VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 26871

Last change on this file since 26871 was 26664, checked in by vboxsync, 15 years ago

CPUM: use symbolic constants for wait extensions

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 171.9 KB
Line 
1/* $Id: CPUM.cpp 26664 2010-02-19 15:16:39Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_cpum CPUM - CPU Monitor / Manager
23 *
24 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
25 * also responsible for lazy FPU handling and some of the context loading
26 * in raw mode.
27 *
28 * There are three CPU contexts, the most important one is the guest one (GC).
29 * When running in raw-mode (RC) there is a special hyper context for the VMM
30 * part that floats around inside the guest address space. When running in
31 * raw-mode, CPUM also maintains a host context for saving and restoring
32 * registers accross world switches. This latter is done in cooperation with the
33 * world switcher (@see pg_vmm).
34 *
35 * @see grp_cpum
36 */
37
38/*******************************************************************************
39* Header Files *
40*******************************************************************************/
41#define LOG_GROUP LOG_GROUP_CPUM
42#include <VBox/cpum.h>
43#include <VBox/cpumdis.h>
44#include <VBox/pgm.h>
45#include <VBox/mm.h>
46#include <VBox/selm.h>
47#include <VBox/dbgf.h>
48#include <VBox/patm.h>
49#include <VBox/hwaccm.h>
50#include <VBox/ssm.h>
51#include "CPUMInternal.h"
52#include <VBox/vm.h>
53
54#include <VBox/param.h>
55#include <VBox/dis.h>
56#include <VBox/err.h>
57#include <VBox/log.h>
58#include <iprt/assert.h>
59#include <iprt/asm.h>
60#include <iprt/string.h>
61#include <iprt/mp.h>
62#include <iprt/cpuset.h>
63
64
65/*******************************************************************************
66* Defined Constants And Macros *
67*******************************************************************************/
68/** The current saved state version. */
69#define CPUM_SAVED_STATE_VERSION 11
70/** The saved state version of 3.0 and 3.1 trunk before the teleportation
71 * changes. */
72#define CPUM_SAVED_STATE_VERSION_VER3_0 10
73/** The saved state version for the 2.1 trunk before the MSR changes. */
74#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
75/** The saved state version of 2.0, used for backwards compatibility. */
76#define CPUM_SAVED_STATE_VERSION_VER2_0 8
77/** The saved state version of 1.6, used for backwards compatability. */
78#define CPUM_SAVED_STATE_VERSION_VER1_6 6
79
80
81/*******************************************************************************
82* Structures and Typedefs *
83*******************************************************************************/
84
85/**
86 * What kind of cpu info dump to perform.
87 */
88typedef enum CPUMDUMPTYPE
89{
90 CPUMDUMPTYPE_TERSE,
91 CPUMDUMPTYPE_DEFAULT,
92 CPUMDUMPTYPE_VERBOSE
93} CPUMDUMPTYPE;
94/** Pointer to a cpu info dump type. */
95typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
96
97
98/*******************************************************************************
99* Internal Functions *
100*******************************************************************************/
101static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
102static int cpumR3CpuIdInit(PVM pVM);
103static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
104static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
105static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
106static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
107static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
108static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
114
115
116/**
117 * Initializes the CPUM.
118 *
119 * @returns VBox status code.
120 * @param pVM The VM to operate on.
121 */
122VMMR3DECL(int) CPUMR3Init(PVM pVM)
123{
124 LogFlow(("CPUMR3Init\n"));
125
126 /*
127 * Assert alignment and sizes.
128 */
129 AssertCompileMemberAlignment(VM, cpum.s, 32);
130 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
131 AssertCompileSizeAlignment(CPUMCTX, 64);
132 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
133 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
134 AssertCompileMemberAlignment(VM, cpum, 64);
135 AssertCompileMemberAlignment(VM, aCpus, 64);
136 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
137 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
138
139 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
140 pVM->cpum.s.ulOffCPUMCPU = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
141 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.ulOffCPUMCPU == (uintptr_t)&pVM->aCpus[0].cpum);
142
143 /* Calculate the offset from CPUMCPU to CPUM. */
144 for (VMCPUID i = 0; i < pVM->cCpus; i++)
145 {
146 PVMCPU pVCpu = &pVM->aCpus[i];
147
148 /*
149 * Setup any fixed pointers and offsets.
150 */
151 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
152 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
153
154 pVCpu->cpum.s.ulOffCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
155 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.ulOffCPUM == (uintptr_t)&pVM->cpum);
156 }
157
158 /*
159 * Check that the CPU supports the minimum features we require.
160 */
161 if (!ASMHasCpuId())
162 {
163 Log(("The CPU doesn't support CPUID!\n"));
164 return VERR_UNSUPPORTED_CPU;
165 }
166 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
167 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
168
169 /* Setup the CR4 AND and OR masks used in the switcher */
170 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
171 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
172 {
173 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
174 /* No FXSAVE implies no SSE */
175 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
176 pVM->cpum.s.CR4.OrMask = 0;
177 }
178 else
179 {
180 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
181 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
182 }
183
184 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
185 {
186 Log(("The CPU doesn't support MMX!\n"));
187 return VERR_UNSUPPORTED_CPU;
188 }
189 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
190 {
191 Log(("The CPU doesn't support TSC!\n"));
192 return VERR_UNSUPPORTED_CPU;
193 }
194 /* Bogus on AMD? */
195 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
196 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
197
198 /*
199 * Detech the host CPU vendor.
200 * (The guest CPU vendor is re-detected later on.)
201 */
202 uint32_t uEAX, uEBX, uECX, uEDX;
203 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
204 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
205 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
206
207 /*
208 * Setup hypervisor startup values.
209 */
210
211 /*
212 * Register saved state data item.
213 */
214 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
215 NULL, cpumR3LiveExec, NULL,
216 NULL, cpumR3SaveExec, NULL,
217 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
218 if (RT_FAILURE(rc))
219 return rc;
220
221 /*
222 * Register info handlers.
223 */
224 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
225 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
226 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
227 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
228 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
229 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
230
231 /*
232 * Initialize the Guest CPUID state.
233 */
234 rc = cpumR3CpuIdInit(pVM);
235 if (RT_FAILURE(rc))
236 return rc;
237 CPUMR3Reset(pVM);
238 return VINF_SUCCESS;
239}
240
241
242/**
243 * Initializes the per-VCPU CPUM.
244 *
245 * @returns VBox status code.
246 * @param pVM The VM to operate on.
247 */
248VMMR3DECL(int) CPUMR3InitCPU(PVM pVM)
249{
250 LogFlow(("CPUMR3InitCPU\n"));
251 return VINF_SUCCESS;
252}
253
254
255/**
256 * Detect the CPU vendor give n the
257 *
258 * @returns The vendor.
259 * @param uEAX EAX from CPUID(0).
260 * @param uEBX EBX from CPUID(0).
261 * @param uECX ECX from CPUID(0).
262 * @param uEDX EDX from CPUID(0).
263 */
264static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
265{
266 if ( uEAX >= 1
267 && uEBX == X86_CPUID_VENDOR_AMD_EBX
268 && uECX == X86_CPUID_VENDOR_AMD_ECX
269 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
270 return CPUMCPUVENDOR_AMD;
271
272 if ( uEAX >= 1
273 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
274 && uECX == X86_CPUID_VENDOR_INTEL_ECX
275 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
276 return CPUMCPUVENDOR_INTEL;
277
278 /** @todo detect the other buggers... */
279 return CPUMCPUVENDOR_UNKNOWN;
280}
281
282
283/**
284 * Fetches overrides for a CPUID leaf.
285 *
286 * @returns VBox status code.
287 * @param pLeaf The leaf to load the overrides into.
288 * @param pCfgNode The CFGM node containing the overrides
289 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
290 * @param iLeaf The CPUID leaf number.
291 */
292static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
293{
294 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
295 if (pLeafNode)
296 {
297 uint32_t u32;
298 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
299 if (RT_SUCCESS(rc))
300 pLeaf->eax = u32;
301 else
302 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
303
304 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
305 if (RT_SUCCESS(rc))
306 pLeaf->ebx = u32;
307 else
308 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
309
310 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
311 if (RT_SUCCESS(rc))
312 pLeaf->ecx = u32;
313 else
314 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
315
316 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
317 if (RT_SUCCESS(rc))
318 pLeaf->edx = u32;
319 else
320 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
321
322 }
323 return VINF_SUCCESS;
324}
325
326
327/**
328 * Load the overrides for a set of CPUID leafs.
329 *
330 * @returns VBox status code.
331 * @param paLeafs The leaf array.
332 * @param cLeafs The number of leafs.
333 * @param uStart The start leaf number.
334 * @param pCfgNode The CFGM node containing the overrides
335 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
336 */
337static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeafs, uint32_t cLeafs, PCFGMNODE pCfgNode)
338{
339 for (uint32_t i = 0; i < cLeafs; i++)
340 {
341 int rc = cpumR3CpuIdFetchLeafOverride(&paLeafs[i], pCfgNode, uStart + i);
342 if (RT_FAILURE(rc))
343 return rc;
344 }
345
346 return VINF_SUCCESS;
347}
348
349/**
350 * Init a set of host CPUID leafs.
351 *
352 * @returns VBox status code.
353 * @param paLeafs The leaf array.
354 * @param cLeafs The number of leafs.
355 * @param uStart The start leaf number.
356 * @param pCfgNode The /CPUM/HostCPUID/ node.
357 */
358static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeafs, uint32_t cLeafs, PCFGMNODE pCfgNode)
359{
360 /* Using the ECX variant for all of them can't hurt... */
361 for (uint32_t i = 0; i < cLeafs; i++)
362 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeafs[i].eax, &paLeafs[i].ebx, &paLeafs[i].ecx, &paLeafs[i].edx);
363
364 /* Load CPUID leaf override; we currently don't care if the caller
365 specifies features the host CPU doesn't support. */
366 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeafs, cLeafs, pCfgNode);
367}
368
369
370/**
371 * Initializes the emulated CPU's cpuid information.
372 *
373 * @returns VBox status code.
374 * @param pVM The VM to operate on.
375 */
376static int cpumR3CpuIdInit(PVM pVM)
377{
378 PCPUM pCPUM = &pVM->cpum.s;
379 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
380 uint32_t i;
381 int rc;
382
383 /*
384 * Get the host CPUIDs and redetect the guest CPU vendor (could've been overridden).
385 */
386 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
387 * Overrides the host CPUID leaf values used for calculating the guest CPUID
388 * leafs. This can be used to preserve the CPUID values when moving a VM to
389 * a different machine. Another use is restricting (or extending) the
390 * feature set exposed to the guest. */
391 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
392 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
393 AssertRCReturn(rc, rc);
394 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
395 AssertRCReturn(rc, rc);
396 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
397 AssertRCReturn(rc, rc);
398
399 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
400 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
401
402 /*
403 * Only report features we can support.
404 */
405 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
406 | X86_CPUID_FEATURE_EDX_VME
407 | X86_CPUID_FEATURE_EDX_DE
408 | X86_CPUID_FEATURE_EDX_PSE
409 | X86_CPUID_FEATURE_EDX_TSC
410 | X86_CPUID_FEATURE_EDX_MSR
411 //| X86_CPUID_FEATURE_EDX_PAE - not implemented yet.
