 512; cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain; pExtent->cSectorsPerGDE = cSectorsPerGDE; pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE; cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t)); if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { /* The spec says version is 1 for all VMDKs, but the vast * majority of streamOptimized VMDKs actually contain * version 3 - so go with the majority. Both are accepted. */ pExtent->uVersion = 3; pExtent->uCompression = VMDK_COMPRESSION_DEFLATE; } } else { if (uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX) pExtent->enmType = VMDKETYPE_VMFS; else pExtent->enmType = VMDKETYPE_FLAT; } pExtent->enmAccess = VMDKACCESS_READWRITE; pExtent->fUncleanShutdown = true; pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbExtent); pExtent->uSectorOffset = 0; pExtent->fMetaDirty = true; if (!(uImageFlags & VD_IMAGE_FLAGS_FIXED)) { /* fPreAlloc should never be false because VMware can't use such images. */ rc = vmdkCreateGrainDirectory(pImage, pExtent, RT_MAX( pExtent->uDescriptorSector + pExtent->cDescriptorSectors, 1), true /* fPreAlloc */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname); } if (RT_SUCCESS(rc) && pfnProgress) pfnProgress(pvUser, uPercentStart + i * uPercentSpan / cExtents); cbRemaining -= cbExtent; cbOffset += cbExtent; } if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX) { /* VirtualBox doesn't care, but VMWare ESX freaks out if the wrong * controller type is set in an image. */ rc = vmdkDescDDBSetStr(pImage, &pImage->Descriptor, "ddb.adapterType", "lsilogic"); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set controller type to lsilogic in '%s'"), pImage->pszFilename); } const char *pszDescType = NULL; if (uImageFlags & VD_IMAGE_FLAGS_FIXED) { if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX) pszDescType = "vmfs"; else pszDescType = (cExtents == 1) ? "monolithicFlat" : "twoGbMaxExtentFlat"; } else { if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) pszDescType = "streamOptimized"; else { pszDescType = (cExtents == 1) ? "monolithicSparse" : "twoGbMaxExtentSparse"; } } rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType", pszDescType); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename); return rc; } /** * Internal: Create a real stream optimized VMDK using only linear writes. */ static int vmdkCreateStreamImage(PVMDKIMAGE pImage, uint64_t cbSize, unsigned uImageFlags, PFNVDPROGRESS pfnProgress, void *pvUser, unsigned uPercentStart, unsigned uPercentSpan) { int rc; rc = vmdkCreateExtents(pImage, 1); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new extent list in '%s'"), pImage->pszFilename); /* Basename strings needed for constructing the extent names. */ const char *pszBasenameSubstr = RTPathFilename(pImage->pszFilename); AssertPtr(pszBasenameSubstr); size_t cbBasenameSubstr = strlen(pszBasenameSubstr) + 1; /* No separate descriptor file. */ pImage->pFile = NULL; /* Set up all extents. */ PVMDKEXTENT pExtent = &pImage->pExtents[0]; /* Set up fullname/basename for extent description. Cannot use StrDup * for basename, as it is not guaranteed that the memory can be freed * with RTMemTmpFree, which must be used as in other code paths * StrDup is not usable. */ char *pszBasename = (char *)RTMemTmpAlloc(cbBasenameSubstr); if (!pszBasename) return VERR_NO_MEMORY; memcpy(pszBasename, pszBasenameSubstr, cbBasenameSubstr); pExtent->pszBasename = pszBasename; char *pszBasedirectory = RTStrDup(pImage->pszFilename); RTPathStripFilename(pszBasedirectory); char *pszFullname = RTPathJoinA(pszBasedirectory, pExtent->pszBasename); RTStrFree(pszBasedirectory); if (!pszFullname) return VERR_NO_STR_MEMORY; pExtent->pszFullname = pszFullname; /* Create file for extent. Make it write only, no reading allowed. */ rc = vmdkFileOpen(pImage, &pExtent->pFile, pExtent->pszFullname, VDOpenFlagsToFileOpenFlags(pImage->uOpenFlags, true /* fCreate */) & ~RTFILE_O_READ, false /* fAsyncIO */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new file '%s'"), pExtent->pszFullname); /* Place descriptor file information. */ pExtent->uDescriptorSector = 1; pExtent->cDescriptorSectors = VMDK_BYTE2SECTOR(pImage->cbDescAlloc); /* The descriptor is part of the (only) extent. */ pExtent->pDescData = pImage->pDescData; pImage->pDescData = NULL; uint64_t cSectorsPerGDE, cSectorsPerGD; pExtent->enmType = VMDKETYPE_HOSTED_SPARSE; pExtent->cSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64(cbSize, _64K)); pExtent->cSectorsPerGrain = VMDK_BYTE2SECTOR(_64K); pExtent->cGTEntries = 512; cSectorsPerGDE = pExtent->cGTEntries * pExtent->cSectorsPerGrain; pExtent->cSectorsPerGDE = cSectorsPerGDE; pExtent->cGDEntries = (pExtent->cSectors + cSectorsPerGDE - 1) / cSectorsPerGDE; cSectorsPerGD = (pExtent->cGDEntries + (512 / sizeof(uint32_t) - 1)) / (512 / sizeof(uint32_t)); /* The spec says version is 1 for all VMDKs, but the vast * majority of streamOptimized VMDKs actually contain * version 3 - so go with the majority. Both are accepted. */ pExtent->uVersion = 3; pExtent->uCompression = VMDK_COMPRESSION_DEFLATE; pExtent->fFooter = true; pExtent->enmAccess = VMDKACCESS_READONLY; pExtent->fUncleanShutdown = false; pExtent->cNominalSectors = VMDK_BYTE2SECTOR(cbSize); pExtent->uSectorOffset = 0; pExtent->fMetaDirty = true; /* Create grain directory, without preallocating it straight away. It will * be constructed on the fly when writing out the data and written when * closing the image. The end effect is that the full grain directory is * allocated, which is a requirement of the VMDK specs. */ rc = vmdkCreateGrainDirectory(pImage, pExtent, VMDK_GD_AT_END, false /* fPreAlloc */); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new grain directory in '%s'"), pExtent->pszFullname); rc = vmdkDescBaseSetStr(pImage, &pImage->Descriptor, "createType", "streamOptimized"); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not set the image type in '%s'"), pImage->pszFilename); return rc; } /** * Internal: The actual code for creating any VMDK variant currently in * existence on hosted environments. */ static int vmdkCreateImage(PVMDKIMAGE pImage, uint64_t cbSize, unsigned uImageFlags, const char *pszComment, PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry, PCRTUUID pUuid, PFNVDPROGRESS pfnProgress, void *pvUser, unsigned uPercentStart, unsigned uPercentSpan) { int rc; pImage->uImageFlags = uImageFlags; /* Try to get error interface. */ pImage->pInterfaceError = VDInterfaceGet(pImage->pVDIfsDisk, VDINTERFACETYPE_ERROR); if (pImage->pInterfaceError) pImage->pInterfaceErrorCallbacks = VDGetInterfaceError(pImage->pInterfaceError); /* Get I/O interface. */ pImage->pInterfaceIO = VDInterfaceGet(pImage->pVDIfsImage, VDINTERFACETYPE_IOINT); AssertPtrReturn(pImage->pInterfaceIO, VERR_INVALID_PARAMETER); pImage->pInterfaceIOCallbacks = VDGetInterfaceIOInt(pImage->pInterfaceIO); AssertPtrReturn(pImage->pInterfaceIOCallbacks, VERR_INVALID_PARAMETER); rc = vmdkCreateDescriptor(pImage, pImage->pDescData, pImage->cbDescAlloc, &pImage->Descriptor); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not create new descriptor in '%s'"), pImage->pszFilename); goto out; } if ( (uImageFlags & VD_IMAGE_FLAGS_FIXED) && (uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK)) { /* Raw disk image (includes raw partition). */ const PVBOXHDDRAW pRaw = (const PVBOXHDDRAW)pszComment; /* As the comment is misused, zap it so that no garbage comment * is set below. */ pszComment = NULL; rc = vmdkCreateRawImage(pImage, pRaw, cbSize); } else { if (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { /* Stream optimized sparse image (monolithic). */ rc = vmdkCreateStreamImage(pImage, cbSize, uImageFlags, pfnProgress, pvUser, uPercentStart, uPercentSpan * 95 / 100); } else { /* Regular fixed or sparse image (monolithic or split). */ rc = vmdkCreateRegularImage(pImage, cbSize, uImageFlags, pfnProgress, pvUser, uPercentStart, uPercentSpan * 95 / 100); } } if (RT_FAILURE(rc)) goto out; if (RT_SUCCESS(rc) && pfnProgress) pfnProgress(pvUser, uPercentStart + uPercentSpan * 98 / 100); pImage->cbSize = cbSize; for (unsigned i = 0; i < pImage->cExtents; i++) { PVMDKEXTENT pExtent = &pImage->pExtents[i]; rc = vmdkDescExtInsert(pImage, &pImage->Descriptor, pExtent->enmAccess, pExtent->cNominalSectors, pExtent->enmType, pExtent->pszBasename, pExtent->uSectorOffset); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: could not insert the extent list into descriptor in '%s'"), pImage->pszFilename); goto out; } } vmdkDescExtRemoveDummy(pImage, &pImage->Descriptor); if ( pPCHSGeometry->cCylinders != 0 && pPCHSGeometry->cHeads != 0 && pPCHSGeometry->cSectors != 0) { rc = vmdkDescSetPCHSGeometry(pImage, pPCHSGeometry); if (RT_FAILURE(rc)) goto out; } if ( pLCHSGeometry->cCylinders != 0 && pLCHSGeometry->cHeads != 0 && pLCHSGeometry->cSectors != 0) { rc = vmdkDescSetLCHSGeometry(pImage, pLCHSGeometry); if (RT_FAILURE(rc)) goto out; } pImage->LCHSGeometry = *pLCHSGeometry; pImage->PCHSGeometry = *pPCHSGeometry; pImage->ImageUuid = *pUuid; rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_IMAGE_UUID, &pImage->ImageUuid); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image UUID in new descriptor in '%s'"), pImage->pszFilename); goto out; } RTUuidClear(&pImage->ParentUuid); rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_UUID, &pImage->ParentUuid); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent image UUID in new descriptor in '%s'"), pImage->pszFilename); goto out; } RTUuidClear(&pImage->ModificationUuid); rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_MODIFICATION_UUID, &pImage->ModificationUuid); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing modification UUID in new descriptor in '%s'"), pImage->pszFilename); goto out; } RTUuidClear(&pImage->ParentModificationUuid); rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_MODIFICATION_UUID, &pImage->ParentModificationUuid); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent modification UUID in new descriptor in '%s'"), pImage->pszFilename); goto out; } rc = vmdkAllocateGrainTableCache(pImage); if (RT_FAILURE(rc)) goto out; rc = vmdkSetImageComment(pImage, pszComment); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot set image comment in '%s'"), pImage->pszFilename); goto out; } if (RT_SUCCESS(rc) && pfnProgress) pfnProgress(pvUser, uPercentStart + uPercentSpan * 99 / 100); if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { /* streamOptimized is a bit special, we cannot trigger the flush * until all data has been written. So we write the necessary * information explicitly. */ pImage->pExtents[0].cDescriptorSectors = VMDK_BYTE2SECTOR(RT_ALIGN_64( pImage->Descriptor.aLines[pImage->Descriptor.cLines] - pImage->Descriptor.aLines[0], 512)); rc = vmdkWriteMetaSparseExtent(pImage, &pImage->pExtents[0], 0); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write VMDK header in '%s'"), pImage->pszFilename); goto out; } rc = vmdkWriteDescriptor(pImage); if (RT_FAILURE(rc)) { rc = vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write VMDK descriptor in '%s'"), pImage->pszFilename); goto out; } } else rc = vmdkFlushImage(pImage); out: if (RT_SUCCESS(rc) && pfnProgress) pfnProgress(pvUser, uPercentStart + uPercentSpan); if (RT_FAILURE(rc)) vmdkFreeImage(pImage, rc != VERR_ALREADY_EXISTS); return rc; } /** * Internal: Update image comment. */ static int vmdkSetImageComment(PVMDKIMAGE pImage, const char *pszComment) { char *pszCommentEncoded; if (pszComment) { pszCommentEncoded = vmdkEncodeString(pszComment); if (!pszCommentEncoded) return VERR_NO_MEMORY; } else pszCommentEncoded = NULL; int rc = vmdkDescDDBSetStr(pImage, &pImage->Descriptor, "ddb.comment", pszCommentEncoded); if (pszComment) RTStrFree(pszCommentEncoded); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image comment in descriptor in '%s'"), pImage->pszFilename); return VINF_SUCCESS; } /** * Internal. Clear the grain table buffer for real stream optimized writing. */ static void vmdkStreamClearGT(PVMDKIMAGE pImage, PVMDKEXTENT pExtent) { uint32_t cCacheLines = RT_ALIGN(pExtent->cGTEntries, VMDK_GT_CACHELINE_SIZE) / VMDK_GT_CACHELINE_SIZE; for (uint32_t i = 0; i < cCacheLines; i++) memset(&pImage->pGTCache->aGTCache[i].aGTData[0], '\0', VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t)); } /** * Internal. Flush the grain table buffer for real stream optimized writing. */ static int vmdkStreamFlushGT(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint32_t uGDEntry) { int rc = VINF_SUCCESS; uint32_t cCacheLines = RT_ALIGN(pExtent->cGTEntries, VMDK_GT_CACHELINE_SIZE) / VMDK_GT_CACHELINE_SIZE; /* VMware does not write out completely empty grain tables in the case * of streamOptimized images, which according to my interpretation of * the VMDK 1.1 spec is bending the rules. Since they do it and we can * handle it without problems do it the same way and save some bytes. */ bool fAllZero = true; for (uint32_t i = 0; i < cCacheLines; i++) { /* Convert the grain table to little endian in place, as it will not * be used at all after this function has been called. */ uint32_t *pGTTmp = &pImage->pGTCache->aGTCache[i].aGTData[0]; for (uint32_t j = 0; j < VMDK_GT_CACHELINE_SIZE; j++, pGTTmp++) if (*pGTTmp) { fAllZero = false; break; } if (!fAllZero) break; } if (fAllZero) return VINF_SUCCESS; uint64_t uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) return VERR_INTERNAL_ERROR; /* Align to sector, as the previous write could have been any size. */ uFileOffset = RT_ALIGN_64(uFileOffset, 512); /* Grain table marker. */ uint8_t aMarker[512]; PVMDKMARKER pMarker = (PVMDKMARKER)&aMarker[0]; memset(pMarker, '\0', sizeof(aMarker)); pMarker->uSector = RT_H2LE_U64(VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t))); pMarker->uType = RT_H2LE_U32(VMDK_MARKER_GT); rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset, aMarker, sizeof(aMarker), NULL); AssertRC(rc); uFileOffset += 512; if (!pExtent->pGD || pExtent->pGD[uGDEntry]) return VERR_INTERNAL_ERROR; pExtent->pGD[uGDEntry] = VMDK_BYTE2SECTOR(uFileOffset); for (uint32_t i = 0; i < cCacheLines; i++) { /* Convert the grain table to little endian in place, as it will not * be used at all after this function has been called. */ uint32_t *pGTTmp = &pImage->pGTCache->aGTCache[i].aGTData[0]; for (uint32_t j = 0; j < VMDK_GT_CACHELINE_SIZE; j++, pGTTmp++) *pGTTmp = RT_H2LE_U32(*pGTTmp); rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset, &pImage->pGTCache->aGTCache[i].aGTData[0], VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t), NULL); uFileOffset += VMDK_GT_CACHELINE_SIZE * sizeof(uint32_t); if (RT_FAILURE(rc)) break; } Assert(!(uFileOffset % 512)); pExtent->uAppendPosition = RT_ALIGN_64(uFileOffset, 512); return rc; } /** * Internal. Free all allocated space for representing an image, and optionally * delete the image from disk. */ static int vmdkFreeImage(PVMDKIMAGE pImage, bool fDelete) { int rc = VINF_SUCCESS; /* Freeing a never allocated image (e.g. because the open failed) is * not signalled as an error. After all nothing bad happens. */ if (pImage) { if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) { if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { /* Check if all extents are clean. */ for (unsigned i = 0; i < pImage->cExtents; i++) { Assert(!pImage->pExtents[i].fUncleanShutdown); } } else { /* Mark all extents as clean. */ for (unsigned i = 0; i < pImage->cExtents; i++) { if ( ( pImage->pExtents[i].enmType == VMDKETYPE_HOSTED_SPARSE #ifdef VBOX_WITH_VMDK_ESX || pImage->pExtents[i].enmType == VMDKETYPE_ESX_SPARSE #endif /* VBOX_WITH_VMDK_ESX */ ) && pImage->pExtents[i].fUncleanShutdown) { pImage->pExtents[i].fUncleanShutdown = false; pImage->pExtents[i].fMetaDirty = true; } /* From now on it's not safe to append any more data. */ pImage->pExtents[i].uAppendPosition = 0; } } } if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { /* No need to write any pending data if the file will be deleted * or if the new file wasn't successfully created. */ if ( !fDelete && pImage->pExtents && pImage->pExtents[0].cGTEntries && pImage->pExtents[0].uAppendPosition) { PVMDKEXTENT pExtent = &pImage->pExtents[0]; uint32_t uLastGDEntry = pExtent->uLastGrainAccess / pExtent->cGTEntries; rc = vmdkStreamFlushGT(pImage, pExtent, uLastGDEntry); AssertRC(rc); vmdkStreamClearGT(pImage, pExtent); for (uint32_t i = uLastGDEntry + 1; i < pExtent->cGDEntries; i++) { rc = vmdkStreamFlushGT(pImage, pExtent, i); AssertRC(rc); } uint64_t uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) return VERR_INTERNAL_ERROR; uFileOffset = RT_ALIGN_64(uFileOffset, 512); /* From now on it's not safe to append any more data. */ pExtent->uAppendPosition = 0; /* Grain directory marker. */ uint8_t aMarker[512]; PVMDKMARKER pMarker = (PVMDKMARKER)&aMarker[0]; memset(pMarker, '\0', sizeof(aMarker)); pMarker->uSector = VMDK_BYTE2SECTOR(RT_ALIGN_64(RT_H2LE_U64(pExtent->cGDEntries * sizeof(uint32_t)), 512)); pMarker->uType = RT_H2LE_U32(VMDK_MARKER_GD); rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset, aMarker, sizeof(aMarker), NULL); AssertRC(rc); uFileOffset += 512; /* Write grain directory in little endian style. The array will * not be used after this, so convert in place. */ uint32_t *pGDTmp = pExtent->pGD; for (uint32_t i = 0; i < pExtent->cGDEntries; i++, pGDTmp++) *pGDTmp = RT_H2LE_U32(*pGDTmp); rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset, pExtent->pGD, pExtent->cGDEntries * sizeof(uint32_t), NULL); AssertRC(rc); pExtent->uSectorGD = VMDK_BYTE2SECTOR(uFileOffset); pExtent->uSectorRGD = VMDK_BYTE2SECTOR(uFileOffset); uFileOffset = RT_ALIGN_64( uFileOffset + pExtent->cGDEntries * sizeof(uint32_t), 512); /* Footer marker. */ memset(pMarker, '\0', sizeof(aMarker)); pMarker->uSector = VMDK_BYTE2SECTOR(512); pMarker->uType = RT_H2LE_U32(VMDK_MARKER_FOOTER); rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset, aMarker, sizeof(aMarker), NULL); AssertRC(rc); uFileOffset += 512; rc = vmdkWriteMetaSparseExtent(pImage, pExtent, uFileOffset); AssertRC(rc); uFileOffset += 512; /* End-of-stream marker. */ memset(pMarker, '\0', sizeof(aMarker)); rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset, aMarker, sizeof(aMarker), NULL); AssertRC(rc); } } else vmdkFlushImage(pImage); if (pImage->pExtents != NULL) { for (unsigned i = 0 ; i < pImage->cExtents; i++) vmdkFreeExtentData(pImage, &pImage->pExtents[i], fDelete); RTMemFree(pImage->pExtents); pImage->pExtents = NULL; } pImage->cExtents = 0; if (pImage->pFile != NULL) vmdkFileClose(pImage, &pImage->pFile, fDelete); vmdkFileCheckAllClose(pImage); if (pImage->pGTCache) { RTMemFree(pImage->pGTCache); pImage->pGTCache = NULL; } if (pImage->pDescData) { RTMemFree(pImage->pDescData); pImage->pDescData = NULL; } } LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** * Internal. Flush image data (and metadata) to disk. */ static int vmdkFlushImage(PVMDKIMAGE pImage) { PVMDKEXTENT pExtent; int rc = VINF_SUCCESS; /* Update descriptor if changed. */ if (pImage->Descriptor.fDirty) { rc = vmdkWriteDescriptor(pImage); if (RT_FAILURE(rc)) goto out; } for (unsigned i = 0; i < pImage->cExtents; i++) { pExtent = &pImage->pExtents[i]; if (pExtent->pFile != NULL && pExtent->fMetaDirty) { switch (pExtent->enmType) { case VMDKETYPE_HOSTED_SPARSE: if (!pExtent->fFooter) { rc = vmdkWriteMetaSparseExtent(pImage, pExtent, 0); if (RT_FAILURE(rc)) goto out; } else { uint64_t uFileOffset = pExtent->uAppendPosition; /* Simply skip writing anything if the streamOptimized * image hasn't been just created. */ if (!uFileOffset) break; uFileOffset = RT_ALIGN_64(uFileOffset, 512); rc = vmdkWriteMetaSparseExtent(pImage, pExtent, uFileOffset); if (RT_FAILURE(rc)) goto out; } break; #ifdef VBOX_WITH_VMDK_ESX case VMDKETYPE_ESX_SPARSE: /** @todo update the header. */ break; #endif /* VBOX_WITH_VMDK_ESX */ case VMDKETYPE_VMFS: case VMDKETYPE_FLAT: /* Nothing to do. */ break; case VMDKETYPE_ZERO: default: AssertMsgFailed(("extent with type %d marked as dirty\n", pExtent->enmType)); break; } } switch (pExtent->enmType) { case VMDKETYPE_HOSTED_SPARSE: #ifdef VBOX_WITH_VMDK_ESX case VMDKETYPE_ESX_SPARSE: #endif /* VBOX_WITH_VMDK_ESX */ case VMDKETYPE_VMFS: case VMDKETYPE_FLAT: /** @todo implement proper path absolute check. */ if ( pExtent->pFile != NULL && !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) && !(pExtent->pszBasename[0] == RTPATH_SLASH)) rc = vmdkFileFlush(pImage, pExtent->pFile); break; case VMDKETYPE_ZERO: /* No need to do anything for this extent. */ break; default: AssertMsgFailed(("unknown extent type %d\n", pExtent->enmType)); break; } } out: return rc; } /** * Internal. Find extent corresponding to the sector number in the disk. */ static int vmdkFindExtent(PVMDKIMAGE pImage, uint64_t offSector, PVMDKEXTENT *ppExtent, uint64_t *puSectorInExtent) { PVMDKEXTENT pExtent = NULL; int rc = VINF_SUCCESS; for (unsigned i = 0; i < pImage->cExtents; i++) { if (offSector < pImage->pExtents[i].cNominalSectors) { pExtent = &pImage->pExtents[i]; *puSectorInExtent = offSector + pImage->pExtents[i].uSectorOffset; break; } offSector -= pImage->pExtents[i].cNominalSectors; } if (pExtent) *ppExtent = pExtent; else rc = VERR_IO_SECTOR_NOT_FOUND; return rc; } /** * Internal. Hash function for placing the grain table hash entries. */ static uint32_t vmdkGTCacheHash(PVMDKGTCACHE pCache, uint64_t uSector, unsigned uExtent) { /** @todo this hash function is quite simple, maybe use a better one which * scrambles the bits better. */ return (uSector + uExtent) % pCache->cEntries; } /** * Internal. Get sector number in the extent file from the relative sector * number in the extent. */ static int vmdkGetSector(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint64_t uSector, uint64_t *puExtentSector) { PVMDKGTCACHE pCache = pImage->pGTCache; uint64_t uGDIndex, uGTSector, uGTBlock; uint32_t uGTHash, uGTBlockIndex; PVMDKGTCACHEENTRY pGTCacheEntry; uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE]; int rc; /* For newly created and readonly/sequentially opened streamOptimized * images this must be a no-op, as the grain directory is not there. */ if ( ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED && pExtent->uAppendPosition) || ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED && pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY && pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)) { *puExtentSector = 0; return VINF_SUCCESS; } uGDIndex = uSector / pExtent->cSectorsPerGDE; if (uGDIndex >= pExtent->cGDEntries) return VERR_OUT_OF_RANGE; uGTSector = pExtent->pGD[uGDIndex]; if (!uGTSector) { /* There is no grain table referenced by this grain directory * entry. So there is absolutely no data in this area. */ *puExtentSector = 0; return VINF_SUCCESS; } uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE); uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent); pGTCacheEntry = &pCache->aGTCache[uGTHash]; if ( pGTCacheEntry->uExtent != pExtent->uExtent || pGTCacheEntry->uGTBlock != uGTBlock) { /* Cache miss, fetch data from disk. */ rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot read grain table entry in '%s'"), pExtent->pszFullname); pGTCacheEntry->uExtent = pExtent->uExtent; pGTCacheEntry->uGTBlock = uGTBlock; for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++) pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]); } uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE; uint32_t uGrainSector = pGTCacheEntry->aGTData[uGTBlockIndex]; if (uGrainSector) *puExtentSector = uGrainSector + uSector % pExtent->cSectorsPerGrain; else *puExtentSector = 0; return VINF_SUCCESS; } /** * Internal. Get sector number in the extent file from the relative sector * number in the extent - version for async access. */ static int vmdkGetSectorAsync(PVMDKIMAGE pImage, PVDIOCTX pIoCtx, PVMDKEXTENT pExtent, uint64_t uSector, uint64_t *puExtentSector) { PVMDKGTCACHE pCache = pImage->pGTCache; uint64_t uGDIndex, uGTSector, uGTBlock; uint32_t uGTHash, uGTBlockIndex; PVMDKGTCACHEENTRY pGTCacheEntry; uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE]; int rc; uGDIndex = uSector / pExtent->cSectorsPerGDE; if (uGDIndex >= pExtent->cGDEntries) return VERR_OUT_OF_RANGE; uGTSector = pExtent->pGD[uGDIndex]; if (!uGTSector) { /* There is no grain table referenced by this grain directory * entry. So there is absolutely no data in this area. */ *puExtentSector = 0; return VINF_SUCCESS; } uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE); uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent); pGTCacheEntry = &pCache->aGTCache[uGTHash]; if ( pGTCacheEntry->uExtent != pExtent->uExtent || pGTCacheEntry->uGTBlock != uGTBlock) { /* Cache miss, fetch data from disk. */ PVDMETAXFER pMetaXfer; rc = vmdkFileReadMetaAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, &pMetaXfer, NULL, NULL); if (RT_FAILURE(rc)) return rc; /* We can release the metadata transfer immediately. */ vmdkFileMetaXferRelease(pImage, pMetaXfer); pGTCacheEntry->uExtent = pExtent->uExtent; pGTCacheEntry->uGTBlock = uGTBlock; for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++) pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]); } uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE; uint32_t uGrainSector = pGTCacheEntry->aGTData[uGTBlockIndex]; if (uGrainSector) *puExtentSector = uGrainSector + uSector % pExtent->cSectorsPerGrain; else *puExtentSector = 0; return VINF_SUCCESS; } /** * Internal. Allocates a new grain table (if necessary), writes the grain * and updates the grain table. The cache is also updated by this operation. * This is separate from vmdkGetSector, because that should be as fast as * possible. Most code from vmdkGetSector also appears here. */ static int vmdkAllocGrain(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint64_t uSector, const void *pvBuf, uint64_t cbWrite) { PVMDKGTCACHE pCache = pImage->pGTCache; uint64_t uGDIndex, uGTSector, uRGTSector, uGTBlock; uint64_t uFileOffset; uint32_t uGTHash, uGTBlockIndex; PVMDKGTCACHEENTRY pGTCacheEntry; uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE]; int rc; uGDIndex = uSector / pExtent->cSectorsPerGDE; if (uGDIndex >= pExtent->cGDEntries) return VERR_OUT_OF_RANGE; uGTSector = pExtent->pGD[uGDIndex]; if (pExtent->pRGD) uRGTSector = pExtent->pRGD[uGDIndex]; else uRGTSector = 0; /**< avoid compiler warning */ if (!uGTSector) { /* There is no grain table referenced by this grain directory * entry. So there is absolutely no data in this area. Allocate * a new grain table and put the reference to it in the GDs. */ uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) return VERR_INTERNAL_ERROR; Assert(!(uFileOffset % 512)); uFileOffset = RT_ALIGN_64(uFileOffset, 512); uGTSector = VMDK_BYTE2SECTOR(uFileOffset); pExtent->uAppendPosition += pExtent->cGTEntries * sizeof(uint32_t); /* Normally the grain table is preallocated for hosted sparse extents * that support more than 32 bit sector numbers. So this shouldn't * ever happen on a valid extent. */ if (uGTSector > UINT32_MAX) return VERR_VD_VMDK_INVALID_HEADER; /* Write grain table by writing the required number of grain table * cache chunks. Avoids dynamic memory allocation, but is a bit * slower. But as this is a pretty infrequently occurring case it * should be acceptable. */ memset(aGTDataTmp, '\0', sizeof(aGTDataTmp)); for (unsigned i = 0; i < pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE; i++) { rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGTSector) + i * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write grain table allocation in '%s'"), pExtent->pszFullname); } pExtent->uAppendPosition = RT_ALIGN_64( pExtent->uAppendPosition + pExtent->cGTEntries * sizeof(uint32_t), 512); if (pExtent->pRGD) { AssertReturn(!uRGTSector, VERR_VD_VMDK_INVALID_HEADER); uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) return VERR_INTERNAL_ERROR; Assert(!(uFileOffset % 512)); uRGTSector = VMDK_BYTE2SECTOR(uFileOffset); pExtent->uAppendPosition += pExtent->cGTEntries * sizeof(uint32_t); /* Normally the redundant grain table is preallocated for hosted * sparse extents that support more than 32 bit sector numbers. So * this shouldn't ever happen on a valid extent. */ if (uRGTSector > UINT32_MAX) return VERR_VD_VMDK_INVALID_HEADER; /* Write backup grain table by writing the required number of grain * table cache chunks. Avoids dynamic memory allocation, but is a * bit slower. But as this is a pretty infrequently occurring case * it should be acceptable. */ for (unsigned i = 0; i < pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE; i++) { rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uRGTSector) + i * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain table allocation in '%s'"), pExtent->pszFullname); } pExtent->uAppendPosition = pExtent->uAppendPosition + pExtent->cGTEntries * sizeof(uint32_t); } /* Update the grain directory on disk (doing it before writing the * grain table will result in a garbled extent if the operation is * aborted for some reason. Otherwise the worst that can happen is * some unused sectors in the extent. */ uint32_t uGTSectorLE = RT_H2LE_U64(uGTSector); rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(pExtent->uSectorGD) + uGDIndex * sizeof(uGTSectorLE), &uGTSectorLE, sizeof(uGTSectorLE), NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write grain directory entry in '%s'"), pExtent->pszFullname); if (pExtent->pRGD) { uint32_t uRGTSectorLE = RT_H2LE_U64(uRGTSector); rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + uGDIndex * sizeof(uRGTSectorLE), &uRGTSectorLE, sizeof(uRGTSectorLE), NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain directory entry in '%s'"), pExtent->pszFullname); } /* As the final step update the in-memory copy of the GDs. */ pExtent->pGD[uGDIndex] = uGTSector; if (pExtent->pRGD) pExtent->pRGD[uGDIndex] = uRGTSector; } uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) return VERR_INTERNAL_ERROR; Assert(!(uFileOffset % 512)); /* Write the data. Always a full grain, or we're in big trouble. */ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { if (cbWrite != VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)) return vmdkError(pImage, VERR_INTERNAL_ERROR, RT_SRC_POS, N_("VMDK: not enough data for a compressed data block in '%s'"), pExtent->pszFullname); /* Invalidate cache, just in case some code incorrectly allows mixing * of reads and writes. Normally shouldn't be needed. */ pExtent->uGrainSectorAbs = 0; /* Write compressed data block and the markers. */ uint32_t cbGrain = 0; rc = vmdkFileDeflateSync(pImage, pExtent, uFileOffset, pvBuf, cbWrite, uSector, &cbGrain); if (RT_FAILURE(rc)) { AssertRC(rc); return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write allocated compressed data block in '%s'"), pExtent->pszFullname); } pExtent->uLastGrainAccess = uSector / pExtent->cSectorsPerGrain; pExtent->uAppendPosition += cbGrain; } else { rc = vmdkFileWriteSync(pImage, pExtent->pFile, uFileOffset, pvBuf, cbWrite, NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write allocated data block in '%s'"), pExtent->pszFullname); pExtent->uAppendPosition += cbWrite; } /* Update the grain table (and the cache). */ uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE); uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent); pGTCacheEntry = &pCache->aGTCache[uGTHash]; if ( pGTCacheEntry->uExtent != pExtent->uExtent || pGTCacheEntry->uGTBlock != uGTBlock) { /* Cache miss, fetch data from disk. */ rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot read allocated grain table entry in '%s'"), pExtent->pszFullname); pGTCacheEntry->uExtent = pExtent->uExtent; pGTCacheEntry->uGTBlock = uGTBlock; for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++) pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]); } else { /* Cache hit. Convert grain table block back to disk format, otherwise * the code below will write garbage for all but the updated entry. */ for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++) aGTDataTmp[i] = RT_H2LE_U32(pGTCacheEntry->aGTData[i]); } uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE; aGTDataTmp[uGTBlockIndex] = RT_H2LE_U32(VMDK_BYTE2SECTOR(uFileOffset)); pGTCacheEntry->aGTData[uGTBlockIndex] = VMDK_BYTE2SECTOR(uFileOffset); /* Update grain table on disk. */ rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write updated grain table in '%s'"), pExtent->pszFullname); if (pExtent->pRGD) { /* Update backup grain table on disk. */ rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uRGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), NULL); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write updated backup grain table in '%s'"), pExtent->pszFullname); } #ifdef VBOX_WITH_VMDK_ESX if (RT_SUCCESS(rc) && pExtent->enmType == VMDKETYPE_ESX_SPARSE) { pExtent->uFreeSector = uGTSector + VMDK_BYTE2SECTOR(cbWrite); pExtent->fMetaDirty = true; } #endif /* VBOX_WITH_VMDK_ESX */ return rc; } /** * Internal. Writes the grain and also if necessary the grain tables. * Uses the grain table cache as a true grain table. */ static int vmdkStreamAllocGrain(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint64_t uSector, const void *pvBuf, uint64_t cbWrite) { uint32_t uGrain; uint32_t uGDEntry, uLastGDEntry; uint32_t cbGrain = 0; uint32_t uCacheLine, uCacheEntry; const void *pData = pvBuf; int rc; /* Very strict requirements: always write at least one full grain, with * proper alignment. Everything else would require reading of already * written data, which we don't support for obvious reasons. The only * exception is the last grain, and only if the image size specifies * that only some portion holds data. In any case the write must be * within the image limits, no "overshoot" allowed. */ if ( cbWrite == 0 || ( cbWrite < VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) && pExtent->cNominalSectors - uSector >= pExtent->cSectorsPerGrain) || uSector % pExtent->cSectorsPerGrain || uSector + VMDK_BYTE2SECTOR(cbWrite) > pExtent->cNominalSectors) return VERR_INVALID_PARAMETER; /* Clip write range to at most the rest of the grain. */ cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSector % pExtent->cSectorsPerGrain)); /* Do not allow to go back. */ uGrain = uSector / pExtent->cSectorsPerGrain; uCacheLine = uGrain % pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE; uCacheEntry = uGrain % VMDK_GT_CACHELINE_SIZE; uGDEntry = uGrain / pExtent->cGTEntries; uLastGDEntry = pExtent->uLastGrainAccess / pExtent->cGTEntries; if (uGrain < pExtent->uLastGrainAccess) return VERR_VD_VMDK_INVALID_WRITE; /* Zero byte write optimization. Since we don't tell VBoxHDD that we need * to allocate something, we also need to detect the situation ourself. */ if ( !