412 | X86_CPUID_FEATURE_EDX_MCE
413 | X86_CPUID_FEATURE_EDX_CX8
414 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
415 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
416 //| X86_CPUID_FEATURE_EDX_SEP
417 | X86_CPUID_FEATURE_EDX_MTRR
418 | X86_CPUID_FEATURE_EDX_PGE
419 | X86_CPUID_FEATURE_EDX_MCA
420 | X86_CPUID_FEATURE_EDX_CMOV
421 | X86_CPUID_FEATURE_EDX_PAT
422 | X86_CPUID_FEATURE_EDX_PSE36
423 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
424 | X86_CPUID_FEATURE_EDX_CLFSH
425 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
426 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
427 | X86_CPUID_FEATURE_EDX_MMX
428 | X86_CPUID_FEATURE_EDX_FXSR
429 | X86_CPUID_FEATURE_EDX_SSE
430 | X86_CPUID_FEATURE_EDX_SSE2
431 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
432 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
433 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
434 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
435 | 0;
436 pCPUM->aGuestCpuIdStd[1].ecx &= 0
437 | X86_CPUID_FEATURE_ECX_SSE3
438 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
439 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
440 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
441 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
442 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
443 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
444 | X86_CPUID_FEATURE_ECX_SSSE3
445 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
446 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
447 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
448 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
449 /* ECX Bit 21 - x2APIC support - not yet. */
450 // | X86_CPUID_FEATURE_ECX_X2APIC
451 /* ECX Bit 23 - POPCNT instruction. */
452 //| X86_CPUID_FEATURE_ECX_POPCNT
453 | 0;
454
455 /* ASSUMES that this is ALWAYS the AMD define feature set if present. */
456 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
457 | X86_CPUID_AMD_FEATURE_EDX_VME
458 | X86_CPUID_AMD_FEATURE_EDX_DE
459 | X86_CPUID_AMD_FEATURE_EDX_PSE
460 | X86_CPUID_AMD_FEATURE_EDX_TSC
461 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
462 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
463 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
464 | X86_CPUID_AMD_FEATURE_EDX_CX8
465 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
466 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
467 //| X86_CPUID_AMD_FEATURE_EDX_SEP
468 | X86_CPUID_AMD_FEATURE_EDX_MTRR
469 | X86_CPUID_AMD_FEATURE_EDX_PGE
470 | X86_CPUID_AMD_FEATURE_EDX_MCA
471 | X86_CPUID_AMD_FEATURE_EDX_CMOV
472 | X86_CPUID_AMD_FEATURE_EDX_PAT
473 | X86_CPUID_AMD_FEATURE_EDX_PSE36
474 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
475 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
476 | X86_CPUID_AMD_FEATURE_EDX_MMX
477 | X86_CPUID_AMD_FEATURE_EDX_FXSR
478 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
479 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
480 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
481 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
482 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
483 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
484 | 0;
485 pCPUM->aGuestCpuIdExt[1].ecx &= 0
486 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
487 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
488 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
489 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
490 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
491 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
492 //| X86_CPUID_AMD_FEATURE_ECX_ABM
493 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
494 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
495 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
496 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
497 //| X86_CPUID_AMD_FEATURE_ECX_IBS
498 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
499 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
500 //| X86_CPUID_AMD_FEATURE_ECX_WDT
501 | 0;
502
503 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false); AssertRCReturn(rc, rc);
504 if (pCPUM->fSyntheticCpu)
505 {
506 const char szVendor[13] = "VirtualBox ";
507 const char szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
508
509 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
510
511 /* Limit the nr of standard leaves; 5 for monitor/mwait */
512 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
513
514 /* 0: Vendor */
515 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)szVendor)[0];
516 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)szVendor)[2];
517 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)szVendor)[1];
518
519 /* 1.eax: Version information. family : model : stepping */
520 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
521
522 /* Leaves 2 - 4 are Intel only - zero them out */
523 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
524 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
525 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
526
527 /* Leaf 5 = monitor/mwait */
528
529 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
530 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
531 /* AMD only - set to zero. */
532 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
533
534 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
535 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
536
537 /* 0x800000002-4: Processor Name String Identifier. */
538 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)szProcessor)[0];
539 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)szProcessor)[1];
540 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)szProcessor)[2];
541 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)szProcessor)[3];
542 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)szProcessor)[4];
543 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)szProcessor)[5];
544 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)szProcessor)[6];
545 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)szProcessor)[7];
546 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)szProcessor)[8];
547 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)szProcessor)[9];
548 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)szProcessor)[10];
549 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)szProcessor)[11];
550
551 /* 0x800000005-7 - reserved -> zero */
552 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
553 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
554 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
555
556 /* 0x800000008: only the max virtual and physical address size. */
557 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
558 }
559
560 /*
561 * Hide HTT, multicode, SMP, whatever.
562 * (APIC-ID := 0 and #LogCpus := 0)
563 */
564 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
565#ifdef VBOX_WITH_MULTI_CORE
566 if (pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC)
567 {
568 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
569 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
570 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
571 }
572#endif
573
574 /* Cpuid 2:
575 * Intel: Cache and TLB information
576 * AMD: Reserved
577 * Safe to expose
578 */
579
580 /* Cpuid 3:
581 * Intel: EAX, EBX - reserved
582 * ECX, EDX - Processor Serial Number if available, otherwise reserved
583 * AMD: Reserved
584 * Safe to expose
585 */
586 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
587 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
588
589 /* Cpuid 4:
590 * Intel: Deterministic Cache Parameters Leaf
591 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
592 * AMD: Reserved
593 * Safe to expose, except for EAX:
594 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
595 * Bits 31-26: Maximum number of processor cores in this physical package**
596 * Note: These SMP values are constant regardless of ECX
597 */
598 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
599 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
600#ifdef VBOX_WITH_MULTI_CORE
601 if ( pVM->cCpus > 1
602 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
603 {
604 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
605 /* One logical processor with possibly multiple cores. */
606 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
607 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
608 }
609#endif
610
611 /* Cpuid 5: Monitor/mwait Leaf
612 * Intel: ECX, EDX - reserved
613 * EAX, EBX - Smallest and largest monitor line size
614 * AMD: EDX - reserved
615 * EAX, EBX - Smallest and largest monitor line size
616 * ECX - extensions (ignored for now)
617 * Safe to expose
618 */
619 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
620 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
621
622 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
623 /** @cfgm{/CPUM/MWaitExtensions, boolean, false}
624 * Expose MWAIT extended features to the guest.
625 * For now we expose just MWAIT break on interrupt feature (bit 1)
626 */
627 bool fMWaitExtensions;
628 rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false); AssertRCReturn(rc, rc);
629 if (fMWaitExtensions)
630 pCPUM->aGuestCpuIdStd[5].ecx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
631
632 /*
633 * Determine the default.
634 *
635 * Intel returns values of the highest standard function, while AMD
636 * returns zeros. VIA on the other hand seems to returning nothing or
637 * perhaps some random garbage, we don't try to duplicate this behavior.
638 */
639 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10,
640 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
641 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
642
643 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
644 * Safe to pass on to the guest.
645 *
646 * Intel: 0x800000005 reserved
647 * 0x800000006 L2 cache information
648 * AMD: 0x800000005 L1 cache information
649 * 0x800000006 L2/L3 cache information
650 */
651
652 /* Cpuid 0x800000007:
653 * AMD: EAX, EBX, ECX - reserved
654 * EDX: Advanced Power Management Information
655 * Intel: Reserved
656 */
657 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
658 {
659 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
660
661 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
662
663 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
664 {
665 /* Only expose the TSC invariant capability bit to the guest. */
666 pCPUM->aGuestCpuIdExt[7].edx &= 0
667 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
668 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
669 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
670 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
671 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
672 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
673 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
674 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
675#if 1
676 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer Linux kernels blindly assume
677 * that the AMD performance counters work if this is set for 64 bits guests. (can't really find a CPUID feature bit for them though)
678 */
679#else
680 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
681#endif
682 | 0;
683 }
684 else
685 pCPUM->aGuestCpuIdExt[7].edx = 0;
686 }
687
688 /* Cpuid 0x800000008:
689 * AMD: EBX, EDX - reserved
690 * EAX: Virtual/Physical address Size
691 * ECX: Number of cores + APICIdCoreIdSize
692 * Intel: EAX: Virtual/Physical address Size
693 * EBX, ECX, EDX - reserved
694 */
695 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
696 {
697 /* Only expose the virtual and physical address sizes to the guest. (EAX completely) */
698 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
699 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
700 * NC (0-7) Number of cores; 0 equals 1 core */
701 pCPUM->aGuestCpuIdExt[8].ecx = 0;
702#ifdef VBOX_WITH_MULTI_CORE
703 if ( pVM->cCpus > 1
704 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
705 {
706 /* Legacy method to determine the number of cores. */
707 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
708 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
709
710 }
711#endif
712 }
713
714 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
715 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
716 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
717 * This option corrsponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
718 */
719 bool fNt4LeafLimit;
720 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
721 if (fNt4LeafLimit)
722 pCPUM->aGuestCpuIdStd[0].eax = 3;
723
724 /*
725 * Limit it the number of entries and fill the remaining with the defaults.
726 *
727 * The limits are masking off stuff about power saving and similar, this
728 * is perhaps a bit crudely done as there is probably some relatively harmless
729 * info too in these leaves (like words about having a constant TSC).
730 */
731 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
732 pCPUM->aGuestCpuIdStd[0].eax = 5;
733
734 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
735 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
736
737 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
738 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
739 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
740 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
741 : 0;
742 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
743 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
744
745 /*
746 * Centaur stuff (VIA).
747 *
748 * The important part here (we think) is to make sure the 0xc0000000
749 * function returns 0xc0000001. As for the features, we don't currently
750 * let on about any of those... 0xc0000002 seems to be some
751 * temperature/hz/++ stuff, include it as well (static).
752 */
753 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
754 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
755 {
756 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
757 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
758 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
759 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
760 i++)
761 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
762 }
763 else
764 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
765 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
766
767
768 /*
769 * Load CPUID overrides from configuration.
770 * Note: Kind of redundant now, but allows unchanged overrides
771 */
772 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
773 * Overrides the CPUID leaf values. */
774 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
775 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
776 AssertRCReturn(rc, rc);
777 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
778 AssertRCReturn(rc, rc);
779 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
780 AssertRCReturn(rc, rc);
781
782 /*
783 * Check if PAE was explicitely enabled by the user.
784 */
785 bool fEnable;
786 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
787 if (fEnable)
788 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
789
790 /*
791 * Log the cpuid and we're good.
792 */
793 RTCPUSET OnlineSet;
794 LogRel(("Logical host processors: %d, processor active mask: %016RX64\n",
795 (int)RTMpGetCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
796 LogRel(("************************* CPUID dump ************************\n"));
797 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
798 LogRel(("\n"));
799 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
800 LogRel(("******************** End of CPUID dump **********************\n"));
801 return VINF_SUCCESS;
802}
803
804
805
806
807/**
808 * Applies relocations to data and code managed by this
809 * component. This function will be called at init and
810 * whenever the VMM need to relocate it self inside the GC.
811 *
812 * The CPUM will update the addresses used by the switcher.
813 *
814 * @param pVM The VM.
815 */
816VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
817{
818 LogFlow(("CPUMR3Relocate\n"));
819 for (VMCPUID i = 0; i < pVM->cCpus; i++)
820 {
821 /*
822 * Switcher pointers.
823 */
824 PVMCPU pVCpu = &pVM->aCpus[i];
825 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
826 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
827
828 }
829}
830
831
832/**
833 * Apply late CPUM property changes based on the fHWVirtEx setting
834 *
835 * @param pVM The VM to operate on.
836 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
837 */
838VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
839{
840 /*
841 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
842 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
843 * of processors from (cpuid(4).eax >> 26) + 1.
844 *
845 * Note: this code is obsolete, but let's keep it here for reference.
846 * Purpose is valid when we artifically cap the max std id to less than 4.
847 */
848 if (!fHWVirtExEnabled)
849 {
850 Assert(pVM->cpum.s.aGuestCpuIdStd[4].eax == 0);
851 pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
852 }
853}
854
855/**
856 * Terminates the CPUM.
857 *
858 * Termination means cleaning up and freeing all resources,
859 * the VM it self is at this point powered off or suspended.
860 *
861 * @returns VBox status code.
862 * @param pVM The VM to operate on.
863 */
864VMMR3DECL(int) CPUMR3Term(PVM pVM)
865{
866 CPUMR3TermCPU(pVM);
867 return 0;
868}
869
870
871/**
872 * Terminates the per-VCPU CPUM.
873 *
874 * Termination means cleaning up and freeing all resources,
875 * the VM it self is at this point powered off or suspended.
876 *
877 * @returns VBox status code.
878 * @param pVM The VM to operate on.
879 */
880VMMR3DECL(int) CPUMR3TermCPU(PVM pVM)
881{
882#ifdef VBOX_WITH_CRASHDUMP_MAGIC
883 for (VMCPUID i = 0; i < pVM->cCpus; i++)
884 {
885 PVMCPU pVCpu = &pVM->aCpus[i];
886 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
887
888 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
889 pVCpu->cpum.s.uMagic = 0;
890 pCtx->dr[5] = 0;
891 }
892#endif
893 return 0;
894}
895
896
897/**
898 * Resets a virtual CPU.
899 *
900 * Used by CPUMR3Reset and CPU hot plugging.
901 *
902 * @param pVCpu The virtual CPU handle.
903 */
904VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
905{
906 /** @todo anything different for VCPU > 0? */
907 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
908
909 /*
910 * Initialize everything to ZERO first.
911 */
912 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
913 memset(pCtx, 0, sizeof(*pCtx));
914 pVCpu->cpum.s.fUseFlags = fUseFlags;
915
916 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
917 pCtx->eip = 0x0000fff0;
918 pCtx->edx = 0x00000600; /* P6 processor */
919 pCtx->eflags.Bits.u1Reserved0 = 1;
920
921 pCtx->cs = 0xf000;
922 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
923 pCtx->csHid.u32Limit = 0x0000ffff;
924 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
925 pCtx->csHid.Attr.n.u1Present = 1;
926 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
927
928 pCtx->dsHid.u32Limit = 0x0000ffff;
929 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
930 pCtx->dsHid.Attr.n.u1Present = 1;
931 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
932
933 pCtx->esHid.u32Limit = 0x0000ffff;
934 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
935 pCtx->esHid.Attr.n.u1Present = 1;
936 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
937
938 pCtx->fsHid.u32Limit = 0x0000ffff;
939 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
940 pCtx->fsHid.Attr.n.u1Present = 1;
941 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
942
943 pCtx->gsHid.u32Limit = 0x0000ffff;
944 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
945 pCtx->gsHid.Attr.n.u1Present = 1;
946 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
947
948 pCtx->ssHid.u32Limit = 0x0000ffff;
949 pCtx->ssHid.Attr.n.u1Present = 1;
950 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
951 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
952
953 pCtx->idtr.cbIdt = 0xffff;
954 pCtx->gdtr.cbGdt = 0xffff;
955
956 pCtx->ldtrHid.u32Limit = 0xffff;
957 pCtx->ldtrHid.Attr.n.u1Present = 1;
958 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
959
960 pCtx->trHid.u32Limit = 0xffff;
961 pCtx->trHid.Attr.n.u1Present = 1;
962 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
963
964 pCtx->dr[6] = X86_DR6_INIT_VAL;
965 pCtx->dr[7] = X86_DR7_INIT_VAL;
966
967 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
968 pCtx->fpu.FCW = 0x37f;
969
970 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
971 pCtx->fpu.MXCSR = 0x1F80;
972
973 /* Init PAT MSR */
974 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
975
976 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
977 * The Intel docs don't mention it.
978 */
979 pCtx->msrEFER = 0;
980}
981
982
983/**
984 * Resets the CPU.
985 *
986 * @returns VINF_SUCCESS.
987 * @param pVM The VM handle.
988 */
989VMMR3DECL(void) CPUMR3Reset(PVM pVM)
990{
991 for (VMCPUID i = 0; i < pVM->cCpus; i++)
992 {
993 CPUMR3ResetCpu(&pVM->aCpus[i]);
994
995#ifdef VBOX_WITH_CRASHDUMP_MAGIC
996 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
997
998 /* Magic marker for searching in crash dumps. */
999 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1000 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1001 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1002#endif
1003 }
1004}
1005
1006
1007/**
1008 * Called both in pass 0 and the final pass.
1009 *
1010 * @param pVM The VM handle.
1011 * @param pSSM The saved state handle.
1012 */
1013static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
1014{
1015 /*
1016 * Save all the CPU ID leaves here so we can check them for compatability
1017 * upon loading.
1018 */
1019 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
1020 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
1021
1022 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1023 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1024
1025 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1026 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1027
1028 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1029
1030 /*
1031 * Save a good portion of the raw CPU IDs as well as they may come in
1032 * handy when validating features for raw mode.
1033 */
1034 CPUMCPUID aRawStd[16];
1035 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1036 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1037 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1038 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1039
1040 CPUMCPUID aRawExt[32];
1041 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1042 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1043 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1044 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1045}
1046
1047
1048/**
1049 * Loads the CPU ID leaves saved by pass 0.
1050 *
1051 * @returns VBox status code.
1052 * @param pVM The VM handle.
1053 * @param pSSM The saved state handle.
1054 * @param uVersion The format version.
1055 */
1056static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1057{
1058 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1059
1060 /*
1061 * Define a bunch of macros for simplifying the code.
1062 */
1063 /* Generic expression + failure message. */
1064#define CPUID_CHECK_RET(expr, fmt) \
1065 do { \
1066 if (!(expr)) \
1067 { \
1068 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadict macros sucks */ \
1069 if (fStrictCpuIdChecks) \
1070 { \
1071 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1072 RTStrFree(pszMsg); \
1073 return rcCpuid; \
1074 } \
1075 LogRel(("CPUM: %s\n", pszMsg)); \
1076 RTStrFree(pszMsg); \
1077 } \
1078 } while (0)
1079#define CPUID_CHECK_WRN(expr, fmt) \
1080 do { \
1081 if (!(expr)) \
1082 LogRel(fmt); \
1083 } while (0)
1084
1085 /* For comparing two values and bitch if they differs. */
1086#define CPUID_CHECK2_RET(what, host, saved) \
1087 do { \
1088 if ((host) != (saved)) \
1089 { \
1090 if (fStrictCpuIdChecks) \
1091 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1092 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1093 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1094 } \
1095 } while (0)
1096#define CPUID_CHECK2_WRN(what, host, saved) \
1097 do { \
1098 if ((host) != (saved)) \
1099 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1100 } while (0)
1101
1102 /* For checking raw cpu features (raw mode). */
1103#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1104 do { \
1105 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1106 { \
1107 if (fStrictCpuIdChecks) \
1108 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1109 N_(#bit " mismatch: host=%d saved=%d"), \
1110 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1111 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1112 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1113 } \
1114 } while (0)
1115#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1116 do { \
1117 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1118 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1119 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1120 } while (0)
1121#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1122
1123 /* For checking guest features. */
1124#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1125 do { \
1126 if ( (aGuestCpuId##set [1].reg & bit) \
1127 && !(aHostRaw##set [1].reg & bit) \
1128 && !(aHostOverride##set [1].reg & bit) \
1129 && !(aGuestOverride##set [1].reg & bit) \
1130 ) \
1131 { \
1132 if (fStrictCpuIdChecks) \
1133 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1134 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1135 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1136 } \
1137 } while (0)
1138#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1139 do { \
1140 if ( (aGuestCpuId##set [1].reg & bit) \
1141 && !(aHostRaw##set [1].reg & bit) \
1142 && !(aHostOverride##set [1].reg & bit) \
1143 && !(aGuestOverride##set [1].reg & bit) \
1144 ) \
1145 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1146 } while (0)
1147#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1148 do { \
1149 if ( (aGuestCpuId##set [1].reg & bit) \
1150 && !(aHostRaw##set [1].reg & bit) \
1151 && !(aHostOverride##set [1].reg & bit) \
1152 && !(aGuestOverride##set [1].reg & bit) \
1153 ) \
1154 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1155 } while (0)
1156#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1157
1158 /* For checking guest features if AMD guest CPU. */
1159#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1160 do { \
1161 if ( (aGuestCpuId##set [1].reg & bit) \
1162 && fGuestAmd \
1163 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1164 && !(aHostOverride##set [1].reg & bit) \
1165 && !(aGuestOverride##set [1].reg & bit) \
1166 ) \
1167 { \
1168 if (fStrictCpuIdChecks) \
1169 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1170 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1171 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1172 } \
1173 } while (0)
1174#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1175 do { \
1176 if ( (aGuestCpuId##set [1].reg & bit) \
1177 && fGuestAmd \
1178 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1179 && !(aHostOverride##set [1].reg & bit) \
1180 && !(aGuestOverride##set [1].reg & bit) \
1181 ) \
1182 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1183 } while (0)
1184#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1185 do { \
1186 if ( (aGuestCpuId##set [1].reg & bit) \
1187 && fGuestAmd \
1188 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1189 && !(aHostOverride##set [1].reg & bit) \
1190 && !(aGuestOverride##set [1].reg & bit) \
1191 ) \
1192 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1193 } while (0)
1194#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1195
1196 /* For checking AMD features which have a corresponding bit in the standard
1197 range. (Intel defines very few bits in the extended feature sets.) */
1198#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1199 do { \
1200 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1201 && !(fHostAmd \
1202 ? aHostRawExt[1].reg & (ExtBit) \
1203 : aHostRawStd[1].reg & (StdBit)) \
1204 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1205 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1206 ) \
1207 { \
1208 if (fStrictCpuIdChecks) \
1209 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1210 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1211 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1212 } \
1213 } while (0)
1214#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1215 do { \
1216 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1217 && !(fHostAmd \
1218 ? aHostRawExt[1].reg & (ExtBit) \
1219 : aHostRawStd[1].reg & (StdBit)) \
1220 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1221 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1222 ) \
1223 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1224 } while (0)
1225#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1226 do { \
1227 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1228 && !(fHostAmd \
1229 ? aHostRawExt[1].reg & (ExtBit) \
1230 : aHostRawStd[1].reg & (StdBit)) \
1231 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1232 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1233 ) \
1234 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1235 } while (0)
1236#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1237
1238 /*
1239 * Load them into stack buffers first.