(pImage->uOpenFlags & VD_OPEN_FLAGS_HONOR_ZEROES) && ASMBitFirstSet((volatile void *)pvBuf, (uint32_t)cbWrite * 8) == -1) return VINF_SUCCESS; if (uGDEntry != uLastGDEntry) { rc = vmdkStreamFlushGT(pImage, pExtent, uLastGDEntry); if (RT_FAILURE(rc)) return rc; vmdkStreamClearGT(pImage, pExtent); for (uint32_t i = uLastGDEntry + 1; i < uGDEntry; i++) { rc = vmdkStreamFlushGT(pImage, pExtent, i); if (RT_FAILURE(rc)) return rc; } } uint64_t uFileOffset; uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) return VERR_INTERNAL_ERROR; /* Align to sector, as the previous write could have been any size. */ uFileOffset = RT_ALIGN_64(uFileOffset, 512); /* Paranoia check: extent type, grain table buffer presence and * grain table buffer space. Also grain table entry must be clear. */ if ( pExtent->enmType != VMDKETYPE_HOSTED_SPARSE || !pImage->pGTCache || pExtent->cGTEntries > VMDK_GT_CACHE_SIZE * VMDK_GT_CACHELINE_SIZE || pImage->pGTCache->aGTCache[uCacheLine].aGTData[uCacheEntry]) return VERR_INTERNAL_ERROR; /* Update grain table entry. */ pImage->pGTCache->aGTCache[uCacheLine].aGTData[uCacheEntry] = VMDK_BYTE2SECTOR(uFileOffset); if (cbWrite != VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)) { memcpy(pExtent->pvGrain, pvBuf, cbWrite); memset((char *)pExtent->pvGrain + cbWrite, '\0', VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbWrite); pData = pExtent->pvGrain; } rc = vmdkFileDeflateSync(pImage, pExtent, uFileOffset, pData, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain), uSector, &cbGrain); if (RT_FAILURE(rc)) { pExtent->uGrainSectorAbs = 0; AssertRC(rc); return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write compressed data block in '%s'"), pExtent->pszFullname); } pExtent->uLastGrainAccess = uGrain; pExtent->uAppendPosition += cbGrain; return rc; } /** * Internal: Updates the grain table during a async grain allocation. */ static int vmdkAllocGrainAsyncGTUpdate(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, PVDIOCTX pIoCtx, PVMDKGRAINALLOCASYNC pGrainAlloc) { int rc = VINF_SUCCESS; PVMDKGTCACHE pCache = pImage->pGTCache; uint32_t aGTDataTmp[VMDK_GT_CACHELINE_SIZE]; uint32_t uGTHash, uGTBlockIndex; uint64_t uGTSector, uRGTSector, uGTBlock; uint64_t uSector = pGrainAlloc->uSector; PVMDKGTCACHEENTRY pGTCacheEntry; LogFlowFunc(("pImage=%#p pExtent=%#p pCache=%#p pIoCtx=%#p pGrainAlloc=%#p\n", pImage, pExtent, pCache, pIoCtx, pGrainAlloc)); uGTSector = pGrainAlloc->uGTSector; uRGTSector = pGrainAlloc->uRGTSector; LogFlow(("uGTSector=%llu uRGTSector=%llu\n", uGTSector, uRGTSector)); /* Update the grain table (and the cache). */ uGTBlock = uSector / (pExtent->cSectorsPerGrain * VMDK_GT_CACHELINE_SIZE); uGTHash = vmdkGTCacheHash(pCache, uGTBlock, pExtent->uExtent); pGTCacheEntry = &pCache->aGTCache[uGTHash]; if ( pGTCacheEntry->uExtent != pExtent->uExtent || pGTCacheEntry->uGTBlock != uGTBlock) { /* Cache miss, fetch data from disk. */ LogFlow(("Cache miss, fetch data from disk\n")); PVDMETAXFER pMetaXfer = NULL; rc = vmdkFileReadMetaAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, &pMetaXfer, vmdkAllocGrainAsyncComplete, pGrainAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) { pGrainAlloc->cIoXfersPending++; pGrainAlloc->fGTUpdateNeeded = true; /* Leave early, we will be called again after the read completed. */ LogFlowFunc(("Metadata read in progress, leaving\n")); return rc; } else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot read allocated grain table entry in '%s'"), pExtent->pszFullname); vmdkFileMetaXferRelease(pImage, pMetaXfer); pGTCacheEntry->uExtent = pExtent->uExtent; pGTCacheEntry->uGTBlock = uGTBlock; for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++) pGTCacheEntry->aGTData[i] = RT_LE2H_U32(aGTDataTmp[i]); } else { /* Cache hit. Convert grain table block back to disk format, otherwise * the code below will write garbage for all but the updated entry. */ for (unsigned i = 0; i < VMDK_GT_CACHELINE_SIZE; i++) aGTDataTmp[i] = RT_H2LE_U32(pGTCacheEntry->aGTData[i]); } pGrainAlloc->fGTUpdateNeeded = false; uGTBlockIndex = (uSector / pExtent->cSectorsPerGrain) % VMDK_GT_CACHELINE_SIZE; aGTDataTmp[uGTBlockIndex] = RT_H2LE_U32(VMDK_BYTE2SECTOR(pGrainAlloc->uGrainOffset)); pGTCacheEntry->aGTData[uGTBlockIndex] = VMDK_BYTE2SECTOR(pGrainAlloc->uGrainOffset); /* Update grain table on disk. */ rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, vmdkAllocGrainAsyncComplete, pGrainAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) pGrainAlloc->cIoXfersPending++; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write updated grain table in '%s'"), pExtent->pszFullname); if (pExtent->pRGD) { /* Update backup grain table on disk. */ rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uRGTSector) + (uGTBlock % (pExtent->cGTEntries / VMDK_GT_CACHELINE_SIZE)) * sizeof(aGTDataTmp), aGTDataTmp, sizeof(aGTDataTmp), pIoCtx, vmdkAllocGrainAsyncComplete, pGrainAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) pGrainAlloc->cIoXfersPending++; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write updated backup grain table in '%s'"), pExtent->pszFullname); } #ifdef VBOX_WITH_VMDK_ESX if (RT_SUCCESS(rc) && pExtent->enmType == VMDKETYPE_ESX_SPARSE) { pExtent->uFreeSector = uGTSector + VMDK_BYTE2SECTOR(cbWrite); pExtent->fMetaDirty = true; } #endif /* VBOX_WITH_VMDK_ESX */ LogFlowFunc(("leaving rc=%Rrc\n", rc)); return rc; } /** * Internal - complete the grain allocation by updating disk grain table if required. */ static int vmdkAllocGrainAsyncComplete(void *pBackendData, PVDIOCTX pIoCtx, void *pvUser, int rcReq) { int rc = VINF_SUCCESS; PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; PVMDKGRAINALLOCASYNC pGrainAlloc = (PVMDKGRAINALLOCASYNC)pvUser; PVMDKEXTENT pExtent = pGrainAlloc->pExtent; LogFlowFunc(("pBackendData=%#p pIoCtx=%#p pvUser=%#p rcReq=%Rrc\n", pBackendData, pIoCtx, pvUser, rcReq)); pGrainAlloc->cIoXfersPending--; if (!pGrainAlloc->cIoXfersPending && pGrainAlloc->fGTUpdateNeeded) rc = vmdkAllocGrainAsyncGTUpdate(pImage, pGrainAlloc->pExtent, pIoCtx, pGrainAlloc); if (!pGrainAlloc->cIoXfersPending) { /* Grain allocation completed. */ RTMemFree(pGrainAlloc); } LogFlowFunc(("Leaving rc=%Rrc\n", rc)); return rc; } /** * Internal. Allocates a new grain table (if necessary) - async version. */ static int vmdkAllocGrainAsync(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, PVDIOCTX pIoCtx, uint64_t uSector, uint64_t cbWrite) { PVMDKGTCACHE pCache = pImage->pGTCache; uint64_t uGDIndex, uGTSector, uRGTSector; uint64_t uFileOffset; PVMDKGRAINALLOCASYNC pGrainAlloc = NULL; int rc; LogFlowFunc(("pCache=%#p pExtent=%#p pIoCtx=%#p uSector=%llu cbWrite=%llu\n", pCache, pExtent, pIoCtx, uSector, cbWrite)); AssertReturn(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED), VERR_NOT_SUPPORTED); pGrainAlloc = (PVMDKGRAINALLOCASYNC)RTMemAllocZ(sizeof(VMDKGRAINALLOCASYNC)); if (!pGrainAlloc) return VERR_NO_MEMORY; pGrainAlloc->pExtent = pExtent; pGrainAlloc->uSector = uSector; uGDIndex = uSector / pExtent->cSectorsPerGDE; if (uGDIndex >= pExtent->cGDEntries) { RTMemFree(pGrainAlloc); return VERR_OUT_OF_RANGE; } uGTSector = pExtent->pGD[uGDIndex]; if (pExtent->pRGD) uRGTSector = pExtent->pRGD[uGDIndex]; else uRGTSector = 0; /**< avoid compiler warning */ if (!uGTSector) { LogFlow(("Allocating new grain table\n")); /* There is no grain table referenced by this grain directory * entry. So there is absolutely no data in this area. Allocate * a new grain table and put the reference to it in the GDs. */ uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) return VERR_INTERNAL_ERROR; Assert(!(uFileOffset % 512)); uFileOffset = RT_ALIGN_64(uFileOffset, 512); uGTSector = VMDK_BYTE2SECTOR(uFileOffset); /* Normally the grain table is preallocated for hosted sparse extents * that support more than 32 bit sector numbers. So this shouldn't * ever happen on a valid extent. */ if (uGTSector > UINT32_MAX) return VERR_VD_VMDK_INVALID_HEADER; /* Write grain table by writing the required number of grain table * cache chunks. Allocate memory dynamically here or we flood the * metadata cache with very small entries. */ size_t cbGTDataTmp = pExtent->cGTEntries * sizeof(uint32_t); uint32_t *paGTDataTmp = (uint32_t *)RTMemTmpAllocZ(cbGTDataTmp); if (!paGTDataTmp) return VERR_NO_MEMORY; memset(paGTDataTmp, '\0', cbGTDataTmp); rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGTSector), paGTDataTmp, cbGTDataTmp, pIoCtx, vmdkAllocGrainAsyncComplete, pGrainAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) pGrainAlloc->cIoXfersPending++; else if (RT_FAILURE(rc)) { RTMemTmpFree(paGTDataTmp); return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write grain table allocation in '%s'"), pExtent->pszFullname); } pExtent->uAppendPosition = RT_ALIGN_64( pExtent->uAppendPosition + cbGTDataTmp, 512); if (pExtent->pRGD) { AssertReturn(!uRGTSector, VERR_VD_VMDK_INVALID_HEADER); uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) return VERR_INTERNAL_ERROR; Assert(!(uFileOffset % 512)); uRGTSector = VMDK_BYTE2SECTOR(uFileOffset); /* Normally the redundant grain table is preallocated for hosted * sparse extents that support more than 32 bit sector numbers. So * this shouldn't ever happen on a valid extent. */ if (uRGTSector > UINT32_MAX) { RTMemTmpFree(paGTDataTmp); return VERR_VD_VMDK_INVALID_HEADER; } /* Write grain table by writing the required number of grain table * cache chunks. Allocate memory dynamically here or we flood the * metadata cache with very small entries. */ rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uRGTSector), paGTDataTmp, cbGTDataTmp, pIoCtx, vmdkAllocGrainAsyncComplete, pGrainAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) pGrainAlloc->cIoXfersPending++; else if (RT_FAILURE(rc)) { RTMemTmpFree(paGTDataTmp); return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain table allocation in '%s'"), pExtent->pszFullname); } pExtent->uAppendPosition = pExtent->uAppendPosition + cbGTDataTmp; } RTMemTmpFree(paGTDataTmp); /* Update the grain directory on disk (doing it before writing the * grain table will result in a garbled extent if the operation is * aborted for some reason. Otherwise the worst that can happen is * some unused sectors in the extent. */ uint32_t uGTSectorLE = RT_H2LE_U64(uGTSector); rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(pExtent->uSectorGD) + uGDIndex * sizeof(uGTSectorLE), &uGTSectorLE, sizeof(uGTSectorLE), pIoCtx, vmdkAllocGrainAsyncComplete, pGrainAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) pGrainAlloc->cIoXfersPending++; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write grain directory entry in '%s'"), pExtent->pszFullname); if (pExtent->pRGD) { uint32_t uRGTSectorLE = RT_H2LE_U64(uRGTSector); rc = vmdkFileWriteMetaAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(pExtent->uSectorRGD) + uGDIndex * sizeof(uGTSectorLE), &uRGTSectorLE, sizeof(uRGTSectorLE), pIoCtx, vmdkAllocGrainAsyncComplete, pGrainAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) pGrainAlloc->cIoXfersPending++; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write backup grain directory entry in '%s'"), pExtent->pszFullname); } /* As the final step update the in-memory copy of the GDs. */ pExtent->pGD[uGDIndex] = uGTSector; if (pExtent->pRGD) pExtent->pRGD[uGDIndex] = uRGTSector; } LogFlow(("uGTSector=%llu uRGTSector=%llu\n", uGTSector, uRGTSector)); pGrainAlloc->uGTSector = uGTSector; pGrainAlloc->uRGTSector = uRGTSector; uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) return VERR_INTERNAL_ERROR; Assert(!