1240 */
1241 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1242 uint32_t cGuestCpuIdStd;
1243 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1244 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1245 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1246 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1247
1248 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1249 uint32_t cGuestCpuIdExt;
1250 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1251 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1252 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1253 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1254
1255 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1256 uint32_t cGuestCpuIdCentaur;
1257 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1258 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1259 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1260 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1261
1262 CPUMCPUID GuestCpuIdDef;
1263 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1264 AssertRCReturn(rc, rc);
1265
1266 CPUMCPUID aRawStd[16];
1267 uint32_t cRawStd;
1268 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1269 if (cRawStd > RT_ELEMENTS(aRawStd))
1270 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1271 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1272
1273 CPUMCPUID aRawExt[32];
1274 uint32_t cRawExt;
1275 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1276 if (cRawExt > RT_ELEMENTS(aRawExt))
1277 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1278 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1279 AssertRCReturn(rc, rc);
1280
1281 /*
1282 * Note that we support restoring less than the current amount of standard
1283 * leaves because we've been allowed more is newer version of VBox.
1284 *
1285 * So, pad new entries with the default.
1286 */
1287 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1288 aGuestCpuIdStd[i] = GuestCpuIdDef;
1289
1290 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1291 aGuestCpuIdExt[i] = GuestCpuIdDef;
1292
1293 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1294 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1295
1296 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1297 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1298
1299 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1300 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1301
1302 /*
1303 * Get the raw CPU IDs for the current host.
1304 */
1305 CPUMCPUID aHostRawStd[16];
1306 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1307 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1308
1309 CPUMCPUID aHostRawExt[32];
1310 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1311 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1312
1313 /*
1314 * Get the host and guest overrides so we don't reject the state because
1315 * some feature was enabled thru these interfaces.
1316 * Note! We currently only need the feature leafs, so skip rest.
1317 */
1318 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1319 CPUMCPUID aGuestOverrideStd[2];
1320 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1321 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1322
1323 CPUMCPUID aGuestOverrideExt[2];
1324 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1325 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1326
1327 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1328 CPUMCPUID aHostOverrideStd[2];
1329 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1330 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1331
1332 CPUMCPUID aHostOverrideExt[2];
1333 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1334 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1335
1336 /*
1337 * This can be skipped.
1338 */
1339 bool fStrictCpuIdChecks;
1340 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1341
1342
1343
1344 /*
1345 * For raw-mode we'll require that the CPUs are very similar since we don't
1346 * intercept CPUID instructions for user mode applications.
1347 */
1348 if (!HWACCMIsEnabled(pVM))
1349 {
1350 /* CPUID(0) */
1351 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1352 && aHostRawStd[0].ecx == aRawStd[0].ecx
1353 && aHostRawStd[0].edx == aRawStd[0].edx,
1354 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1355 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1356 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1357 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1358 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1359 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1360
1361 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1362
1363 /* CPUID(1).eax */
1364 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1365 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1366 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1367
1368 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1369 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1370 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1371
1372 /* CPUID(1).ecx */
1373 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1374 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1375 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1376 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1377 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1378 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1379 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1380 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1381 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1382 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1383 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1384 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1385 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1386 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1387 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1388 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1389 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1390 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1391 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1392 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1393 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1394 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1395 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1396 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1397 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1398 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1399 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1400 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1401 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1402 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1403 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1404 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1405
1406 /* CPUID(1).edx */
1407 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1408 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1409 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1410 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1411 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1412 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1413 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1414 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1415 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1416 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1417 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1418 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1419 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1420 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1421 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1422 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1423 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1424 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1425 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1426 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1427 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1428 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1429 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1430 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1431 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1432 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1433 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1434 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1435 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1436 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1437 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1438 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1439
1440 /* CPUID(2) - config, mostly about caches. ignore. */
1441 /* CPUID(3) - processor serial number. ignore. */
1442 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1443 /* CPUID(5) - mwait/monitor config. ignore. */
1444 /* CPUID(6) - power management. ignore. */
1445 /* CPUID(7) - ???. ignore. */
1446 /* CPUID(8) - ???. ignore. */
1447 /* CPUID(9) - DCA. ignore for now. */
1448 /* CPUID(a) - PeMo info. ignore for now. */
1449 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1450
1451 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1452 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1453 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1454 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1455 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1456 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1457 {
1458 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1459 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1460 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1461 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1462 }
1463
1464 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1465 Note! Intel have/is marking many of the fields here as reserved. We
1466 will verify them as if it's an AMD CPU. */
1467 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1468 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1469 (N_("Extended leafs was present on saved state host, but is missing on the current\n")));
1470 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1471 {
1472 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1473 && aHostRawExt[0].ecx == aRawExt[0].ecx
1474 && aHostRawExt[0].edx == aRawExt[0].edx,
1475 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1476 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1477 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1478 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1479
1480 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1481 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1482 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1483 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1484 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1485 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1486
1487 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1488 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1489 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1490 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1491
1492 /* CPUID(0x80000001).ecx */
1493 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1494 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1495 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1496 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1497 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1498 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1499 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1500 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1501 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1502 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1503 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1504 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1505 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1506 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1507 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1508 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1509 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1510 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1511 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1512 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1513 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1514 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1515 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1516 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1517 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1518 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1519 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1520 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1521 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1522 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1523 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1524 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1525
1526 /* CPUID(0x80000001).edx */
1527 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1528 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1529 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1530 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1531 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1532 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1533 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1534 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1535 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1536 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1537 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1538 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1539 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1540 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1541 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1542 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1543 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1544 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1545 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1546 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1547 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1548 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1549 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1550 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1551 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1552 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1553 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1554 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1555 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1556 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1557 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1558 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1559
1560 /** @todo verify the rest as well. */
1561 }
1562 }
1563
1564
1565
1566 /*
1567 * Verify that we can support the features already exposed to the guest on
1568 * this host.
1569 *
1570 * Most of the features we're emulating requires intercepting instruction
1571 * and doing it the slow way, so there is no need to warn when they aren't
1572 * present in the host CPU. Thus we use IGN instead of EMU on these.
1573 *
1574 * Trailing comments:
1575 * "EMU" - Possible to emulate, could be lots of work and very slow.
1576 * "EMU?" - Can this be emulated?
1577 */
1578 /* CPUID(1).ecx */
1579 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1580 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1581 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1582 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1583 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1584 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1585 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1586 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1587 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1588 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1589 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1590 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1591 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1592 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1593 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1594 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1595 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1596 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1597 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1598 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1599 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1600 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1601 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1602 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1603 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1604 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1605 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1606 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1607 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1608 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1609 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1610 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1611
1612 /* CPUID(1).edx */
1613 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1614 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1615 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1616 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1617 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1618 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1619 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1620 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1621 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1622 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1623 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1624 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1625 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1626 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1627 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1628 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1629 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1630 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1631 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1632 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1633 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1634 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1635 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1636 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1637 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1638 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1639 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1640 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1641 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1642 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1643 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1644 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1645
1646 /* CPUID(0x80000000). */
1647 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1648 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1649 {
1650 /** @todo deal with no 0x80000001 on the host. */
1651 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1652 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1653
1654 /* CPUID(0x80000001).ecx */
1655 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1656 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1657 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1658 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1659 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1660 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1661 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1662 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1663 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1664 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1665 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1666 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1667 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1668 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1669 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1670 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1671 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1672 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1673 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1674 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1675 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1676 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1677 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1678 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1679 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1680 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1681 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1682 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1683 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1684 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1685 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1686 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1687
1688 /* CPUID(0x80000001).edx */
1689 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1690 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1691 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1692 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1693 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1694 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1695 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1696 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1697 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1698 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1699 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1700 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1701 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1702 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1703 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1704 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1705 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1706 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1707 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1708 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1709 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1710 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1711 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1712 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1713 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1714 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1715 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1716 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1717 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1718 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1719 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1720 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1721 }
1722
1723 /*
1724 * We're good, commit the CPU ID leaves.
1725 */
1726 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1727 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1728 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1729 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1730
1731#undef CPUID_CHECK_RET
1732#undef CPUID_CHECK_WRN
1733#undef CPUID_CHECK2_RET
1734#undef CPUID_CHECK2_WRN
1735#undef CPUID_RAW_FEATURE_RET
1736#undef CPUID_RAW_FEATURE_WRN
1737#undef CPUID_RAW_FEATURE_IGN
1738#undef CPUID_GST_FEATURE_RET
1739#undef CPUID_GST_FEATURE_WRN
1740#undef CPUID_GST_FEATURE_EMU
1741#undef CPUID_GST_FEATURE_IGN
1742#undef CPUID_GST_FEATURE2_RET
1743#undef CPUID_GST_FEATURE2_WRN
1744#undef CPUID_GST_FEATURE2_EMU
1745#undef CPUID_GST_FEATURE2_IGN
1746#undef CPUID_GST_AMD_FEATURE_RET
1747#undef CPUID_GST_AMD_FEATURE_WRN
1748#undef CPUID_GST_AMD_FEATURE_EMU
1749#undef CPUID_GST_AMD_FEATURE_IGN
1750
1751 return VINF_SUCCESS;
1752}
1753
1754
1755/**
1756 * Pass 0 live exec callback.
1757 *
1758 * @returns VINF_SSM_DONT_CALL_AGAIN.
1759 * @param pVM The VM handle.
1760 * @param pSSM The saved state handle.
1761 * @param uPass The pass (0).
1762 */
1763static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1764{
1765 AssertReturn(uPass == 0, VERR_INTERNAL_ERROR_4);
1766 cpumR3SaveCpuId(pVM, pSSM);
1767 return VINF_SSM_DONT_CALL_AGAIN;
1768}
1769
1770
1771/**
1772 * Execute state save operation.
1773 *
1774 * @returns VBox status code.
1775 * @param pVM VM Handle.
1776 * @param pSSM SSM operation handle.
1777 */
1778static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1779{
1780 /*
1781 * Save.
1782 */
1783 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1784 {
1785 PVMCPU pVCpu = &pVM->aCpus[i];
1786
1787 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1788 }
1789
1790 SSMR3PutU32(pSSM, pVM->cCpus);
1791 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1792 {
1793 PVMCPU pVCpu = &pVM->aCpus[i];
1794
1795 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1796 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1797 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1798 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
1799 }
1800
1801 cpumR3SaveCpuId(pVM, pSSM);
1802 return VINF_SUCCESS;
1803}
1804
1805
1806/**
1807 * Load a version 1.6 CPUMCTX structure.
1808 *
1809 * @returns VBox status code.
1810 * @param pVM VM Handle.