(uFileOffset % 512)); pGrainAlloc->uGrainOffset = uFileOffset; /* Write the data. Always a full grain, or we're in big trouble. */ rc = vmdkFileWriteUserAsync(pImage, pExtent->pFile, uFileOffset, pIoCtx, cbWrite, vmdkAllocGrainAsyncComplete, pGrainAlloc); if (rc == VERR_VD_ASYNC_IO_IN_PROGRESS) pGrainAlloc->cIoXfersPending++; else if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: cannot write allocated data block in '%s'"), pExtent->pszFullname); pExtent->uAppendPosition += cbWrite; rc = vmdkAllocGrainAsyncGTUpdate(pImage, pExtent, pIoCtx, pGrainAlloc); if (!pGrainAlloc->cIoXfersPending) { /* Grain allocation completed. */ RTMemFree(pGrainAlloc); } LogFlowFunc(("leaving rc=%Rrc\n", rc)); return rc; } /** * Internal. Reads the contents by sequentially going over the compressed * grains (hoping that they are in sequence). */ static int vmdkStreamReadSequential(PVMDKIMAGE pImage, PVMDKEXTENT pExtent, uint64_t uSector, void *pvBuf, uint64_t cbRead) { int rc; /* Do not allow to go back. */ uint32_t uGrain = uSector / pExtent->cSectorsPerGrain; if (uGrain < pExtent->uLastGrainAccess) return VERR_VD_VMDK_INVALID_STATE; pExtent->uLastGrainAccess = uGrain; /* After a previous error do not attempt to recover, as it would need * seeking (in the general case backwards which is forbidden). */ if (!pExtent->uGrainSectorAbs) return VERR_VD_VMDK_INVALID_STATE; /* Check if we need to read something from the image or if what we have * in the buffer is good to fulfill the request. */ if (!pExtent->cbGrainStreamRead || uGrain > pExtent->uGrain) { uint32_t uGrainSectorAbs = pExtent->uGrainSectorAbs + VMDK_BYTE2SECTOR(pExtent->cbGrainStreamRead); /* Get the marker from the next data block - and skip everything which * is not a compressed grain. If it's a compressed grain which is for * the requested sector (or after), read it. */ VMDKMARKER Marker; do { RT_ZERO(Marker); rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGrainSectorAbs), &Marker, RT_OFFSETOF(VMDKMARKER, uType), NULL); if (RT_FAILURE(rc)) return rc; Marker.uSector = RT_LE2H_U64(Marker.uSector); Marker.cbSize = RT_LE2H_U32(Marker.cbSize); if (Marker.cbSize == 0) { /* A marker for something else than a compressed grain. */ rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGrainSectorAbs) + RT_OFFSETOF(VMDKMARKER, uType), &Marker.uType, sizeof(Marker.uType), NULL); if (RT_FAILURE(rc)) return rc; Marker.uType = RT_LE2H_U32(Marker.uType); switch (Marker.uType) { case VMDK_MARKER_EOS: uGrainSectorAbs++; /* Read (or mostly skip) to the end of file. Uses the * Marker (LBA sector) as it is unused anyway. This * makes sure that really everything is read in the * success case. If this read fails it means the image * is truncated, but this is harmless so ignore. */ vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uGrainSectorAbs) + 511, &Marker.uSector, 1, NULL); break; case VMDK_MARKER_GT: uGrainSectorAbs += 1 + VMDK_BYTE2SECTOR(pExtent->cGTEntries * sizeof(uint32_t)); break; case VMDK_MARKER_GD: uGrainSectorAbs += 1 + VMDK_BYTE2SECTOR(RT_ALIGN(pExtent->cGDEntries * sizeof(uint32_t), 512)); break; case VMDK_MARKER_FOOTER: uGrainSectorAbs += 2; break; default: AssertMsgFailed(("VMDK: corrupted marker, type=%#x\n", Marker.uType)); pExtent->uGrainSectorAbs = 0; return VERR_VD_VMDK_INVALID_STATE; } pExtent->cbGrainStreamRead = 0; } else { /* A compressed grain marker. If it is at/after what we're * interested in read and decompress data. */ if (uSector > Marker.uSector + pExtent->cSectorsPerGrain) { uGrainSectorAbs += VMDK_BYTE2SECTOR(RT_ALIGN(Marker.cbSize + RT_OFFSETOF(VMDKMARKER, uType), 512)); continue; } uint64_t uLBA = 0; uint32_t cbGrainStreamRead = 0; rc = vmdkFileInflateSync(pImage, pExtent, VMDK_SECTOR2BYTE(uGrainSectorAbs), pExtent->pvGrain, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain), &Marker, &uLBA, &cbGrainStreamRead); if (RT_FAILURE(rc)) { pExtent->uGrainSectorAbs = 0; return rc; } if ( pExtent->uGrain && uLBA / pExtent->cSectorsPerGrain <= pExtent->uGrain) { pExtent->uGrainSectorAbs = 0; return VERR_VD_VMDK_INVALID_STATE; } pExtent->uGrain = uLBA / pExtent->cSectorsPerGrain; pExtent->cbGrainStreamRead = cbGrainStreamRead; break; } } while (Marker.uType != VMDK_MARKER_EOS); pExtent->uGrainSectorAbs = uGrainSectorAbs; if (!pExtent->cbGrainStreamRead && Marker.uType == VMDK_MARKER_EOS) { pExtent->uGrain = UINT32_MAX; /* Must set a non-zero value for pExtent->cbGrainStreamRead or * the next read would try to get more data, and we're at EOF. */ pExtent->cbGrainStreamRead = 1; } } if (pExtent->uGrain > uSector / pExtent->cSectorsPerGrain) { /* The next data block we have is not for this area, so just return * that there is no data. */ return VERR_VD_BLOCK_FREE; } uint32_t uSectorInGrain = uSector % pExtent->cSectorsPerGrain; memcpy(pvBuf, (uint8_t *)pExtent->pvGrain + VMDK_SECTOR2BYTE(uSectorInGrain), cbRead); return VINF_SUCCESS; } /** * Replaces a fragment of a string with the specified string. * * @returns Pointer to the allocated UTF-8 string. * @param pszWhere UTF-8 string to search in. * @param pszWhat UTF-8 string to search for. * @param pszByWhat UTF-8 string to replace the found string with. */ static char *vmdkStrReplace(const char *pszWhere, const char *pszWhat, const char *pszByWhat) { AssertPtr(pszWhere); AssertPtr(pszWhat); AssertPtr(pszByWhat); const char *pszFoundStr = strstr(pszWhere, pszWhat); if (!pszFoundStr) return NULL; size_t cFinal = strlen(pszWhere) + 1 + strlen(pszByWhat) - strlen(pszWhat); char *pszNewStr = (char *)RTMemAlloc(cFinal); if (pszNewStr) { char *pszTmp = pszNewStr; memcpy(pszTmp, pszWhere, pszFoundStr - pszWhere); pszTmp += pszFoundStr - pszWhere; memcpy(pszTmp, pszByWhat, strlen(pszByWhat)); pszTmp += strlen(pszByWhat); strcpy(pszTmp, pszFoundStr + strlen(pszWhat)); } return pszNewStr; } /** @copydoc VBOXHDDBACKEND::pfnCheckIfValid */ static int vmdkCheckIfValid(const char *pszFilename, PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage, VDTYPE *penmType) { LogFlowFunc(("pszFilename=\"%s\" pVDIfsDisk=%#p pVDIfsImage=%#p penmType=%#p\n", pszFilename, pVDIfsDisk, pVDIfsImage, penmType)); int rc = VINF_SUCCESS; PVMDKIMAGE pImage; if ( !pszFilename || !*pszFilename || strchr(pszFilename, '"')) { rc = VERR_INVALID_PARAMETER; goto out; } pImage = (PVMDKIMAGE)RTMemAllocZ(sizeof(VMDKIMAGE)); if (!pImage) { rc = VERR_NO_MEMORY; goto out; } pImage->pszFilename = pszFilename; pImage->pFile = NULL; pImage->pExtents = NULL; pImage->pFiles = NULL; pImage->pGTCache = NULL; pImage->pDescData = NULL; pImage->pVDIfsDisk = pVDIfsDisk; pImage->pVDIfsImage = pVDIfsImage; /** @todo speed up this test open (VD_OPEN_FLAGS_INFO) by skipping as * much as possible in vmdkOpenImage. */ rc = vmdkOpenImage(pImage, VD_OPEN_FLAGS_INFO | VD_OPEN_FLAGS_READONLY); vmdkFreeImage(pImage, false); RTMemFree(pImage); if (RT_SUCCESS(rc)) *penmType = VDTYPE_HDD; out: LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnOpen */ static int vmdkOpen(const char *pszFilename, unsigned uOpenFlags, PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage, VDTYPE enmType, void **ppBackendData) { LogFlowFunc(("pszFilename=\"%s\" uOpenFlags=%#x pVDIfsDisk=%#p pVDIfsImage=%#p ppBackendData=%#p\n", pszFilename, uOpenFlags, pVDIfsDisk, pVDIfsImage, ppBackendData)); int rc; PVMDKIMAGE pImage; /* Check open flags. All valid flags are supported. */ if (uOpenFlags & ~VD_OPEN_FLAGS_MASK) { rc = VERR_INVALID_PARAMETER; goto out; } /* Check remaining arguments. */ if ( !VALID_PTR(pszFilename) || !*pszFilename || strchr(pszFilename, '"')) { rc = VERR_INVALID_PARAMETER; goto out; } pImage = (PVMDKIMAGE)RTMemAllocZ(sizeof(VMDKIMAGE)); if (!pImage) { rc = VERR_NO_MEMORY; goto out; } pImage->pszFilename = pszFilename; pImage->pFile = NULL; pImage->pExtents = NULL; pImage->pFiles = NULL; pImage->pGTCache = NULL; pImage->pDescData = NULL; pImage->pVDIfsDisk = pVDIfsDisk; pImage->pVDIfsImage = pVDIfsImage; rc = vmdkOpenImage(pImage, uOpenFlags); if (RT_SUCCESS(rc)) *ppBackendData = pImage; out: LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnCreate */ static int vmdkCreate(const char *pszFilename, uint64_t cbSize, unsigned uImageFlags, const char *pszComment, PCVDGEOMETRY pPCHSGeometry, PCVDGEOMETRY pLCHSGeometry, PCRTUUID pUuid, unsigned uOpenFlags, unsigned uPercentStart, unsigned uPercentSpan, PVDINTERFACE pVDIfsDisk, PVDINTERFACE pVDIfsImage, PVDINTERFACE pVDIfsOperation, void **ppBackendData) { LogFlowFunc(("pszFilename=\"%s\" cbSize=%llu uImageFlags=%#x pszComment=\"%s\" pPCHSGeometry=%#p pLCHSGeometry=%#p Uuid=%RTuuid uOpenFlags=%#x uPercentStart=%u uPercentSpan=%u pVDIfsDisk=%#p pVDIfsImage=%#p pVDIfsOperation=%#p ppBackendData=%#p\n", pszFilename, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, pUuid, uOpenFlags, uPercentStart, uPercentSpan, pVDIfsDisk, pVDIfsImage, pVDIfsOperation, ppBackendData)); int rc; PVMDKIMAGE pImage; PFNVDPROGRESS pfnProgress = NULL; void *pvUser = NULL; PVDINTERFACE pIfProgress = VDInterfaceGet(pVDIfsOperation, VDINTERFACETYPE_PROGRESS); PVDINTERFACEPROGRESS pCbProgress = NULL; if (pIfProgress) { pCbProgress = VDGetInterfaceProgress(pIfProgress); pfnProgress = pCbProgress->pfnProgress; pvUser = pIfProgress->pvUser; } /* Check open flags. All valid flags are supported. */ if (uOpenFlags & ~VD_OPEN_FLAGS_MASK) { rc = VERR_INVALID_PARAMETER; goto out; } /* Check size. Maximum 2TB-64K for sparse images, otherwise unlimited. */ if ( !cbSize || (!(uImageFlags & VD_IMAGE_FLAGS_FIXED) && cbSize >= _1T * 2 - _64K)) { rc = VERR_VD_INVALID_SIZE; goto out; } /* Check remaining arguments. */ if ( !VALID_PTR(pszFilename) || !*pszFilename || strchr(pszFilename, '"') || !VALID_PTR(pPCHSGeometry) || !VALID_PTR(pLCHSGeometry) #ifndef VBOX_WITH_VMDK_ESX || ( uImageFlags & VD_VMDK_IMAGE_FLAGS_ESX && !(uImageFlags & VD_IMAGE_FLAGS_FIXED)) #endif || ( (uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) && (uImageFlags & ~(VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED | VD_IMAGE_FLAGS_DIFF)))) { rc = VERR_INVALID_PARAMETER; goto out; } pImage = (PVMDKIMAGE)RTMemAllocZ(sizeof(VMDKIMAGE)); if (!pImage) { rc = VERR_NO_MEMORY; goto out; } pImage->pszFilename = pszFilename; pImage->pFile = NULL; pImage->pExtents = NULL; pImage->pFiles = NULL; pImage->pGTCache = NULL; pImage->pDescData = NULL; pImage->pVDIfsDisk = pVDIfsDisk; pImage->pVDIfsImage = pVDIfsImage; /* Descriptors for split images can be pretty large, especially if the * filename is long. So prepare for the worst, and allocate quite some * memory for the descriptor in this case. */ if (uImageFlags & VD_VMDK_IMAGE_FLAGS_SPLIT_2G) pImage->cbDescAlloc = VMDK_SECTOR2BYTE(200); else pImage->cbDescAlloc = VMDK_SECTOR2BYTE(20); pImage->pDescData = (char *)RTMemAllocZ(pImage->cbDescAlloc); if (!pImage->pDescData) { RTMemFree(pImage); rc = VERR_NO_MEMORY; goto out; } rc = vmdkCreateImage(pImage, cbSize, uImageFlags, pszComment, pPCHSGeometry, pLCHSGeometry, pUuid, pfnProgress, pvUser, uPercentStart, uPercentSpan); if (RT_SUCCESS(rc)) { /* So far the image is opened in read/write mode. Make sure the * image is opened in read-only mode if the caller requested that. */ if (uOpenFlags & VD_OPEN_FLAGS_READONLY) { vmdkFreeImage(pImage, false); rc = vmdkOpenImage(pImage, uOpenFlags); if (RT_FAILURE(rc)) goto out; } *ppBackendData = pImage; } else { RTMemFree(pImage->pDescData); RTMemFree(pImage); } out: LogFlowFunc(("returns %Rrc (pBackendData=%#p)\n", rc, *ppBackendData)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnRename */ static int vmdkRename(void *pBackendData, const char *pszFilename) { LogFlowFunc(("pBackendData=%#p pszFilename=%#p\n", pBackendData, pszFilename)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc = VINF_SUCCESS; char **apszOldName = NULL; char **apszNewName = NULL; char **apszNewLines = NULL; char *pszOldDescName = NULL; bool fImageFreed = false; bool fEmbeddedDesc = false; unsigned cExtents = 0; char *pszNewBaseName = NULL; char *pszOldBaseName = NULL; char *pszNewFullName = NULL; char *pszOldFullName = NULL; const char *pszOldImageName; unsigned i, line; VMDKDESCRIPTOR DescriptorCopy; VMDKEXTENT ExtentCopy; memset(&DescriptorCopy, 0, sizeof(DescriptorCopy)); /* Check arguments. */ if ( !pImage || (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_RAWDISK) || !VALID_PTR(pszFilename) || !*pszFilename) { rc = VERR_INVALID_PARAMETER; goto out; } cExtents = pImage->cExtents; /* * Allocate an array to store both old and new names of renamed files * in case we have to roll back the changes. Arrays are initialized * with zeros. We actually save stuff when and if we change it. */ apszOldName = (char **)RTMemTmpAllocZ((cExtents + 1) * sizeof(char*)); apszNewName = (char **)RTMemTmpAllocZ((cExtents + 1) * sizeof(char*)); apszNewLines = (char **)RTMemTmpAllocZ((cExtents) * sizeof(char*)); if (!apszOldName || !apszNewName || !apszNewLines) { rc = VERR_NO_MEMORY; goto out; } /* Save the descriptor size and position. */ if (pImage->pDescData) { /* Separate descriptor file. */ fEmbeddedDesc = false; } else { /* Embedded descriptor file. */ ExtentCopy = pImage->pExtents[0]; fEmbeddedDesc = true; } /* Save the descriptor content. */ DescriptorCopy.cLines = pImage->Descriptor.cLines; for (i = 0; i < DescriptorCopy.cLines; i++) { DescriptorCopy.aLines[i] = RTStrDup(pImage->Descriptor.aLines[i]); if (!DescriptorCopy.aLines[i]) { rc = VERR_NO_MEMORY; goto out; } } /* Prepare both old and new base names used for string replacement. */ pszNewBaseName = RTStrDup(RTPathFilename(pszFilename)); RTPathStripExt(pszNewBaseName); pszOldBaseName = RTStrDup(RTPathFilename(pImage->pszFilename)); RTPathStripExt(pszOldBaseName); /* Prepare both old and new full names used for string replacement. */ pszNewFullName = RTStrDup(pszFilename); RTPathStripExt(pszNewFullName); pszOldFullName = RTStrDup(pImage->pszFilename); RTPathStripExt(pszOldFullName); /* --- Up to this point we have not done any damage yet. --- */ /* Save the old name for easy access to the old descriptor file. */ pszOldDescName = RTStrDup(pImage->pszFilename); /* Save old image name. */ pszOldImageName = pImage->pszFilename; /* Update the descriptor with modified extent names. */ for (i = 0, line = pImage->Descriptor.uFirstExtent; i < cExtents; i++, line = pImage->Descriptor.aNextLines[line]) { /* Assume that vmdkStrReplace will fail. */ rc = VERR_NO_MEMORY; /* Update the descriptor. */ apszNewLines[i] = vmdkStrReplace(pImage->Descriptor.aLines[line], pszOldBaseName, pszNewBaseName); if (!apszNewLines[i]) goto rollback; pImage->Descriptor.aLines[line] = apszNewLines[i]; } /* Make sure the descriptor gets written back. */ pImage->Descriptor.fDirty = true; /* Flush the descriptor now, in case it is embedded. */ vmdkFlushImage(pImage); /* Close and rename/move extents. */ for (i = 0; i < cExtents; i++) { PVMDKEXTENT pExtent = &pImage->pExtents[i]; /* Compose new name for the extent. */ apszNewName[i] = vmdkStrReplace(pExtent->pszFullname, pszOldFullName, pszNewFullName); if (!apszNewName[i]) goto rollback; /* Close the extent file. */ vmdkFileClose(pImage, &pExtent->pFile, false); /* Rename the extent file. */ rc = vmdkFileMove(pImage, pExtent->pszFullname, apszNewName[i], 0); if (RT_FAILURE(rc)) goto rollback; /* Remember the old name. */ apszOldName[i] = RTStrDup(pExtent->pszFullname); } /* Release all old stuff. */ vmdkFreeImage(pImage, false); fImageFreed = true; /* Last elements of new/old name arrays are intended for * storing descriptor's names. */ apszNewName[cExtents] = RTStrDup(pszFilename); /* Rename the descriptor file if it's separate. */ if (!fEmbeddedDesc) { rc = vmdkFileMove(pImage, pImage->pszFilename, apszNewName[cExtents], 0); if (RT_FAILURE(rc)) goto rollback; /* Save old name only if we may need to change it back. */ apszOldName[cExtents] = RTStrDup(pszFilename); } /* Update pImage with the new information. */ pImage->pszFilename = pszFilename; /* Open the new image. */ rc = vmdkOpenImage(pImage, pImage->uOpenFlags); if (RT_SUCCESS(rc)) goto out; rollback: /* Roll back all changes in case of failure. */ if (RT_FAILURE(rc)) { int rrc; if (!fImageFreed) { /* * Some extents may have been closed, close the rest. We will * re-open the whole thing later. */ vmdkFreeImage(pImage, false); } /* Rename files back. */ for (i = 0; i <= cExtents; i++) { if (apszOldName[i]) { rrc = vmdkFileMove(pImage, apszNewName[i], apszOldName[i], 0); AssertRC(rrc); } } /* Restore the old descriptor. */ PVMDKFILE pFile; rrc = vmdkFileOpen(pImage, &pFile, pszOldDescName, VDOpenFlagsToFileOpenFlags(VD_OPEN_FLAGS_NORMAL, false /* fCreate */), false /* fAsyncIO */); AssertRC(rrc); if (fEmbeddedDesc) { ExtentCopy.pFile = pFile; pImage->pExtents = &ExtentCopy; } else { /* Shouldn't be null for separate descriptor. * There will be no access to the actual content. */ pImage->pDescData = pszOldDescName; pImage->pFile = pFile; } pImage->Descriptor = DescriptorCopy; vmdkWriteDescriptor(pImage); vmdkFileClose(pImage, &pFile, false); /* Get rid of the stuff we implanted. */ pImage->pExtents = NULL; pImage->pFile = NULL; pImage->pDescData = NULL; /* Re-open the image back. */ pImage->pszFilename = pszOldImageName; rrc = vmdkOpenImage(pImage, pImage->uOpenFlags); AssertRC(rrc); } out: for (i = 0; i < DescriptorCopy.cLines; i++) if (DescriptorCopy.aLines[i]) RTStrFree(DescriptorCopy.aLines[i]); if (apszOldName) { for (i = 0; i <= cExtents; i++) if (apszOldName[i]) RTStrFree(apszOldName[i]); RTMemTmpFree(apszOldName); } if (apszNewName) { for (i = 0; i <= cExtents; i++) if (apszNewName[i]) RTStrFree(apszNewName[i]); RTMemTmpFree(apszNewName); } if (apszNewLines) { for (i = 0; i < cExtents; i++) if (apszNewLines[i]) RTStrFree(apszNewLines[i]); RTMemTmpFree(apszNewLines); } if (pszOldDescName) RTStrFree(pszOldDescName); if (pszOldBaseName) RTStrFree(pszOldBaseName); if (pszNewBaseName) RTStrFree(pszNewBaseName); if (pszOldFullName) RTStrFree(pszOldFullName); if (pszNewFullName) RTStrFree(pszNewFullName); LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnClose */ static int vmdkClose(void *pBackendData, bool fDelete) { LogFlowFunc(("pBackendData=%#p fDelete=%d\n", pBackendData, fDelete)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; rc = vmdkFreeImage(pImage, fDelete); RTMemFree(pImage); LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnRead */ static int vmdkRead(void *pBackendData, uint64_t uOffset, void *pvBuf, size_t cbToRead, size_t *pcbActuallyRead) { LogFlowFunc(("pBackendData=%#p uOffset=%llu pvBuf=%#p cbToRead=%zu pcbActuallyRead=%#p\n", pBackendData, uOffset, pvBuf, cbToRead, pcbActuallyRead)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; PVMDKEXTENT pExtent; uint64_t uSectorExtentRel; uint64_t uSectorExtentAbs; int rc; AssertPtr(pImage); Assert(uOffset % 512 == 0); Assert(cbToRead % 512 == 0); if ( uOffset + cbToRead > pImage->cbSize || cbToRead == 0) { rc = VERR_INVALID_PARAMETER; goto out; } rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset), &pExtent, &uSectorExtentRel); if (RT_FAILURE(rc)) goto out; /* Check access permissions as defined in the extent descriptor. */ if (pExtent->enmAccess == VMDKACCESS_NOACCESS) { rc = VERR_VD_VMDK_INVALID_STATE; goto out; } /* Clip read range to remain in this extent. */ cbToRead = RT_MIN(cbToRead, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); /* Handle the read according to the current extent type. */ switch (pExtent->enmType) { case VMDKETYPE_HOSTED_SPARSE: #ifdef VBOX_WITH_VMDK_ESX case VMDKETYPE_ESX_SPARSE: #endif /* VBOX_WITH_VMDK_ESX */ rc = vmdkGetSector(pImage, pExtent, uSectorExtentRel, &uSectorExtentAbs); if (RT_FAILURE(rc)) goto out; /* Clip read range to at most the rest of the grain. */ cbToRead = RT_MIN(cbToRead, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain)); Assert(!(cbToRead % 512)); if (uSectorExtentAbs == 0) { if ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) || !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) || !(pImage->uOpenFlags & VD_OPEN_FLAGS_SEQUENTIAL)) rc = VERR_VD_BLOCK_FREE; else rc = vmdkStreamReadSequential(pImage, pExtent, uSectorExtentRel, pvBuf, cbToRead); } else { if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { uint32_t uSectorInGrain = uSectorExtentRel % pExtent->cSectorsPerGrain; uSectorExtentAbs -= uSectorInGrain; uint64_t uLBA; if (pExtent->uGrainSectorAbs != uSectorExtentAbs) { rc = vmdkFileInflateSync(pImage, pExtent, VMDK_SECTOR2BYTE(uSectorExtentAbs), pExtent->pvGrain, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain), NULL, &uLBA, NULL); if (RT_FAILURE(rc)) { pExtent->uGrainSectorAbs = 0; AssertRC(rc); goto out; } pExtent->uGrainSectorAbs = uSectorExtentAbs; pExtent->uGrain = uSectorExtentRel / pExtent->cSectorsPerGrain; Assert(uLBA == uSectorExtentRel); } memcpy(pvBuf, (uint8_t *)pExtent->pvGrain + VMDK_SECTOR2BYTE(uSectorInGrain), cbToRead); } else { rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uSectorExtentAbs), pvBuf, cbToRead, NULL); } } break; case VMDKETYPE_VMFS: case VMDKETYPE_FLAT: rc = vmdkFileReadSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uSectorExtentRel), pvBuf, cbToRead, NULL); break; case VMDKETYPE_ZERO: memset(pvBuf, '\0', cbToRead); break; } if (pcbActuallyRead) *pcbActuallyRead = cbToRead; out: LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnWrite */ static int vmdkWrite(void *pBackendData, uint64_t uOffset, const void *pvBuf, size_t cbToWrite, size_t *pcbWriteProcess, size_t *pcbPreRead, size_t *pcbPostRead, unsigned fWrite) { LogFlowFunc(("pBackendData=%#p uOffset=%llu pvBuf=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n", pBackendData, uOffset, pvBuf, cbToWrite, pcbWriteProcess, pcbPreRead, pcbPostRead)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; PVMDKEXTENT pExtent; uint64_t uSectorExtentRel; uint64_t uSectorExtentAbs; int rc; AssertPtr(pImage); Assert(uOffset % 512 == 0); Assert(cbToWrite % 512 == 0); if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) { rc = VERR_VD_IMAGE_READ_ONLY; goto out; } if (cbToWrite == 0) { rc = VERR_INVALID_PARAMETER; goto out; } /* No size check here, will do that later when the extent is located. * There are sparse images out there which according to the spec are * invalid, because the total size is not a multiple of the grain size. * Also for sparse images which are stitched together in odd ways (not at * grain boundaries, and with the nominal size not being a multiple of the * grain size), this would prevent writing to the last grain. */ rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset), &pExtent, &uSectorExtentRel); if (RT_FAILURE(rc)) goto out; /* Check access permissions as defined in the extent descriptor. */ if ( pExtent->enmAccess != VMDKACCESS_READWRITE && ( !(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) && !pImage->pExtents[0].uAppendPosition && pExtent->enmAccess != VMDKACCESS_READONLY)) { rc = VERR_VD_VMDK_INVALID_STATE; goto out; } /* Handle the write according to the current extent type. */ switch (pExtent->enmType) { case VMDKETYPE_HOSTED_SPARSE: #ifdef VBOX_WITH_VMDK_ESX case VMDKETYPE_ESX_SPARSE: #endif /* VBOX_WITH_VMDK_ESX */ rc = vmdkGetSector(pImage, pExtent, uSectorExtentRel, &uSectorExtentAbs); if (RT_FAILURE(rc)) goto out; /* Clip write range to at most the rest of the grain. */ cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain)); if ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED && uSectorExtentRel < (uint64_t)pExtent->uLastGrainAccess * pExtent->cSectorsPerGrain) { rc = VERR_VD_VMDK_INVALID_WRITE; goto out; } if (uSectorExtentAbs == 0) { if (!