1811 * @param pCpumctx16 Version 1.6 CPUMCTX
1812 */
1813static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1814{
1815#define CPUMCTX16_LOADREG(RegName) \
1816 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1817
1818#define CPUMCTX16_LOADDRXREG(RegName) \
1819 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1820
1821#define CPUMCTX16_LOADHIDREG(RegName) \
1822 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1823 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1824 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1825
1826#define CPUMCTX16_LOADSEGREG(RegName) \
1827 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1828 CPUMCTX16_LOADHIDREG(RegName);
1829
1830 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1831
1832 CPUMCTX16_LOADREG(rax);
1833 CPUMCTX16_LOADREG(rbx);
1834 CPUMCTX16_LOADREG(rcx);
1835 CPUMCTX16_LOADREG(rdx);
1836 CPUMCTX16_LOADREG(rdi);
1837 CPUMCTX16_LOADREG(rsi);
1838 CPUMCTX16_LOADREG(rbp);
1839 CPUMCTX16_LOADREG(esp);
1840 CPUMCTX16_LOADREG(rip);
1841 CPUMCTX16_LOADREG(rflags);
1842
1843 CPUMCTX16_LOADSEGREG(cs);
1844 CPUMCTX16_LOADSEGREG(ds);
1845 CPUMCTX16_LOADSEGREG(es);
1846 CPUMCTX16_LOADSEGREG(fs);
1847 CPUMCTX16_LOADSEGREG(gs);
1848 CPUMCTX16_LOADSEGREG(ss);
1849
1850 CPUMCTX16_LOADREG(r8);
1851 CPUMCTX16_LOADREG(r9);
1852 CPUMCTX16_LOADREG(r10);
1853 CPUMCTX16_LOADREG(r11);
1854 CPUMCTX16_LOADREG(r12);
1855 CPUMCTX16_LOADREG(r13);
1856 CPUMCTX16_LOADREG(r14);
1857 CPUMCTX16_LOADREG(r15);
1858
1859 CPUMCTX16_LOADREG(cr0);
1860 CPUMCTX16_LOADREG(cr2);
1861 CPUMCTX16_LOADREG(cr3);
1862 CPUMCTX16_LOADREG(cr4);
1863
1864 CPUMCTX16_LOADDRXREG(0);
1865 CPUMCTX16_LOADDRXREG(1);
1866 CPUMCTX16_LOADDRXREG(2);
1867 CPUMCTX16_LOADDRXREG(3);
1868 CPUMCTX16_LOADDRXREG(4);
1869 CPUMCTX16_LOADDRXREG(5);
1870 CPUMCTX16_LOADDRXREG(6);
1871 CPUMCTX16_LOADDRXREG(7);
1872
1873 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
1874 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
1875 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
1876 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
1877
1878 CPUMCTX16_LOADREG(ldtr);
1879 CPUMCTX16_LOADREG(tr);
1880
1881 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
1882
1883 CPUMCTX16_LOADREG(msrEFER);
1884 CPUMCTX16_LOADREG(msrSTAR);
1885 CPUMCTX16_LOADREG(msrPAT);
1886 CPUMCTX16_LOADREG(msrLSTAR);
1887 CPUMCTX16_LOADREG(msrCSTAR);
1888 CPUMCTX16_LOADREG(msrSFMASK);
1889 CPUMCTX16_LOADREG(msrKERNELGSBASE);
1890
1891 CPUMCTX16_LOADHIDREG(ldtr);
1892 CPUMCTX16_LOADHIDREG(tr);
1893
1894#undef CPUMCTX16_LOADSEGREG
1895#undef CPUMCTX16_LOADHIDREG
1896#undef CPUMCTX16_LOADDRXREG
1897#undef CPUMCTX16_LOADREG
1898}
1899
1900
1901/**
1902 * @copydoc FNSSMINTLOADPREP
1903 */
1904static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
1905{
1906 pVM->cpum.s.fPendingRestore = true;
1907 return VINF_SUCCESS;
1908}
1909
1910
1911/**
1912 * @copydoc FNSSMINTLOADEXEC
1913 */
1914static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1915{
1916 /*
1917 * Validate version.
1918 */
1919 if ( uVersion != CPUM_SAVED_STATE_VERSION
1920 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1921 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1922 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1923 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1924 {
1925 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1926 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1927 }
1928
1929 if (uPass == SSM_PASS_FINAL)
1930 {
1931 /*
1932 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1933 * really old SSM file versions.)
1934 */
1935 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1936 SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1937 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1938 SSMR3SetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1939
1940 /*
1941 * Restore.
1942 */
1943 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1944 {
1945 PVMCPU pVCpu = &pVM->aCpus[i];
1946 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1947 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
1948
1949 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1950 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1951 pVCpu->cpum.s.Hyper.esp = uESP;
1952 }
1953
1954 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1955 {
1956 CPUMCTX_VER1_6 cpumctx16;
1957 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
1958 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
1959
1960 /* Save the old cpumctx state into the new one. */
1961 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
1962
1963 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
1964 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
1965 }
1966 else
1967 {
1968 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1969 {
1970 uint32_t cCpus;
1971 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1972 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1973 VERR_SSM_UNEXPECTED_DATA);
1974 }
1975 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1976 || pVM->cCpus == 1,
1977 ("cCpus=%u\n", pVM->cCpus),
1978 VERR_SSM_UNEXPECTED_DATA);
1979
1980 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1981 {
1982 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
1983 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
1984 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
1985 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
1986 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
1987 }
1988 }
1989 }
1990
1991 pVM->cpum.s.fPendingRestore = false;
1992
1993 /*
1994 * Guest CPUIDs.
1995 */
1996 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
1997 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
1998
1999 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
2000 * actually required. */
2001
2002 /*
2003 * Restore the CPUID leaves.
2004 *
2005 * Note that we support restoring less than the current amount of standard
2006 * leaves because we've been allowed more is newer version of VBox.
2007 */
2008 uint32_t cElements;
2009 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2010 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
2011 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2012 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
2013
2014 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2015 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
2016 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2017 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
2018
2019 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2020 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
2021 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2022 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2023
2024 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2025
2026 /*
2027 * Check that the basic cpuid id information is unchanged.
2028 */
2029 /** @todo we should check the 64 bits capabilities too! */
2030 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
2031 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2032 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2033 uint32_t au32CpuIdSaved[8];
2034 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2035 if (RT_SUCCESS(rc))
2036 {
2037 /* Ignore CPU stepping. */
2038 au32CpuId[4] &= 0xfffffff0;
2039 au32CpuIdSaved[4] &= 0xfffffff0;
2040
2041 /* Ignore APIC ID (AMD specs). */
2042 au32CpuId[5] &= ~0xff000000;
2043 au32CpuIdSaved[5] &= ~0xff000000;
2044
2045 /* Ignore the number of Logical CPUs (AMD specs). */
2046 au32CpuId[5] &= ~0x00ff0000;
2047 au32CpuIdSaved[5] &= ~0x00ff0000;
2048
2049 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2050 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2051 | X86_CPUID_FEATURE_ECX_VMX
2052 | X86_CPUID_FEATURE_ECX_SMX
2053 | X86_CPUID_FEATURE_ECX_EST
2054 | X86_CPUID_FEATURE_ECX_TM2
2055 | X86_CPUID_FEATURE_ECX_CNTXID
2056 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2057 | X86_CPUID_FEATURE_ECX_PDCM
2058 | X86_CPUID_FEATURE_ECX_DCA
2059 | X86_CPUID_FEATURE_ECX_X2APIC
2060 );
2061 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2062 | X86_CPUID_FEATURE_ECX_VMX
2063 | X86_CPUID_FEATURE_ECX_SMX
2064 | X86_CPUID_FEATURE_ECX_EST
2065 | X86_CPUID_FEATURE_ECX_TM2
2066 | X86_CPUID_FEATURE_ECX_CNTXID
2067 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2068 | X86_CPUID_FEATURE_ECX_PDCM
2069 | X86_CPUID_FEATURE_ECX_DCA
2070 | X86_CPUID_FEATURE_ECX_X2APIC
2071 );
2072
2073 /* Make sure we don't forget to update the masks when enabling
2074 * features in the future.
2075 */
2076 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2077 ( X86_CPUID_FEATURE_ECX_DTES64
2078 | X86_CPUID_FEATURE_ECX_VMX
2079 | X86_CPUID_FEATURE_ECX_SMX
2080 | X86_CPUID_FEATURE_ECX_EST
2081 | X86_CPUID_FEATURE_ECX_TM2
2082 | X86_CPUID_FEATURE_ECX_CNTXID
2083 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2084 | X86_CPUID_FEATURE_ECX_PDCM
2085 | X86_CPUID_FEATURE_ECX_DCA
2086 | X86_CPUID_FEATURE_ECX_X2APIC
2087 )));
2088 /* do the compare */
2089 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2090 {
2091 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2092 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2093 "Saved=%.*Rhxs\n"
2094 "Real =%.*Rhxs\n",
2095 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2096 sizeof(au32CpuId), au32CpuId));
2097 else
2098 {
2099 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2100 "Saved=%.*Rhxs\n"
2101 "Real =%.*Rhxs\n",
2102 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2103 sizeof(au32CpuId), au32CpuId));
2104 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2105 }
2106 }
2107 }
2108
2109 return rc;
2110}
2111
2112
2113/**
2114 * @copydoc FNSSMINTLOADPREP
2115 */
2116static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2117{
2118 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2119 return VINF_SUCCESS;
2120
2121 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2122 if (pVM->cpum.s.fPendingRestore)
2123 {
2124 LogRel(("CPUM: Missing state!\n"));
2125 return VERR_INTERNAL_ERROR_2;
2126 }
2127
2128 return VINF_SUCCESS;
2129}
2130
2131
2132/**
2133 * Checks if the CPUM state restore is still pending.
2134 *
2135 * @returns true / false.
2136 * @param pVM The VM handle.
2137 */
2138VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2139{
2140 return pVM->cpum.s.fPendingRestore;
2141}
2142
2143
2144/**
2145 * Formats the EFLAGS value into mnemonics.
2146 *
2147 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2148 * @param efl The EFLAGS value.
2149 */
2150static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2151{
2152 /*
2153 * Format the flags.
2154 */
2155 static const struct
2156 {
2157 const char *pszSet; const char *pszClear; uint32_t fFlag;
2158 } s_aFlags[] =
2159 {
2160 { "vip",NULL, X86_EFL_VIP },
2161 { "vif",NULL, X86_EFL_VIF },
2162 { "ac", NULL, X86_EFL_AC },
2163 { "vm", NULL, X86_EFL_VM },
2164 { "rf", NULL, X86_EFL_RF },
2165 { "nt", NULL, X86_EFL_NT },
2166 { "ov", "nv", X86_EFL_OF },
2167 { "dn", "up", X86_EFL_DF },
2168 { "ei", "di", X86_EFL_IF },
2169 { "tf", NULL, X86_EFL_TF },
2170 { "nt", "pl", X86_EFL_SF },
2171 { "nz", "zr", X86_EFL_ZF },
2172 { "ac", "na", X86_EFL_AF },
2173 { "po", "pe", X86_EFL_PF },
2174 { "cy", "nc", X86_EFL_CF },
2175 };
2176 char *psz = pszEFlags;
2177 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2178 {
2179 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2180 if (pszAdd)
2181 {
2182 strcpy(psz, pszAdd);
2183 psz += strlen(pszAdd);
2184 *psz++ = ' ';
2185 }
2186 }
2187 psz[-1] = '\0';
2188}
2189
2190
2191/**
2192 * Formats a full register dump.
2193 *
2194 * @param pVM VM Handle.
2195 * @param pCtx The context to format.
2196 * @param pCtxCore The context core to format.
2197 * @param pHlp Output functions.
2198 * @param enmType The dump type.
2199 * @param pszPrefix Register name prefix.
2200 */
2201static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
2202{
2203 /*
2204 * Format the EFLAGS.
2205 */
2206 uint32_t efl = pCtxCore->eflags.u32;
2207 char szEFlags[80];
2208 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2209
2210 /*
2211 * Format the registers.
2212 */
2213 switch (enmType)
2214 {
2215 case CPUMDUMPTYPE_TERSE:
2216 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2217 pHlp->pfnPrintf(pHlp,
2218 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2219 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2220 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2221 "%sr14=%016RX64 %sr15=%016RX64\n"
2222 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2223 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2224 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2225 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2226 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2227 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2228 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2229 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2230 else
2231 pHlp->pfnPrintf(pHlp,
2232 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2233 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2234 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2235 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2236 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2237 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2238 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2239 break;
2240
2241 case CPUMDUMPTYPE_DEFAULT:
2242 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2243 pHlp->pfnPrintf(pHlp,
2244 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2245 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2246 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2247 "%sr14=%016RX64 %sr15=%016RX64\n"
2248 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2249 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2250 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2251 ,
2252 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2253 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2254 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2255 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2256 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2257 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2258 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2259 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2260 else
2261 pHlp->pfnPrintf(pHlp,
2262 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2263 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2264 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2265 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2266 ,
2267 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2268 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2269 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2270 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2271 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2272 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2273 break;
2274
2275 case CPUMDUMPTYPE_VERBOSE:
2276 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2277 pHlp->pfnPrintf(pHlp,
2278 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2279 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2280 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2281 "%sr14=%016RX64 %sr15=%016RX64\n"
2282 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2283 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2284 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2285 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2286 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2287 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2288 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2289 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2290 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2291 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2292 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2293 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2294 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2295 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2296 ,
2297 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2298 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2299 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2300 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2301 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2302 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2303 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2304 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2305 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2306 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2307 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2308 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2309 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2310 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2311 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2312 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2313 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2314 else
2315 pHlp->pfnPrintf(pHlp,
2316 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2317 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2318 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2319 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2320 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2321 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2322 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2323 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2324 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2325 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2326 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2327 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2328 ,
2329 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2330 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2331 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2332 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2333 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2334 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2335 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2336 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2337 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2338 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2339 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2340 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2341
2342 pHlp->pfnPrintf(pHlp,
2343 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2344 "%sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2345 ,
2346 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2347 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2348 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
2349 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2350 );
2351 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2352 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2353 {
2354 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2355 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2356 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2357 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2358 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2359 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2360 /** @todo This isn't entirenly correct and needs more work! */
2361 pHlp->pfnPrintf(pHlp,
2362 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2363 pszPrefix, iST, pszPrefix, iFPR,
2364 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2365 uTag, chSign, iInteger, u64Fraction, uExponent);
2366 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2367 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2368 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2369 else
2370 pHlp->pfnPrintf(pHlp, "\n");
2371 }
2372 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2373 pHlp->pfnPrintf(pHlp,
2374 iXMM & 1
2375 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2376 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2377 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2378 pCtx->fpu.aXMM[iXMM].au32[3],
2379 pCtx->fpu.aXMM[iXMM].au32[2],
2380 pCtx->fpu.aXMM[iXMM].au32[1],
2381 pCtx->fpu.aXMM[iXMM].au32[0]);
2382 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2383 if (pCtx->fpu.au32RsrvdRest[i])
2384 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2385 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2386
2387 pHlp->pfnPrintf(pHlp,
2388 "%sEFER =%016RX64\n"
2389 "%sPAT =%016RX64\n"
2390 "%sSTAR =%016RX64\n"
2391 "%sCSTAR =%016RX64\n"
2392 "%sLSTAR =%016RX64\n"
2393 "%sSFMASK =%016RX64\n"
2394 "%sKERNELGSBASE =%016RX64\n",
2395 pszPrefix, pCtx->msrEFER,
2396 pszPrefix, pCtx->msrPAT,
2397 pszPrefix, pCtx->msrSTAR,
2398 pszPrefix, pCtx->msrCSTAR,
2399 pszPrefix, pCtx->msrLSTAR,
2400 pszPrefix, pCtx->msrSFMASK,
2401 pszPrefix, pCtx->msrKERNELGSBASE);
2402 break;
2403 }
2404}
2405
2406
2407/**
2408 * Display all cpu states and any other cpum info.
2409 *
2410 * @param pVM VM Handle.
2411 * @param pHlp The info helper functions.
2412 * @param pszArgs Arguments, ignored.
2413 */
2414static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2415{
2416 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2417 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2418 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2419 cpumR3InfoHost(pVM, pHlp, pszArgs);
2420}
2421
2422
2423/**
2424 * Parses the info argument.
2425 *
2426 * The argument starts with 'verbose', 'terse' or 'default' and then
2427 * continues with the comment string.
2428 *
2429 * @param pszArgs The pointer to the argument string.
2430 * @param penmType Where to store the dump type request.
2431 * @param ppszComment Where to store the pointer to the comment string.
2432 */
2433static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2434{
2435 if (!pszArgs)
2436 {
2437 *penmType = CPUMDUMPTYPE_DEFAULT;
2438 *ppszComment = "";
2439 }
2440 else
2441 {
2442 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2443 {
2444 pszArgs += 5;
2445 *penmType = CPUMDUMPTYPE_VERBOSE;
2446 }
2447 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2448 {
2449 pszArgs += 5;
2450 *penmType = CPUMDUMPTYPE_TERSE;
2451 }
2452 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2453 {
2454 pszArgs += 7;
2455 *penmType = CPUMDUMPTYPE_DEFAULT;
2456 }
2457 else
2458 *penmType = CPUMDUMPTYPE_DEFAULT;
2459 *ppszComment = RTStrStripL(pszArgs);
2460 }
2461}
2462
2463
2464/**
2465 * Display the guest cpu state.
2466 *
2467 * @param pVM VM Handle.
2468 * @param pHlp The info helper functions.
2469 * @param pszArgs Arguments, ignored.
2470 */
2471static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2472{
2473 CPUMDUMPTYPE enmType;
2474 const char *pszComment;
2475 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2476
2477 /* @todo SMP support! */
2478 PVMCPU pVCpu = VMMGetCpu(pVM);
2479 if (!pVCpu)
2480 pVCpu = &pVM->aCpus[0];
2481
2482 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2483
2484 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2485 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2486}
2487
2488
2489/**
2490 * Display the current guest instruction
2491 *
2492 * @param pVM VM Handle.
2493 * @param pHlp The info helper functions.
2494 * @param pszArgs Arguments, ignored.
2495 */
2496static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2497{
2498 char szInstruction[256];
2499 /* @todo SMP support! */
2500 PVMCPU pVCpu = VMMGetCpu(pVM);
2501 if (!pVCpu)
2502 pVCpu = &pVM->aCpus[0];
2503
2504 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2505 if (RT_SUCCESS(rc))
2506 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2507}
2508
2509
2510/**
2511 * Display the hypervisor cpu state.
2512 *
2513 * @param pVM VM Handle.
2514 * @param pHlp The info helper functions.
2515 * @param pszArgs Arguments, ignored.
2516 */
2517static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2518{
2519 CPUMDUMPTYPE enmType;
2520 const char *pszComment;
2521 /* @todo SMP */
2522 PVMCPU pVCpu = &pVM->aCpus[0];
2523
2524 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2525 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2526 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2527 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2528}
2529
2530
2531/**
2532 * Display the host cpu state.
2533 *
2534 * @param pVM VM Handle.
2535 * @param pHlp The info helper functions.
2536 * @param pszArgs Arguments, ignored.
2537 */
2538static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2539{
2540 CPUMDUMPTYPE enmType;
2541 const char *pszComment;
2542 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2543 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2544
2545 /*
2546 * Format the EFLAGS.
2547 */
2548 /* @todo SMP */
2549 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2550#if HC_ARCH_BITS == 32
2551 uint32_t efl = pCtx->eflags.u32;
2552#else
2553 uint64_t efl = pCtx->rflags;
2554#endif
2555 char szEFlags[80];
2556 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2557
2558 /*
2559 * Format the registers.
2560 */
2561#if HC_ARCH_BITS == 32
2562# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2563 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2564# endif
2565 {
2566 pHlp->pfnPrintf(pHlp,
2567 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2568 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2569 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2570 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2571 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2572 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2573 ,
2574 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2575 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2576 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2577 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2578 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2579 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2580 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2581 }
2582# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2583 else
2584# endif
2585#endif
2586#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2587 {
2588 pHlp->pfnPrintf(pHlp,
2589 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2590 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2591 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2592 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2593 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2594 "r14=%016RX64 r15=%016RX64\n"
2595 "iopl=%d %31s\n"
2596 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2597 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2598 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2599 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2600 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2601 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2602 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2603 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2604 ,
2605 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2606 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2607 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2608 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2609 pCtx->r11, pCtx->r12, pCtx->r13,
2610 pCtx->r14, pCtx->r15,
2611 X86_EFL_GET_IOPL(efl), szEFlags,
2612 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2613 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2614 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2615 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2616 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2617 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2618 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2619 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2620 }
2621#endif
2622}
2623
2624
2625/**
2626 * Get L1 cache / TLS associativity.
2627 */
2628static const char *getCacheAss(unsigned u, char *pszBuf)
2629{
2630 if (u == 0)
2631 return "res0 ";
2632 if (u == 1)
2633 return "direct";
2634 if (u >= 256)
2635 return "???";
2636
2637 RTStrPrintf(pszBuf, 16, "%d way", u);
2638 return pszBuf;
2639}
2640
2641
2642/**
2643 * Get L2 cache soociativity.
2644 */
2645const char *getL2CacheAss(unsigned u)
2646{
2647 switch (u)
2648 {
2649 case 0: return "off ";
2650 case 1: return "direct";
2651 case 2: return "2 way ";
2652 case 3: return "res3 ";
2653 case 4: return "4 way ";
2654 case 5: return "res5 ";
2655 case 6: return "8 way "; case 7: return "res7 ";
2656 case 8: return "16 way";
2657 case 9: return "res9 ";
2658 case 10: return "res10 ";
2659 case 11: return "res11 ";
2660 case 12: return "res12 ";
2661 case 13: return "res13 ";
2662 case 14: return "res14 ";
2663 case 15: return "fully ";
2664 default:
2665 return "????";
2666 }
2667}
2668
2669
2670/**
2671 * Display the guest CpuId leaves.
2672 *
2673 * @param pVM VM Handle.
2674 * @param pHlp The info helper functions.
2675 * @param pszArgs "terse", "default" or "verbose".
2676 */
2677static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2678{
2679 /*
2680 * Parse the argument.
2681 */
2682 unsigned iVerbosity = 1;
2683 if (pszArgs)
2684 {
2685 pszArgs = RTStrStripL(pszArgs);
2686 if (!strcmp(pszArgs, "terse"))
2687 iVerbosity--;
2688 else if (!strcmp(pszArgs, "verbose"))
2689 iVerbosity++;
2690 }
2691
2692 /*
2693 * Start cracking.