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) { if (cbToWrite == VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)) { /* Full block write to a previously unallocated block. * Check if the caller wants feedback. */ if (!(fWrite & VD_WRITE_NO_ALLOC)) { /* Allocate GT and store the grain. */ rc = vmdkAllocGrain(pImage, pExtent, uSectorExtentRel, pvBuf, cbToWrite); } else rc = VERR_VD_BLOCK_FREE; *pcbPreRead = 0; *pcbPostRead = 0; } else { /* Clip write range to remain in this extent. */ cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); *pcbPreRead = VMDK_SECTOR2BYTE(uSectorExtentRel % pExtent->cSectorsPerGrain); *pcbPostRead = VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbToWrite - *pcbPreRead; rc = VERR_VD_BLOCK_FREE; } } else { rc = vmdkStreamAllocGrain(pImage, pExtent, uSectorExtentRel, pvBuf, cbToWrite); } } else { if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { /* A partial write to a streamOptimized image is simply * invalid. It requires rewriting already compressed data * which is somewhere between expensive and impossible. */ rc = VERR_VD_VMDK_INVALID_STATE; pExtent->uGrainSectorAbs = 0; AssertRC(rc); } else { rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uSectorExtentAbs), pvBuf, cbToWrite, NULL); } } break; case VMDKETYPE_VMFS: case VMDKETYPE_FLAT: /* Clip write range to remain in this extent. */ cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); rc = vmdkFileWriteSync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uSectorExtentRel), pvBuf, cbToWrite, NULL); break; case VMDKETYPE_ZERO: /* Clip write range to remain in this extent. */ cbToWrite = RT_MIN(cbToWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); break; } if (pcbWriteProcess) *pcbWriteProcess = cbToWrite; out: LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnFlush */ static int vmdkFlush(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc = VINF_SUCCESS; AssertPtr(pImage); if (!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) rc = vmdkFlushImage(pImage); LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnGetVersion */ static unsigned vmdkGetVersion(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; AssertPtr(pImage); if (pImage) return VMDK_IMAGE_VERSION; else return 0; } /** @copydoc VBOXHDDBACKEND::pfnGetSize */ static uint64_t vmdkGetSize(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; AssertPtr(pImage); if (pImage) return pImage->cbSize; else return 0; } /** @copydoc VBOXHDDBACKEND::pfnGetFileSize */ static uint64_t vmdkGetFileSize(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; uint64_t cb = 0; AssertPtr(pImage); if (pImage) { uint64_t cbFile; if (pImage->pFile != NULL) { int rc = vmdkFileGetSize(pImage, pImage->pFile, &cbFile); if (RT_SUCCESS(rc)) cb += cbFile; } for (unsigned i = 0; i < pImage->cExtents; i++) { if (pImage->pExtents[i].pFile != NULL) { int rc = vmdkFileGetSize(pImage, pImage->pExtents[i].pFile, &cbFile); if (RT_SUCCESS(rc)) cb += cbFile; } } } LogFlowFunc(("returns %lld\n", cb)); return cb; } /** @copydoc VBOXHDDBACKEND::pfnGetPCHSGeometry */ static int vmdkGetPCHSGeometry(void *pBackendData, PVDGEOMETRY pPCHSGeometry) { LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p\n", pBackendData, pPCHSGeometry)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { if (pImage->PCHSGeometry.cCylinders) { *pPCHSGeometry = pImage->PCHSGeometry; rc = VINF_SUCCESS; } else rc = VERR_VD_GEOMETRY_NOT_SET; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc (PCHS=%u/%u/%u)\n", rc, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnSetPCHSGeometry */ static int vmdkSetPCHSGeometry(void *pBackendData, PCVDGEOMETRY pPCHSGeometry) { LogFlowFunc(("pBackendData=%#p pPCHSGeometry=%#p PCHS=%u/%u/%u\n", pBackendData, pPCHSGeometry, pPCHSGeometry->cCylinders, pPCHSGeometry->cHeads, pPCHSGeometry->cSectors)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) { rc = VERR_VD_IMAGE_READ_ONLY; goto out; } if (pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { rc = VERR_NOT_SUPPORTED; goto out; } rc = vmdkDescSetPCHSGeometry(pImage, pPCHSGeometry); if (RT_FAILURE(rc)) goto out; pImage->PCHSGeometry = *pPCHSGeometry; rc = VINF_SUCCESS; } else rc = VERR_VD_NOT_OPENED; out: LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnGetLCHSGeometry */ static int vmdkGetLCHSGeometry(void *pBackendData, PVDGEOMETRY pLCHSGeometry) { LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p\n", pBackendData, pLCHSGeometry)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { if (pImage->LCHSGeometry.cCylinders) { *pLCHSGeometry = pImage->LCHSGeometry; rc = VINF_SUCCESS; } else rc = VERR_VD_GEOMETRY_NOT_SET; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc (LCHS=%u/%u/%u)\n", rc, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnSetLCHSGeometry */ static int vmdkSetLCHSGeometry(void *pBackendData, PCVDGEOMETRY pLCHSGeometry) { LogFlowFunc(("pBackendData=%#p pLCHSGeometry=%#p LCHS=%u/%u/%u\n", pBackendData, pLCHSGeometry, pLCHSGeometry->cCylinders, pLCHSGeometry->cHeads, pLCHSGeometry->cSectors)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) { rc = VERR_VD_IMAGE_READ_ONLY; goto out; } if (pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { rc = VERR_NOT_SUPPORTED; goto out; } rc = vmdkDescSetLCHSGeometry(pImage, pLCHSGeometry); if (RT_FAILURE(rc)) goto out; pImage->LCHSGeometry = *pLCHSGeometry; rc = VINF_SUCCESS; } else rc = VERR_VD_NOT_OPENED; out: LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnGetImageFlags */ static unsigned vmdkGetImageFlags(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; unsigned uImageFlags; AssertPtr(pImage); if (pImage) uImageFlags = pImage->uImageFlags; else uImageFlags = 0; LogFlowFunc(("returns %#x\n", uImageFlags)); return uImageFlags; } /** @copydoc VBOXHDDBACKEND::pfnGetOpenFlags */ static unsigned vmdkGetOpenFlags(void *pBackendData) { LogFlowFunc(("pBackendData=%#p\n", pBackendData)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; unsigned uOpenFlags; AssertPtr(pImage); if (pImage) uOpenFlags = pImage->uOpenFlags; else uOpenFlags = 0; LogFlowFunc(("returns %#x\n", uOpenFlags)); return uOpenFlags; } /** @copydoc VBOXHDDBACKEND::pfnSetOpenFlags */ static int vmdkSetOpenFlags(void *pBackendData, unsigned uOpenFlags) { LogFlowFunc(("pBackendData=%#p\n uOpenFlags=%#x", pBackendData, uOpenFlags)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; /* Image must be opened and the new flags must be valid. */ if (!pImage || (uOpenFlags & ~(VD_OPEN_FLAGS_READONLY | VD_OPEN_FLAGS_INFO | VD_OPEN_FLAGS_ASYNC_IO | VD_OPEN_FLAGS_SHAREABLE | VD_OPEN_FLAGS_SEQUENTIAL))) { rc = VERR_INVALID_PARAMETER; goto out; } /* StreamOptimized images need special treatment: reopen is prohibited. */ if (pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { if (pImage->uOpenFlags == uOpenFlags) rc = VINF_SUCCESS; else rc = VERR_INVALID_PARAMETER; goto out; } /* Implement this operation via reopening the image. */ vmdkFreeImage(pImage, false); rc = vmdkOpenImage(pImage, uOpenFlags); out: LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnGetComment */ static int vmdkGetComment(void *pBackendData, char *pszComment, size_t cbComment) { LogFlowFunc(("pBackendData=%#p pszComment=%#p cbComment=%zu\n", pBackendData, pszComment, cbComment)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { const char *pszCommentEncoded = NULL; rc = vmdkDescDDBGetStr(pImage, &pImage->Descriptor, "ddb.comment", &pszCommentEncoded); if (rc == VERR_VD_VMDK_VALUE_NOT_FOUND) pszCommentEncoded = NULL; else if (RT_FAILURE(rc)) goto out; if (pszComment && pszCommentEncoded) rc = vmdkDecodeString(pszCommentEncoded, pszComment, cbComment); else { if (pszComment) *pszComment = '\0'; rc = VINF_SUCCESS; } if (pszCommentEncoded) RTStrFree((char *)(void *)pszCommentEncoded); } else rc = VERR_VD_NOT_OPENED; out: LogFlowFunc(("returns %Rrc comment='%s'\n", rc, pszComment)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnSetComment */ static int vmdkSetComment(void *pBackendData, const char *pszComment) { LogFlowFunc(("pBackendData=%#p pszComment=\"%s\"\n", pBackendData, pszComment)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) { rc = VERR_VD_IMAGE_READ_ONLY; goto out; } if (pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED) { rc = VERR_NOT_SUPPORTED; goto out; } if (pImage) rc = vmdkSetImageComment(pImage, pszComment); else rc = VERR_VD_NOT_OPENED; out: LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnGetUuid */ static int vmdkGetUuid(void *pBackendData, PRTUUID pUuid) { LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { *pUuid = pImage->ImageUuid; rc = VINF_SUCCESS; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnSetUuid */ static int vmdkSetUuid(void *pBackendData, PCRTUUID pUuid) { LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; LogFlowFunc(("%RTuuid\n", pUuid)); AssertPtr(pImage); if (pImage) { if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) { if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) { pImage->ImageUuid = *pUuid; rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_IMAGE_UUID, pUuid); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing image UUID in descriptor in '%s'"), pImage->pszFilename); rc = VINF_SUCCESS; } else rc = VERR_NOT_SUPPORTED; } else rc = VERR_VD_IMAGE_READ_ONLY; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnGetModificationUuid */ static int vmdkGetModificationUuid(void *pBackendData, PRTUUID pUuid) { LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { *pUuid = pImage->ModificationUuid; rc = VINF_SUCCESS; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnSetModificationUuid */ static int vmdkSetModificationUuid(void *pBackendData, PCRTUUID pUuid) { LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) { if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) { /* Only touch the modification uuid if it changed. */ if (RTUuidCompare(&pImage->ModificationUuid, pUuid)) { pImage->ModificationUuid = *pUuid; rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_MODIFICATION_UUID, pUuid); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing modification UUID in descriptor in '%s'"), pImage->pszFilename); } rc = VINF_SUCCESS; } else rc = VERR_NOT_SUPPORTED; } else rc = VERR_VD_IMAGE_READ_ONLY; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnGetParentUuid */ static int vmdkGetParentUuid(void *pBackendData, PRTUUID pUuid) { LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { *pUuid = pImage->ParentUuid; rc = VINF_SUCCESS; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnSetParentUuid */ static int vmdkSetParentUuid(void *pBackendData, PCRTUUID pUuid) { LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) { if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) { pImage->ParentUuid = *pUuid; rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_UUID, pUuid); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent image UUID in descriptor in '%s'"), pImage->pszFilename); rc = VINF_SUCCESS; } else rc = VERR_NOT_SUPPORTED; } else rc = VERR_VD_IMAGE_READ_ONLY; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnGetParentModificationUuid */ static int vmdkGetParentModificationUuid(void *pBackendData, PRTUUID pUuid) { LogFlowFunc(("pBackendData=%#p pUuid=%#p\n", pBackendData, pUuid)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { *pUuid = pImage->ParentModificationUuid; rc = VINF_SUCCESS; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc (%RTuuid)\n", rc, pUuid)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnSetParentModificationUuid */ static int vmdkSetParentModificationUuid(void *pBackendData, PCRTUUID pUuid) { LogFlowFunc(("pBackendData=%#p Uuid=%RTuuid\n", pBackendData, pUuid)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; int rc; AssertPtr(pImage); if (pImage) { if (!(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) { if (!(pImage->uOpenFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)) { pImage->ParentModificationUuid = *pUuid; rc = vmdkDescDDBSetUuid(pImage, &pImage->Descriptor, VMDK_DDB_PARENT_MODIFICATION_UUID, pUuid); if (RT_FAILURE(rc)) return vmdkError(pImage, rc, RT_SRC_POS, N_("VMDK: error storing parent image UUID in descriptor in '%s'"), pImage->pszFilename); rc = VINF_SUCCESS; } else rc = VERR_NOT_SUPPORTED; } else rc = VERR_VD_IMAGE_READ_ONLY; } else rc = VERR_VD_NOT_OPENED; LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnDump */ static void vmdkDump(void *pBackendData) { PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; AssertPtr(pImage); if (pImage) { vmdkMessage(pImage, "Header: Geometry PCHS=%u/%u/%u LCHS=%u/%u/%u cbSector=%llu\n", pImage->PCHSGeometry.cCylinders, pImage->PCHSGeometry.cHeads, pImage->PCHSGeometry.cSectors, pImage->LCHSGeometry.cCylinders, pImage->LCHSGeometry.cHeads, pImage->LCHSGeometry.cSectors, VMDK_BYTE2SECTOR(pImage->cbSize)); vmdkMessage(pImage, "Header: uuidCreation={%RTuuid}\n", &pImage->ImageUuid); vmdkMessage(pImage, "Header: uuidModification={%RTuuid}\n", &pImage->ModificationUuid); vmdkMessage(pImage, "Header: uuidParent={%RTuuid}\n", &pImage->ParentUuid); vmdkMessage(pImage, "Header: uuidParentModification={%RTuuid}\n", &pImage->ParentModificationUuid); } } /** @copydoc VBOXHDDBACKEND::pfnAsyncRead */ static int vmdkAsyncRead(void *pBackendData, uint64_t uOffset, size_t cbRead, PVDIOCTX pIoCtx, size_t *pcbActuallyRead) { LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToRead=%zu pcbActuallyRead=%#p\n", pBackendData, uOffset, pIoCtx, cbRead, pcbActuallyRead)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; PVMDKEXTENT pExtent; uint64_t uSectorExtentRel; uint64_t uSectorExtentAbs; int rc; AssertPtr(pImage); Assert(uOffset % 512 == 0); Assert(cbRead % 512 == 0); if ( uOffset + cbRead > pImage->cbSize || cbRead == 0) { rc = VERR_INVALID_PARAMETER; goto out; } rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset), &pExtent, &uSectorExtentRel); if (RT_FAILURE(rc)) goto out; /* Check access permissions as defined in the extent descriptor. */ if (pExtent->enmAccess == VMDKACCESS_NOACCESS) { rc = VERR_VD_VMDK_INVALID_STATE; goto out; } /* Clip read range to remain in this extent. */ cbRead = RT_MIN(cbRead, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); /* Handle the read according to the current extent type. */ switch (pExtent->enmType) { case VMDKETYPE_HOSTED_SPARSE: #ifdef VBOX_WITH_VMDK_ESX case VMDKETYPE_ESX_SPARSE: #endif /* VBOX_WITH_VMDK_ESX */ rc = vmdkGetSectorAsync(pImage, pIoCtx, pExtent, uSectorExtentRel, &uSectorExtentAbs); if (RT_FAILURE(rc)) goto out; /* Clip read range to at most the rest of the grain. */ cbRead = RT_MIN(cbRead, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain)); Assert(!(cbRead % 512)); if (uSectorExtentAbs == 0) rc = VERR_VD_BLOCK_FREE; else { AssertMsg(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED), ("Async I/O is not supported for stream optimized VMDK's\n")); rc = vmdkFileReadUserAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uSectorExtentAbs), pIoCtx, cbRead); } break; case VMDKETYPE_VMFS: case VMDKETYPE_FLAT: rc = vmdkFileReadUserAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uSectorExtentRel), pIoCtx, cbRead); break; case VMDKETYPE_ZERO: size_t cbSet; cbSet = vmdkFileIoCtxSet(pImage, pIoCtx, 0, cbRead); Assert(cbSet == cbRead); rc = VINF_SUCCESS; break; } if (pcbActuallyRead) *pcbActuallyRead = cbRead; out: LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnAsyncWrite */ static int vmdkAsyncWrite(void *pBackendData, uint64_t uOffset, size_t cbWrite, PVDIOCTX pIoCtx, size_t *pcbWriteProcess, size_t *pcbPreRead, size_t *pcbPostRead, unsigned fWrite) { LogFlowFunc(("pBackendData=%#p uOffset=%llu pIoCtx=%#p cbToWrite=%zu pcbWriteProcess=%#p pcbPreRead=%#p pcbPostRead=%#p\n", pBackendData, uOffset, pIoCtx, cbWrite, pcbWriteProcess, pcbPreRead, pcbPostRead)); PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; PVMDKEXTENT pExtent; uint64_t uSectorExtentRel; uint64_t uSectorExtentAbs; int rc; AssertPtr(pImage); Assert(uOffset % 512 == 0); Assert(cbWrite % 512 == 0); if (pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY) { rc = VERR_VD_IMAGE_READ_ONLY; goto out; } if (cbWrite == 0) { rc = VERR_INVALID_PARAMETER; goto out; } /* No size check here, will do that later when the extent is located. * There are sparse images out there which according to the spec are * invalid, because the total size is not a multiple of the grain size. * Also for sparse images which are stitched together in odd ways (not at * grain boundaries, and with the nominal size not being a multiple of the * grain size), this would prevent writing to the last grain. */ rc = vmdkFindExtent(pImage, VMDK_BYTE2SECTOR(uOffset), &pExtent, &uSectorExtentRel); if (RT_FAILURE(rc)) goto out; /* Check access permissions as defined in the extent descriptor. */ if (pExtent->enmAccess != VMDKACCESS_READWRITE) { rc = VERR_VD_VMDK_INVALID_STATE; goto out; } /* Handle the write according to the current extent type. */ switch (pExtent->enmType) { case VMDKETYPE_HOSTED_SPARSE: #ifdef VBOX_WITH_VMDK_ESX case VMDKETYPE_ESX_SPARSE: #endif /* VBOX_WITH_VMDK_ESX */ rc = vmdkGetSectorAsync(pImage, pIoCtx, pExtent, uSectorExtentRel, &uSectorExtentAbs); if (RT_FAILURE(rc)) goto out; /* Clip write range to at most the rest of the grain. */ cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain - uSectorExtentRel % pExtent->cSectorsPerGrain)); if ( pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED && uSectorExtentRel < (uint64_t)pExtent->uLastGrainAccess * pExtent->cSectorsPerGrain) { rc = VERR_VD_VMDK_INVALID_WRITE; goto out; } if (uSectorExtentAbs == 0) { if (cbWrite == VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain)) { /* Full block write to a previously unallocated block. * Check if the caller wants to avoid the automatic alloc. */ if (!(fWrite & VD_WRITE_NO_ALLOC)) { /* Allocate GT and find out where to store the grain. */ rc = vmdkAllocGrainAsync(pImage, pExtent, pIoCtx, uSectorExtentRel, cbWrite); } else rc = VERR_VD_BLOCK_FREE; *pcbPreRead = 0; *pcbPostRead = 0; } else { /* Clip write range to remain in this extent. */ cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); *pcbPreRead = VMDK_SECTOR2BYTE(uSectorExtentRel % pExtent->cSectorsPerGrain); *pcbPostRead = VMDK_SECTOR2BYTE(pExtent->cSectorsPerGrain) - cbWrite - *pcbPreRead; rc = VERR_VD_BLOCK_FREE; } } else { Assert(!(pImage->uImageFlags & VD_VMDK_IMAGE_FLAGS_STREAM_OPTIMIZED)); rc = vmdkFileWriteUserAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uSectorExtentAbs), pIoCtx, cbWrite, NULL, NULL); } break; case VMDKETYPE_VMFS: case VMDKETYPE_FLAT: /* Clip write range to remain in this extent. */ cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); rc = vmdkFileWriteUserAsync(pImage, pExtent->pFile, VMDK_SECTOR2BYTE(uSectorExtentRel), pIoCtx, cbWrite, NULL, NULL); break; case VMDKETYPE_ZERO: /* Clip write range to remain in this extent. */ cbWrite = RT_MIN(cbWrite, VMDK_SECTOR2BYTE(pExtent->uSectorOffset + pExtent->cNominalSectors - uSectorExtentRel)); break; } if (pcbWriteProcess) *pcbWriteProcess = cbWrite; out: LogFlowFunc(("returns %Rrc\n", rc)); return rc; } /** @copydoc VBOXHDDBACKEND::pfnAsyncFlush */ static int vmdkAsyncFlush(void *pBackendData, PVDIOCTX pIoCtx) { PVMDKIMAGE pImage = (PVMDKIMAGE)pBackendData; PVMDKEXTENT pExtent; int rc = VINF_SUCCESS; /* Update descriptor if changed. */ /** @todo: The descriptor is never updated because * it remains unchanged during normal operation (only vmdkRename updates it). * So this part is actually not tested so far and requires testing as soon * as the descriptor might change during async I/O. */ if (pImage->Descriptor.fDirty) { rc = vmdkWriteDescriptorAsync(pImage, pIoCtx); if ( RT_FAILURE(rc) && rc != VERR_VD_ASYNC_IO_IN_PROGRESS) goto out; } for (unsigned i = 0; i < pImage->cExtents; i++) { pExtent = &pImage->pExtents[i]; if (pExtent->pFile != NULL && pExtent->fMetaDirty) { switch (pExtent->enmType) { case VMDKETYPE_HOSTED_SPARSE: #ifdef VBOX_WITH_VMDK_ESX case VMDKETYPE_ESX_SPARSE: #endif /* VBOX_WITH_VMDK_ESX */ rc = vmdkWriteMetaSparseExtentAsync(pImage, pExtent, 0, pIoCtx); if (RT_FAILURE(rc) && (rc != VERR_VD_ASYNC_IO_IN_PROGRESS)) goto out; if (pExtent->fFooter) { uint64_t uFileOffset = pExtent->uAppendPosition; if (!uFileOffset) { rc = VERR_INTERNAL_ERROR; goto out; } uFileOffset = RT_ALIGN_64(uFileOffset, 512); rc = vmdkWriteMetaSparseExtent(pImage, pExtent, uFileOffset); if (RT_FAILURE(rc) && (rc != VERR_VD_ASYNC_IO_IN_PROGRESS)) goto out; } break; case VMDKETYPE_VMFS: case VMDKETYPE_FLAT: /* Nothing to do. */ break; case VMDKETYPE_ZERO: default: AssertMsgFailed(("extent with type %d marked as dirty\n", pExtent->enmType)); break; } } switch (pExtent->enmType) { case VMDKETYPE_HOSTED_SPARSE: #ifdef VBOX_WITH_VMDK_ESX case VMDKETYPE_ESX_SPARSE: #endif /* VBOX_WITH_VMDK_ESX */ case VMDKETYPE_VMFS: case VMDKETYPE_FLAT: /* * Don't ignore block devices like in the sync case * (they have an absolute path). * We might have unwritten data in the writeback cache and * the async I/O manager will handle these requests properly * even if the block device doesn't support these requests. */ if ( pExtent->pFile != NULL && !(pImage->uOpenFlags & VD_OPEN_FLAGS_READONLY)) rc = vmdkFileFlushAsync(pImage, pExtent->pFile, pIoCtx); break; case VMDKETYPE_ZERO: /* No need to do anything for this extent. */ break; default: AssertMsgFailed(("unknown extent type %d\n", pExtent->enmType)); break; } } out: return rc; } VBOXHDDBACKEND g_VmdkBackend = { /* pszBackendName */ "VMDK", /* cbSize */ sizeof(VBOXHDDBACKEND), /* uBackendCaps */ VD_CAP_UUID | VD_CAP_CREATE_FIXED | VD_CAP_CREATE_DYNAMIC | VD_CAP_CREATE_SPLIT_2G | VD_CAP_DIFF | VD_CAP_FILE | VD_CAP_ASYNC | VD_CAP_VFS, /* paFileExtensions */ s_aVmdkFileExtensions, /* paConfigInfo */ NULL, /* hPlugin */ NIL_RTLDRMOD, /* pfnCheckIfValid */ vmdkCheckIfValid, /* pfnOpen */ vmdkOpen, /* pfnCreate */ vmdkCreate, /* pfnRename */ vmdkRename, /* pfnClose */ vmdkClose, /* pfnRead */ vmdkRead, /* pfnWrite */ vmdkWrite, /* pfnFlush */ vmdkFlush, /* pfnGetVersion */ vmdkGetVersion, /* pfnGetSize */ vmdkGetSize, /* pfnGetFileSize */ vmdkGetFileSize, /* pfnGetPCHSGeometry */ vmdkGetPCHSGeometry, /* pfnSetPCHSGeometry */ vmdkSetPCHSGeometry, /* pfnGetLCHSGeometry */ vmdkGetLCHSGeometry, /* pfnSetLCHSGeometry */ vmdkSetLCHSGeometry, /* pfnGetImageFlags */ vmdkGetImageFlags, /* pfnGetOpenFlags */ vmdkGetOpenFlags, /* pfnSetOpenFlags */ vmdkSetOpenFlags, /* pfnGetComment */ vmdkGetComment, /* pfnSetComment */ vmdkSetComment, /* pfnGetUuid */ vmdkGetUuid, /* pfnSetUuid */ vmdkSetUuid, /* pfnGetModificationUuid */ vmdkGetModificationUuid, /* pfnSetModificationUuid */ vmdkSetModificationUuid, /* pfnGetParentUuid */ vmdkGetParentUuid, /* pfnSetParentUuid */ vmdkSetParentUuid, /* pfnGetParentModificationUuid */ vmdkGetParentModificationUuid, /* pfnSetParentModificationUuid */ vmdkSetParentModificationUuid, /* pfnDump */ vmdkDump, /* pfnGetTimeStamp */ NULL, /* pfnGetParentTimeStamp */ NULL, /* pfnSetParentTimeStamp */ NULL, /* pfnGetParentFilename */ NULL, /* pfnSetParentFilename */ NULL, /* pfnAsyncRead */ vmdkAsyncRead, /* pfnAsyncWrite */ vmdkAsyncWrite, /* pfnAsyncFlush */ vmdkAsyncFlush, /* pfnComposeLocation */ genericFileComposeLocation, /* pfnComposeName */ genericFileComposeName, /* pfnCompact */ NULL, /* pfnResize */ NULL };