2694 */
2695 CPUMCPUID Host;
2696 CPUMCPUID Guest;
2697 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2698
2699 pHlp->pfnPrintf(pHlp,
2700 " RAW Standard CPUIDs\n"
2701 " Function eax ebx ecx edx\n");
2702 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2703 {
2704 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2705 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2706
2707 pHlp->pfnPrintf(pHlp,
2708 "Gst: %08x %08x %08x %08x %08x%s\n"
2709 "Hst: %08x %08x %08x %08x\n",
2710 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2711 i <= cStdMax ? "" : "*",
2712 Host.eax, Host.ebx, Host.ecx, Host.edx);
2713 }
2714
2715 /*
2716 * If verbose, decode it.
2717 */
2718 if (iVerbosity)
2719 {
2720 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2721 pHlp->pfnPrintf(pHlp,
2722 "Name: %.04s%.04s%.04s\n"
2723 "Supports: 0-%x\n",
2724 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2725 }
2726
2727 /*
2728 * Get Features.
2729 */
2730 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2731 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2732 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2733 if (cStdMax >= 1 && iVerbosity)
2734 {
2735 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2736 uint32_t uEAX = Guest.eax;
2737
2738 pHlp->pfnPrintf(pHlp,
2739 "Family: %d \tExtended: %d \tEffective: %d\n"
2740 "Model: %d \tExtended: %d \tEffective: %d\n"
2741 "Stepping: %d\n"
2742 "Type: %d\n"
2743 "APIC ID: %#04x\n"
2744 "Logical CPUs: %d\n"
2745 "CLFLUSH Size: %d\n"
2746 "Brand ID: %#04x\n",
2747 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2748 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2749 ASMGetCpuStepping(uEAX),
2750 (uEAX >> 12) & 3,
2751 (Guest.ebx >> 24) & 0xff,
2752 (Guest.ebx >> 16) & 0xff,
2753 (Guest.ebx >> 8) & 0xff,
2754 (Guest.ebx >> 0) & 0xff);
2755 if (iVerbosity == 1)
2756 {
2757 uint32_t uEDX = Guest.edx;
2758 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2759 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2760 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2761 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2762 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2763 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2764 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2765 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2766 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2767 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2768 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2769 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2770 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2771 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2772 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2773 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2774 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2775 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2776 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2777 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2778 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2779 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2780 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2781 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2782 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2783 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2784 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2785 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2786 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2787 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2788 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2789 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2790 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2791 pHlp->pfnPrintf(pHlp, "\n");
2792
2793 uint32_t uECX = Guest.ecx;
2794 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2795 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2796 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2797 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2798 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2799 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2800 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2801 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2802 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2803 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2804 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2805 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2806 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2807 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2808 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2809 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
2810 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
2811 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
2812 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " 17");
2813 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
2814 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4_1");
2815 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4_2");
2816 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
2817 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
2818 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
2819 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " 24");
2820 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
2821 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
2822 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
2823 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
2824 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
2825 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2826 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
2827 pHlp->pfnPrintf(pHlp, "\n");
2828 }
2829 else
2830 {
2831 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2832
2833 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
2834 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
2835 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
2836 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
2837
2838 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2839 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
2840 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
2841 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
2842 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
2843 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
2844 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
2845 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
2846 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
2847 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
2848 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
2849 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
2850 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
2851 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
2852 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
2853 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
2854 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
2855 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
2856 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
2857 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
2858 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
2859 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
2860 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
2861 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
2862 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
2863 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
2864 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
2865 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
2866 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
2867 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
2868 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
2869 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
2870 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
2871
2872 pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
2873 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
2874 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
2875 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
2876 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
2877 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
2878 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
2879 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
2880 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
2881 pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
2882 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
2883 pHlp->pfnPrintf(pHlp, "FMA = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
2884 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
2885 pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
2886 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
2887 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
2888 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
2889 pHlp->pfnPrintf(pHlp, "Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
2890 pHlp->pfnPrintf(pHlp, "Supports SSE4_1 or not = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
2891 pHlp->pfnPrintf(pHlp, "Supports SSE4_2 or not = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
2892 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
2893 pHlp->pfnPrintf(pHlp, "Supports MOVBE = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
2894 pHlp->pfnPrintf(pHlp, "Supports POPCNT = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
2895 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u1Reserved4, EcxHost.u1Reserved4);
2896 pHlp->pfnPrintf(pHlp, "Supports XSAVE = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
2897 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
2898 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u4Reserved5, EcxHost.u4Reserved5);
2899 }
2900 }
2901 if (cStdMax >= 2 && iVerbosity)
2902 {
2903 /** @todo */
2904 }
2905
2906 /*
2907 * Extended.
2908 * Implemented after AMD specs.
2909 */
2910 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
2911
2912 pHlp->pfnPrintf(pHlp,
2913 "\n"
2914 " RAW Extended CPUIDs\n"
2915 " Function eax ebx ecx edx\n");
2916 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
2917 {
2918 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
2919 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2920
2921 pHlp->pfnPrintf(pHlp,
2922 "Gst: %08x %08x %08x %08x %08x%s\n"
2923 "Hst: %08x %08x %08x %08x\n",
2924 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2925 i <= cExtMax ? "" : "*",
2926 Host.eax, Host.ebx, Host.ecx, Host.edx);
2927 }
2928
2929 /*
2930 * Understandable output
2931 */
2932 if (iVerbosity)
2933 {
2934 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
2935 pHlp->pfnPrintf(pHlp,
2936 "Ext Name: %.4s%.4s%.4s\n"
2937 "Ext Supports: 0x80000000-%#010x\n",
2938 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2939 }
2940
2941 if (iVerbosity && cExtMax >= 1)
2942 {
2943 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
2944 uint32_t uEAX = Guest.eax;
2945 pHlp->pfnPrintf(pHlp,
2946 "Family: %d \tExtended: %d \tEffective: %d\n"
2947 "Model: %d \tExtended: %d \tEffective: %d\n"
2948 "Stepping: %d\n"
2949 "Brand ID: %#05x\n",
2950 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2951 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2952 ASMGetCpuStepping(uEAX),
2953 Guest.ebx & 0xfff);
2954
2955 if (iVerbosity == 1)
2956 {
2957 uint32_t uEDX = Guest.edx;
2958 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2959 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2960 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2961 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2962 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2963 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2964 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2965 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2966 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2967 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2968 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2969 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2970 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
2971 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2972 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2973 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2974 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2975 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2976 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2977 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
2978 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
2979 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
2980 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
2981 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
2982 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2983 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2984 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
2985 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
2986 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
2987 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
2988 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
2989 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
2990 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
2991 pHlp->pfnPrintf(pHlp, "\n");
2992
2993 uint32_t uECX = Guest.ecx;
2994 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2995 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
2996 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
2997 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
2998 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
2999 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
3000 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
3001 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
3002 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
3003 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
3004 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
3005 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
3006 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
3007 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
3008 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
3009 for (unsigned iBit = 5; iBit < 32; iBit++)
3010 if (uECX & RT_BIT(iBit))
3011 pHlp->pfnPrintf(pHlp, " %d", iBit);
3012 pHlp->pfnPrintf(pHlp, "\n");
3013 }
3014 else
3015 {
3016 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3017
3018 uint32_t uEdxGst = Guest.edx;
3019 uint32_t uEdxHst = Host.edx;
3020 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3021 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3022 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3023 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3024 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3025 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3026 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3027 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3028 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3029 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3030 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3031 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3032 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3033 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3034 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3035 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3036 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3037 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3038 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3039 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3040 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3041 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3042 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3043 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3044 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3045 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3046 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3047 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3048 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3049 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3050 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3051 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3052 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3053
3054 uint32_t uEcxGst = Guest.ecx;
3055 uint32_t uEcxHst = Host.ecx;
3056 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3057 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3058 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3059 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3060 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3061 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3062 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3063 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3064 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3065 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3066 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3067 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3068 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3069 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3070 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3071 }
3072 }
3073
3074 if (iVerbosity && cExtMax >= 2)
3075 {
3076 char szString[4*4*3+1] = {0};
3077 uint32_t *pu32 = (uint32_t *)szString;
3078 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3079 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3080 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3081 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3082 if (cExtMax >= 3)
3083 {
3084 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3085 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3086 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3087 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3088 }
3089 if (cExtMax >= 4)
3090 {
3091 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3092 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3093 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3094 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3095 }
3096 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3097 }
3098
3099 if (iVerbosity && cExtMax >= 5)
3100 {
3101 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3102 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3103 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3104 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3105 char sz1[32];
3106 char sz2[32];
3107
3108 pHlp->pfnPrintf(pHlp,
3109 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3110 "TLB 2/4M Data: %s %3d entries\n",
3111 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3112 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3113 pHlp->pfnPrintf(pHlp,
3114 "TLB 4K Instr/Uni: %s %3d entries\n"
3115 "TLB 4K Data: %s %3d entries\n",
3116 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3117 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3118 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3119 "L1 Instr Cache Lines Per Tag: %d\n"
3120 "L1 Instr Cache Associativity: %s\n"
3121 "L1 Instr Cache Size: %d KB\n",
3122 (uEDX >> 0) & 0xff,
3123 (uEDX >> 8) & 0xff,
3124 getCacheAss((uEDX >> 16) & 0xff, sz1),
3125 (uEDX >> 24) & 0xff);
3126 pHlp->pfnPrintf(pHlp,
3127 "L1 Data Cache Line Size: %d bytes\n"
3128 "L1 Data Cache Lines Per Tag: %d\n"
3129 "L1 Data Cache Associativity: %s\n"
3130 "L1 Data Cache Size: %d KB\n",
3131 (uECX >> 0) & 0xff,
3132 (uECX >> 8) & 0xff,
3133 getCacheAss((uECX >> 16) & 0xff, sz1),
3134 (uECX >> 24) & 0xff);
3135 }
3136
3137 if (iVerbosity && cExtMax >= 6)
3138 {
3139 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3140 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3141 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3142
3143 pHlp->pfnPrintf(pHlp,
3144 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3145 "L2 TLB 2/4M Data: %s %4d entries\n",
3146 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3147 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3148 pHlp->pfnPrintf(pHlp,
3149 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3150 "L2 TLB 4K Data: %s %4d entries\n",
3151 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3152 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3153 pHlp->pfnPrintf(pHlp,
3154 "L2 Cache Line Size: %d bytes\n"
3155 "L2 Cache Lines Per Tag: %d\n"
3156 "L2 Cache Associativity: %s\n"
3157 "L2 Cache Size: %d KB\n",
3158 (uEDX >> 0) & 0xff,
3159 (uEDX >> 8) & 0xf,
3160 getL2CacheAss((uEDX >> 12) & 0xf),
3161 (uEDX >> 16) & 0xffff);
3162 }
3163
3164 if (iVerbosity && cExtMax >= 7)
3165 {
3166 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3167
3168 pHlp->pfnPrintf(pHlp, "APM Features: ");
3169 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3170 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3171 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3172 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3173 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3174 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3175 for (unsigned iBit = 6; iBit < 32; iBit++)
3176 if (uEDX & RT_BIT(iBit))
3177 pHlp->pfnPrintf(pHlp, " %d", iBit);
3178 pHlp->pfnPrintf(pHlp, "\n");
3179 }
3180
3181 if (iVerbosity && cExtMax >= 8)
3182 {
3183 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3184 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3185
3186 pHlp->pfnPrintf(pHlp,
3187 "Physical Address Width: %d bits\n"
3188 "Virtual Address Width: %d bits\n",
3189 (uEAX >> 0) & 0xff,
3190 (uEAX >> 8) & 0xff);
3191 pHlp->pfnPrintf(pHlp,
3192 "Physical Core Count: %d\n",
3193 (uECX >> 0) & 0xff);
3194 }
3195
3196
3197 /*
3198 * Centaur.
3199 */
3200 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3201
3202 pHlp->pfnPrintf(pHlp,
3203 "\n"
3204 " RAW Centaur CPUIDs\n"
3205 " Function eax ebx ecx edx\n");
3206 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3207 {
3208 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3209 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3210
3211 pHlp->pfnPrintf(pHlp,
3212 "Gst: %08x %08x %08x %08x %08x%s\n"
3213 "Hst: %08x %08x %08x %08x\n",
3214 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3215 i <= cCentaurMax ? "" : "*",
3216 Host.eax, Host.ebx, Host.ecx, Host.edx);
3217 }
3218
3219 /*
3220 * Understandable output
3221 */
3222 if (iVerbosity)
3223 {
3224 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3225 pHlp->pfnPrintf(pHlp,
3226 "Centaur Supports: 0xc0000000-%#010x\n",
3227 Guest.eax);
3228 }
3229
3230 if (iVerbosity && cCentaurMax >= 1)
3231 {
3232 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3233 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3234 uint32_t uEdxHst = Host.edx;
3235
3236 if (iVerbosity == 1)
3237 {
3238 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3239 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3240 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3241 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3242 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3243 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3244 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3245 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3246 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3247 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3248 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3249 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3250 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3251 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3252 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3253 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3254 for (unsigned iBit = 14; iBit < 32; iBit++)
3255 if (uEdxGst & RT_BIT(iBit))
3256 pHlp->pfnPrintf(pHlp, " %d", iBit);
3257 pHlp->pfnPrintf(pHlp, "\n");
3258 }
3259 else
3260 {
3261 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3262 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3263 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3264 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3265 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3266 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3267 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3268 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3269 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3270 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3271 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3272 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3273 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3274 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3275 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3276 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3277 for (unsigned iBit = 14; iBit < 32; iBit++)
3278 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3279 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3280 pHlp->pfnPrintf(pHlp, "\n");
3281 }
3282 }
3283}
3284
3285
3286/**
3287 * Structure used when disassembling and instructions in DBGF.
3288 * This is used so the reader function can get the stuff it needs.
3289 */
3290typedef struct CPUMDISASSTATE
3291{
3292 /** Pointer to the CPU structure. */
3293 PDISCPUSTATE pCpu;
3294 /** The VM handle. */
3295 PVM pVM;
3296 /** The VMCPU handle. */
3297 PVMCPU pVCpu;
3298 /** Pointer to the first byte in the segemnt. */
3299 RTGCUINTPTR GCPtrSegBase;
3300 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3301 RTGCUINTPTR GCPtrSegEnd;
3302 /** The size of the segment minus 1. */
3303 RTGCUINTPTR cbSegLimit;
3304 /** Pointer to the current page - R3 Ptr. */
3305 void const *pvPageR3;
3306 /** Pointer to the current page - GC Ptr. */
3307 RTGCPTR pvPageGC;
3308 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3309 PGMPAGEMAPLOCK PageMapLock;
3310 /** Whether the PageMapLock is valid or not. */
3311 bool fLocked;
3312 /** 64 bits mode or not. */
3313 bool f64Bits;
3314} CPUMDISASSTATE, *PCPUMDISASSTATE;
3315
3316
3317/**
3318 * Instruction reader.
3319 *
3320 * @returns VBox status code.
3321 * @param PtrSrc Address to read from.
3322 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3323 * @param pu8Dst Where to store the bytes.
3324 * @param cbRead Number of bytes to read.
3325 * @param uDisCpu Pointer to the disassembler cpu state.
3326 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3327 */
3328static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3329{
3330 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3331 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3332 Assert(cbRead > 0);
3333 for (;;)
3334 {
3335 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3336
3337 /* Need to update the page translation? */
3338 if ( !pState->pvPageR3
3339 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3340 {
3341 int rc = VINF_SUCCESS;
3342
3343 /* translate the address */
3344 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3345 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3346 && !HWACCMIsEnabled(pState->pVM))
3347 {
3348 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3349 if (!pState->pvPageR3)
3350 rc = VERR_INVALID_POINTER;
3351 }
3352 else
3353 {
3354 /* Release mapping lock previously acquired. */
3355 if (pState->fLocked)
3356 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3357 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3358 pState->fLocked = RT_SUCCESS_NP(rc);
3359 }
3360 if (RT_FAILURE(rc))
3361 {
3362 pState->pvPageR3 = NULL;
3363 return rc;
3364 }
3365 }
3366
3367 /* check the segemnt limit */
3368 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3369 return VERR_OUT_OF_SELECTOR_BOUNDS;
3370
3371 /* calc how much we can read */
3372 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3373 if (!pState->f64Bits)
3374 {
3375 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3376 if (cb > cbSeg && cbSeg)
3377 cb = cbSeg;
3378 }
3379 if (cb > cbRead)
3380 cb = cbRead;
3381
3382 /* read and advance */
3383 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3384 cbRead -= cb;
3385 if (!cbRead)
3386 return VINF_SUCCESS;
3387 pu8Dst += cb;
3388 PtrSrc += cb;
3389 }
3390}
3391
3392
3393/**
3394 * Disassemble an instruction and return the information in the provided structure.
3395 *
3396 * @returns VBox status code.
3397 * @param pVM VM Handle
3398 * @param pVCpu VMCPU Handle
3399 * @param pCtx CPU context
3400 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3401 * @param pCpu Disassembly state
3402 * @param pszPrefix String prefix for logging (debug only)
3403 *
3404 */
3405VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3406{
3407 CPUMDISASSTATE State;
3408 int rc;
3409
3410 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3411 State.pCpu = pCpu;
3412 State.pvPageGC = 0;
3413 State.pvPageR3 = NULL;
3414 State.pVM = pVM;
3415 State.pVCpu = pVCpu;
3416 State.fLocked = false;
3417 State.f64Bits = false;
3418
3419 /*
3420 * Get selector information.
3421 */
3422 if ( (pCtx->cr0 & X86_CR0_PE)
3423 && pCtx->eflags.Bits.u1VM == 0)
3424 {
3425 if (CPUMAreHiddenSelRegsValid(pVM))
3426 {
3427 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3428 State.GCPtrSegBase = pCtx->csHid.u64Base;
3429 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3430 State.cbSegLimit = pCtx->csHid.u32Limit;
3431 pCpu->mode = (State.f64Bits)
3432 ? CPUMODE_64BIT
3433 : pCtx->csHid.Attr.n.u1DefBig
3434 ? CPUMODE_32BIT
3435 : CPUMODE_16BIT;
3436 }
3437 else
3438 {
3439 DBGFSELINFO SelInfo;
3440
3441 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3442 if (RT_FAILURE(rc))
3443 {
3444 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3445 return rc;
3446 }
3447
3448 /*
3449 * Validate the selector.
3450 */
3451 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3452 if (RT_FAILURE(rc))
3453 {
3454 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3455 return rc;
3456 }
3457 State.GCPtrSegBase = SelInfo.GCPtrBase;
3458 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3459 State.cbSegLimit = SelInfo.cbLimit;
3460 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3461 }
3462 }
3463 else
3464 {
3465 /* real or V86 mode */
3466 pCpu->mode = CPUMODE_16BIT;
3467 State.GCPtrSegBase = pCtx->cs * 16;
3468 State.GCPtrSegEnd = 0xFFFFFFFF;
3469 State.cbSegLimit = 0xFFFFFFFF;
3470 }
3471
3472 /*
3473 * Disassemble the instruction.
3474 */
3475 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3476 pCpu->apvUserData[0] = &State;
3477
3478 uint32_t cbInstr;
3479#ifndef LOG_ENABLED
3480 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3481 if (RT_SUCCESS(rc))
3482 {
3483#else
3484 char szOutput[160];
3485 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3486 if (RT_SUCCESS(rc))
3487 {
3488 /* log it */
3489 if (pszPrefix)
3490 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3491 else
3492 Log(("%s", szOutput));
3493#endif
3494 rc = VINF_SUCCESS;
3495 }
3496 else
3497 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3498
3499 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3500 if (State.fLocked)
3501 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3502
3503 return rc;
3504}
3505
3506#ifdef DEBUG
3507
3508/**
3509 * Disassemble an instruction and dump it to the log
3510 *
3511 * @returns VBox status code.
3512 * @param pVM VM Handle
3513 * @param pVCpu VMCPU Handle
3514 * @param pCtx CPU context
3515 * @param pc GC instruction pointer
3516 * @param pszPrefix String prefix for logging
3517 *
3518 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3519 */
3520VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3521{
3522 DISCPUSTATE Cpu;
3523 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3524}
3525
3526
3527/**
3528 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3529 *
3530 * @internal
3531 */
3532VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3533{
3534 /** @todo SMP support!! */
3535 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3536}
3537
3538#endif /* DEBUG */
3539
3540/**
3541 * API for controlling a few of the CPU features found in CR4.
3542 *
3543 * Currently only X86_CR4_TSD is accepted as input.
3544 *
3545 * @returns VBox status code.
3546 *
3547 * @param pVM The VM handle.
3548 * @param fOr The CR4 OR mask.
3549 * @param fAnd The CR4 AND mask.
3550 */
3551VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3552{
3553 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3554 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3555
3556 pVM->cpum.s.CR4.OrMask &= fAnd;
3557 pVM->cpum.s.CR4.OrMask |= fOr;
3558
3559 return VINF_SUCCESS;
3560}
3561
3562
3563/**
3564 * Gets a pointer to the array of standard CPUID leaves.
3565 *
3566 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3567 *
3568 * @returns Pointer to the standard CPUID leaves (read-only).
3569 * @param pVM The VM handle.
3570 * @remark Intended for PATM.
3571 */
3572VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3573{
3574 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3575}
3576
3577
3578/**
3579 * Gets a pointer to the array of extended CPUID leaves.
3580 *
3581 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3582 *
3583 * @returns Pointer to the extended CPUID leaves (read-only).
3584 * @param pVM The VM handle.
3585 * @remark Intended for PATM.
3586 */
3587VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3588{
3589 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3590}
3591
3592
3593/**
3594 * Gets a pointer to the array of centaur CPUID leaves.
3595 *
3596 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3597 *
3598 * @returns Pointer to the centaur CPUID leaves (read-only).
3599 * @param pVM The VM handle.
3600 * @remark Intended for PATM.
3601 */
3602VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3603{
3604 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3605}
3606
3607
3608/**
3609 * Gets a pointer to the default CPUID leaf.
3610 *
3611 * @returns Pointer to the default CPUID leaf (read-only).
3612 * @param pVM The VM handle.
3613 * @remark Intended for PATM.
3614 */
3615VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3616{
3617 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3618}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette