VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 11945

Last change on this file since 11945 was 11808, checked in by vboxsync, 16 years ago

Deal with GCPtr differences between 1.6 & 2.0 saved states.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 106.1 KB
Line 
1/* $Id: CPUM.cpp 11808 2008-08-29 11:29:35Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_cpum
23 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
24 * also responsible for lazy FPU handling and some of the context loading
25 * in raw mode.
26 *
27 * There are three CPU contexts, the most important one is the guest one (GC).
28 * When running in raw-mode (RC) there is a special hyper context for the VMM
29 * that floats around inside the guest address space. When running in raw-mode
30 * or when using 64-bit guests on a 32-bit host, CPUM also maintains a host
31 * context for saving and restoring registers accross world switches. This latter
32 * is done in cooperation with the world switcher (@see pg_vmm).
33 */
34
35/*******************************************************************************
36* Header Files *
37*******************************************************************************/
38#define LOG_GROUP LOG_GROUP_CPUM
39#include <VBox/cpum.h>
40#include <VBox/cpumdis.h>
41#include <VBox/pgm.h>
42#include <VBox/pdm.h>
43#include <VBox/mm.h>
44#include <VBox/selm.h>
45#include <VBox/dbgf.h>
46#include <VBox/patm.h>
47#include <VBox/ssm.h>
48#include "CPUMInternal.h"
49#include <VBox/vm.h>
50
51#include <VBox/param.h>
52#include <VBox/dis.h>
53#include <VBox/err.h>
54#include <VBox/log.h>
55#include <iprt/assert.h>
56#include <iprt/asm.h>
57#include <iprt/string.h>
58#include <iprt/mp.h>
59#include <iprt/cpuset.h>
60
61
62/*******************************************************************************
63* Defined Constants And Macros *
64*******************************************************************************/
65/** The saved state version. */
66#define CPUM_SAVED_STATE_VERSION_VER1_6 6
67#define CPUM_SAVED_STATE_VERSION 8
68
69
70/*******************************************************************************
71* Structures and Typedefs *
72*******************************************************************************/
73
74/**
75 * What kind of cpu info dump to perform.
76 */
77typedef enum CPUMDUMPTYPE
78{
79 CPUMDUMPTYPE_TERSE,
80 CPUMDUMPTYPE_DEFAULT,
81 CPUMDUMPTYPE_VERBOSE
82
83} CPUMDUMPTYPE;
84/** Pointer to a cpu info dump type. */
85typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static int cpumR3CpuIdInit(PVM pVM);
91static DECLCALLBACK(int) cpumR3Save(PVM pVM, PSSMHANDLE pSSM);
92static DECLCALLBACK(int) cpumR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
93static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
94static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
95static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
96static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
97static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
98static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
99
100
101/**
102 * Initializes the CPUM.
103 *
104 * @returns VBox status code.
105 * @param pVM The VM to operate on.
106 */
107CPUMR3DECL(int) CPUMR3Init(PVM pVM)
108{
109 LogFlow(("CPUMR3Init\n"));
110
111 /*
112 * Assert alignment and sizes.
113 */
114 AssertRelease(!(RT_OFFSETOF(VM, cpum.s) & 31));
115 AssertRelease(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
116
117 /*
118 * Setup any fixed pointers and offsets.
119 */
120 pVM->cpum.s.offVM = RT_OFFSETOF(VM, cpum);
121 pVM->cpum.s.pCPUMHC = &pVM->cpum.s;
122 pVM->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVM->cpum.s.Hyper);
123 pVM->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVM->cpum.s.Hyper));
124
125 /* Hidden selector registers are invalid by default. */
126 pVM->cpum.s.fValidHiddenSelRegs = false;
127
128 /*
129 * Check that the CPU supports the minimum features we require.
130 */
131 /** @todo check the contract! */
132 if (!ASMHasCpuId())
133 {
134 Log(("The CPU doesn't support CPUID!\n"));
135 return VERR_UNSUPPORTED_CPU;
136 }
137 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
138 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
139
140 /* Setup the CR4 AND and OR masks used in the switcher */
141 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
142 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
143 {
144 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
145 /* No FXSAVE implies no SSE */
146 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
147 pVM->cpum.s.CR4.OrMask = 0;
148 }
149 else
150 {
151 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
152 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
153 }
154
155 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
156 {
157 Log(("The CPU doesn't support MMX!\n"));
158 return VERR_UNSUPPORTED_CPU;
159 }
160 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
161 {
162 Log(("The CPU doesn't support TSC!\n"));
163 return VERR_UNSUPPORTED_CPU;
164 }
165 /* Bogus on AMD? */
166 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
167 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
168
169 /*
170 * Setup hypervisor startup values.
171 */
172
173 /*
174 * Register saved state data item.
175 */
176 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
177 NULL, cpumR3Save, NULL,
178 NULL, cpumR3Load, NULL);
179 if (VBOX_FAILURE(rc))
180 return rc;
181
182 /* Query the CPU manufacturer. */
183 uint32_t uEAX, uEBX, uECX, uEDX;
184 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
185 if ( uEAX >= 1
186 && uEBX == X86_CPUID_VENDOR_AMD_EBX
187 && uECX == X86_CPUID_VENDOR_AMD_ECX
188 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
189 pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_AMD;
190 else if ( uEAX >= 1
191 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
192 && uECX == X86_CPUID_VENDOR_INTEL_ECX
193 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
194 pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_INTEL;
195 else /** @todo Via */
196 pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_UNKNOWN;
197
198 /*
199 * Register info handlers.
200 */
201 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
202 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
203 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
204 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
205 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
206 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
207
208 /*
209 * Initialize the Guest CPU state.
210 */
211 rc = cpumR3CpuIdInit(pVM);
212 if (VBOX_FAILURE(rc))
213 return rc;
214 CPUMR3Reset(pVM);
215 return VINF_SUCCESS;
216}
217
218
219/**
220 * Initializes the emulated CPU's cpuid information.
221 *
222 * @returns VBox status code.
223 * @param pVM The VM to operate on.
224 */
225static int cpumR3CpuIdInit(PVM pVM)
226{
227 PCPUM pCPUM = &pVM->cpum.s;
228 uint32_t i;
229
230 /*
231 * Get the host CPUIDs.
232 */
233 for (i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
234 ASMCpuId_Idx_ECX(i, 0,
235 &pCPUM->aGuestCpuIdStd[i].eax, &pCPUM->aGuestCpuIdStd[i].ebx,
236 &pCPUM->aGuestCpuIdStd[i].ecx, &pCPUM->aGuestCpuIdStd[i].edx);
237 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
238 ASMCpuId(0x80000000 + i,
239 &pCPUM->aGuestCpuIdExt[i].eax, &pCPUM->aGuestCpuIdExt[i].ebx,
240 &pCPUM->aGuestCpuIdExt[i].ecx, &pCPUM->aGuestCpuIdExt[i].edx);
241 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
242 ASMCpuId(0xc0000000 + i,
243 &pCPUM->aGuestCpuIdCentaur[i].eax, &pCPUM->aGuestCpuIdCentaur[i].ebx,
244 &pCPUM->aGuestCpuIdCentaur[i].ecx, &pCPUM->aGuestCpuIdCentaur[i].edx);
245
246
247 /*
248 * Only report features we can support.
249 */
250 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
251 | X86_CPUID_FEATURE_EDX_VME
252 | X86_CPUID_FEATURE_EDX_DE
253 | X86_CPUID_FEATURE_EDX_PSE
254 | X86_CPUID_FEATURE_EDX_TSC
255 | X86_CPUID_FEATURE_EDX_MSR
256 //| X86_CPUID_FEATURE_EDX_PAE - not implemented yet.
257 | X86_CPUID_FEATURE_EDX_MCE
258 | X86_CPUID_FEATURE_EDX_CX8
259 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
260 /** @note we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
261 //| X86_CPUID_FEATURE_EDX_SEP
262 | X86_CPUID_FEATURE_EDX_MTRR
263 | X86_CPUID_FEATURE_EDX_PGE
264 | X86_CPUID_FEATURE_EDX_MCA
265 | X86_CPUID_FEATURE_EDX_CMOV
266 | X86_CPUID_FEATURE_EDX_PAT
267 | X86_CPUID_FEATURE_EDX_PSE36
268 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
269 | X86_CPUID_FEATURE_EDX_CLFSH
270 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
271 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
272 | X86_CPUID_FEATURE_EDX_MMX
273 | X86_CPUID_FEATURE_EDX_FXSR
274 | X86_CPUID_FEATURE_EDX_SSE
275 | X86_CPUID_FEATURE_EDX_SSE2
276 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
277 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
278 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
279 //| X86_CPUID_FEATURE_EDX_PBE - no pneding break enabled.
280 | 0;
281 pCPUM->aGuestCpuIdStd[1].ecx &= 0//X86_CPUID_FEATURE_ECX_SSE3 - not supported by the recompiler yet.
282 | X86_CPUID_FEATURE_ECX_MONITOR
283 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
284 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
285 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
286 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
287 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
288 /* ECX Bit 13 - CX16 - CMPXCHG16B. */
289 //| X86_CPUID_FEATURE_ECX_CX16
290 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
291 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
292 /* ECX Bit 23 - POPCOUNT instruction. */
293 //| X86_CPUID_FEATURE_ECX_POPCOUNT
294 | 0;
295
296 /* ASSUMES that this is ALWAYS the AMD define feature set if present. */
297 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
298 | X86_CPUID_AMD_FEATURE_EDX_VME
299 | X86_CPUID_AMD_FEATURE_EDX_DE
300 | X86_CPUID_AMD_FEATURE_EDX_PSE
301 | X86_CPUID_AMD_FEATURE_EDX_TSC
302 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
303 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
304 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
305 | X86_CPUID_AMD_FEATURE_EDX_CX8
306 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
307 /** @note we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
308 //| X86_CPUID_AMD_FEATURE_EDX_SEP
309 | X86_CPUID_AMD_FEATURE_EDX_MTRR
310 | X86_CPUID_AMD_FEATURE_EDX_PGE
311 | X86_CPUID_AMD_FEATURE_EDX_MCA
312 | X86_CPUID_AMD_FEATURE_EDX_CMOV
313 | X86_CPUID_AMD_FEATURE_EDX_PAT
314 | X86_CPUID_AMD_FEATURE_EDX_PSE36
315 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
316 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
317 | X86_CPUID_AMD_FEATURE_EDX_MMX
318 | X86_CPUID_AMD_FEATURE_EDX_FXSR
319 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
320 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
321 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP
322 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - not yet.
323 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
324 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
325 | 0;
326 pCPUM->aGuestCpuIdExt[1].ecx &= 0
327 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
328 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
329 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
330 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
331 //| X86_CPUID_AMD_FEATURE_ECX_CR8L
332 //| X86_CPUID_AMD_FEATURE_ECX_ABM
333 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
334 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
335 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
336 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
337 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
338 //| X86_CPUID_AMD_FEATURE_ECX_WDT
339 | 0;
340
341 /*
342 * Hide HTT, multicode, SMP, whatever.
343 * (APIC-ID := 0 and #LogCpus := 0)
344 */
345 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
346
347 /* Cpuid 2:
348 * Intel: Cache and TLB information
349 * AMD: Reserved
350 * Safe to expose
351 */
352
353 /* Cpuid 3:
354 * Intel: EAX, EBX - reserved
355 * ECX, EDX - Processor Serial Number if available, otherwise reserved
356 * AMD: Reserved
357 * Safe to expose
358 */
359 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
360 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
361
362 /* Cpuid 4:
363 * Intel: Deterministic Cache Parameters Leaf
364 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
365 * AMD: Reserved
366 * Safe to expose, except for EAX:
367 * Bits 25-14: Maximum number of threads sharing this cache in a physical package (see note)**
368 * Bits 31-26: Maximum number of processor cores in this physical package**
369 */
370 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
371 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
372
373 /* Cpuid 5: Monitor/mwait Leaf
374 * Intel: ECX, EDX - reserved
375 * EAX, EBX - Smallest and largest monitor line size
376 * AMD: EDX - reserved
377 * EAX, EBX - Smallest and largest monitor line size
378 * ECX - extensions (ignored for now)
379 * Safe to expose
380 */
381 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
382 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
383
384 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
385
386 /*
387 * Determine the default.
388 *
389 * Intel returns values of the highest standard function, while AMD
390 * returns zeros. VIA on the other hand seems to returning nothing or
391 * perhaps some random garbage, we don't try to duplicate this behavior.
392 */
393 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10,
394 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
395 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
396
397 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
398 * Safe to pass on to the guest.
399 *
400 * Intel: 0x800000005 reserved
401 * 0x800000006 L2 cache information
402 * AMD: 0x800000005 L1 cache information
403 * 0x800000006 L2/L3 cache information
404 */
405
406 /* Cpuid 0x800000007:
407 * AMD: EAX, EBX, ECX - reserved
408 * EDX: Advanced Power Management Information
409 * Intel: Reserved
410 */
411 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
412 {
413 Assert(pVM->cpum.s.enmCPUVendor != CPUMCPUVENDOR_INVALID);
414
415 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
416
417 if (pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD)
418 {
419 /* Only expose the TSC invariant capability bit to the guest. */
420 pCPUM->aGuestCpuIdExt[7].edx &= 0
421 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
422 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
423 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
424 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
425 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
426 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
427 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
428 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
429 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
430 | 0;
431 }
432 else
433 pCPUM->aGuestCpuIdExt[7].edx = 0;
434 }
435
436 /* Cpuid 0x800000008:
437 * AMD: EBX, EDX - reserved
438 * EAX: Virtual/Physical address Size
439 * ECX: Number of cores + APICIdCoreIdSize
440 * Intel: EAX: Virtual/Physical address Size
441 * EBX, ECX, EDX - reserved
442 */
443 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
444 {
445 /* Only expose the virtual and physical address sizes to the guest. (EAX completely) */
446 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
447 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
448 * NC (0-7) Number of cores; 0 equals 1 core */
449 pCPUM->aGuestCpuIdExt[8].ecx = 0;
450 }
451
452 /*
453 * Limit it the number of entries and fill the remaining with the defaults.
454 *
455 * The limits are masking off stuff about power saving and similar, this
456 * is perhaps a bit crudely done as there is probably some relatively harmless
457 * info too in these leaves (like words about having a constant TSC).
458 */
459#if 0
460 /** @todo NT4 installation regression - investigate */
461 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
462 pCPUM->aGuestCpuIdStd[0].eax = 5;
463#else
464 if (pCPUM->aGuestCpuIdStd[0].eax > 2)
465 pCPUM->aGuestCpuIdStd[0].eax = 2;
466#endif
467 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
468 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
469
470 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
471 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
472 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
473 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
474 : 0;
475 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
476 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
477
478 /*
479 * Workaround for missing cpuid(0) patches: If we miss to patch a cpuid(0).eax then
480 * Linux tries to determine the number of processors from (cpuid(4).eax >> 26) + 1.
481 * We currently don't support more than 1 processor.
482 */
483 pCPUM->aGuestCpuIdStd[4].eax = 0;
484
485 /*
486 * Centaur stuff (VIA).
487 *
488 * The important part here (we think) is to make sure the 0xc0000000
489 * function returns 0xc0000001. As for the features, we don't currently
490 * let on about any of those... 0xc0000002 seems to be some
491 * temperature/hz/++ stuff, include it as well (static).
492 */
493 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
494 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
495 {
496 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
497 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
498 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
499 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
500 i++)
501 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
502 }
503 else
504 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
505 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
506
507
508 /*
509 * Load CPUID overrides from configuration.
510 */
511 PCPUMCPUID pCpuId = &pCPUM->aGuestCpuIdStd[0];
512 uint32_t cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdStd);
513 for (i=0;; )
514 {
515 while (cElements-- > 0)
516 {
517 PCFGMNODE pNode = CFGMR3GetChildF(CFGMR3GetRoot(pVM), "CPUM/CPUID/%RX32", i);
518 if (pNode)
519 {
520 uint32_t u32;
521 int rc = CFGMR3QueryU32(pNode, "eax", &u32);
522 if (VBOX_SUCCESS(rc))
523 pCpuId->eax = u32;
524 else
525 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
526
527 rc = CFGMR3QueryU32(pNode, "ebx", &u32);
528 if (VBOX_SUCCESS(rc))
529 pCpuId->ebx = u32;
530 else
531 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
532
533 rc = CFGMR3QueryU32(pNode, "ecx", &u32);
534 if (VBOX_SUCCESS(rc))
535 pCpuId->ecx = u32;
536 else
537 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
538
539 rc = CFGMR3QueryU32(pNode, "edx", &u32);
540 if (VBOX_SUCCESS(rc))
541 pCpuId->edx = u32;
542 else
543 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
544 }
545 pCpuId++;
546 i++;
547 }
548
549 /* next */
550 if ((i & UINT32_C(0xc0000000)) == 0)
551 {
552 pCpuId = &pCPUM->aGuestCpuIdExt[0];
553 cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
554 i = UINT32_C(0x80000000);
555 }
556 else if ((i & UINT32_C(0xc0000000)) == UINT32_C(0x80000000))
557 {
558 pCpuId = &pCPUM->aGuestCpuIdCentaur[0];
559 cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
560 i = UINT32_C(0xc0000000);
561 }
562 else
563 break;
564 }
565
566 /* Check if PAE was explicitely enabled by the user. */
567 bool fEnable = false;
568 int rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable);
569 if (VBOX_SUCCESS(rc) && fEnable)
570 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
571
572 /*
573 * Log the cpuid and we're good.
574 */
575 RTCPUSET OnlineSet;
576 LogRel(("Logical host processors: %d, processor active mask: %016RX64\n",
577 (int)RTMpGetCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
578 LogRel(("************************* CPUID dump ************************\n"));
579 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
580 LogRel(("\n"));
581 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
582 LogRel(("******************** End of CPUID dump **********************\n"));
583 return VINF_SUCCESS;
584}
585
586
587
588
589/**
590 * Applies relocations to data and code managed by this
591 * component. This function will be called at init and
592 * whenever the VMM need to relocate it self inside the GC.
593 *
594 * The CPUM will update the addresses used by the switcher.
595 *
596 * @param pVM The VM.
597 */
598CPUMR3DECL(void) CPUMR3Relocate(PVM pVM)
599{
600 LogFlow(("CPUMR3Relocate\n"));
601 /*
602 * Switcher pointers.
603 */
604 pVM->cpum.s.pCPUMGC = VM_GUEST_ADDR(pVM, &pVM->cpum.s);
605 pVM->cpum.s.pHyperCoreGC = MMHyperCCToRC(pVM, pVM->cpum.s.pHyperCoreR3);
606 Assert(pVM->cpum.s.pHyperCoreGC != NIL_RTGCPTR);
607}
608
609
610/**
611 * Queries the pointer to the internal CPUMCTX structure
612 *
613 * @returns VBox status code.
614 * @param pVM Handle to the virtual machine.
615 * @param ppCtx Receives the CPUMCTX GC pointer when successful.
616 */
617CPUMR3DECL(int) CPUMR3QueryGuestCtxGCPtr(PVM pVM, RCPTRTYPE(PCPUMCTX) *ppCtx)
618{
619 LogFlow(("CPUMR3QueryGuestCtxGCPtr\n"));
620 /*
621 * Store the address. (Later we might check how's calling, thus the RC.)
622 */
623 *ppCtx = VM_GUEST_ADDR(pVM, &pVM->cpum.s.Guest);
624 return VINF_SUCCESS;
625}
626
627
628/**
629 * Terminates the CPUM.
630 *
631 * Termination means cleaning up and freeing all resources,
632 * the VM it self is at this point powered off or suspended.
633 *
634 * @returns VBox status code.
635 * @param pVM The VM to operate on.
636 */
637CPUMR3DECL(int) CPUMR3Term(PVM pVM)
638{
639 /** @todo ? */
640 return 0;
641}
642
643
644/**
645 * Resets the CPU.
646 *
647 * @returns VINF_SUCCESS.
648 * @param pVM The VM handle.
649 */
650CPUMR3DECL(void) CPUMR3Reset(PVM pVM)
651{
652 PCPUMCTX pCtx = &pVM->cpum.s.Guest;
653
654 /*
655 * Initialize everything to ZERO first.
656 */
657 uint32_t fUseFlags = pVM->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
658 memset(pCtx, 0, sizeof(*pCtx));
659 pVM->cpum.s.fUseFlags = fUseFlags;
660
661 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
662 pCtx->eip = 0x0000fff0;
663 pCtx->edx = 0x00000600; /* P6 processor */
664 pCtx->eflags.Bits.u1Reserved0 = 1;
665
666 pCtx->cs = 0xf000;
667 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
668 pCtx->csHid.u32Limit = 0x0000ffff;
669 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
670 pCtx->csHid.Attr.n.u1Present = 1;
671 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
672
673 pCtx->dsHid.u32Limit = 0x0000ffff;
674 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
675 pCtx->dsHid.Attr.n.u1Present = 1;
676 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
677
678 pCtx->esHid.u32Limit = 0x0000ffff;
679 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
680 pCtx->esHid.Attr.n.u1Present = 1;
681 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
682
683 pCtx->fsHid.u32Limit = 0x0000ffff;
684 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
685 pCtx->fsHid.Attr.n.u1Present = 1;
686 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
687
688 pCtx->gsHid.u32Limit = 0x0000ffff;
689 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
690 pCtx->gsHid.Attr.n.u1Present = 1;
691 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
692
693 pCtx->ssHid.u32Limit = 0x0000ffff;
694 pCtx->ssHid.Attr.n.u1Present = 1;
695 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
696 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
697
698 pCtx->idtr.cbIdt = 0xffff;
699 pCtx->gdtr.cbGdt = 0xffff;
700
701 pCtx->ldtrHid.u32Limit = 0xffff;
702 pCtx->ldtrHid.Attr.n.u1Present = 1;
703 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
704
705 pCtx->trHid.u32Limit = 0xffff;
706 pCtx->trHid.Attr.n.u1Present = 1;
707 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
708
709 pCtx->dr6 = UINT32_C(0xFFFF0FF0);
710 pCtx->dr7 = 0x400;
711
712 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
713 pCtx->fpu.FCW = 0x37f;
714
715 /* Init PAT MSR */
716 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
717}
718
719
720/**
721 * Execute state save operation.
722 *
723 * @returns VBox status code.
724 * @param pVM VM Handle.
725 * @param pSSM SSM operation handle.
726 */
727static DECLCALLBACK(int) cpumR3Save(PVM pVM, PSSMHANDLE pSSM)
728{
729 /* Set the size of RTGCPTR for use of SSMR3Get/PutGCPtr. */
730 SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR));
731
732 /*
733 * Save.
734 */
735 SSMR3PutMem(pSSM, &pVM->cpum.s.Hyper, sizeof(pVM->cpum.s.Hyper));
736 SSMR3PutMem(pSSM, &pVM->cpum.s.Guest, sizeof(pVM->cpum.s.Guest));
737 SSMR3PutU32(pSSM, pVM->cpum.s.fUseFlags);
738 SSMR3PutU32(pSSM, pVM->cpum.s.fChanged);
739
740 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
741 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
742
743 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
744 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
745
746 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
747 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
748
749 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
750
751 /* Add the cpuid for checking that the cpu is unchanged. */
752 uint32_t au32CpuId[8] = {0};
753 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
754 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
755 return SSMR3PutMem(pSSM, &au32CpuId[0], sizeof(au32CpuId));
756}
757
758/**
759 * Load a version 1.6 CPUMCTX structure.
760 *
761 * @returns VBox status code.
762 * @param pVM VM Handle.
763 * @param pCpumctx16 Version 1.6 CPUMCTX
764 */
765static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
766{
767#define CPUMCTX16_LOADREG(regname) pVM->cpum.s.Guest.regname = pCpumctx16->regname;
768
769#define CPUMCTX16_LOADHIDREG(regname) \
770 pVM->cpum.s.Guest.regname##Hid.u64Base = pCpumctx16->regname##Hid.u32Base; \
771 pVM->cpum.s.Guest.regname##Hid.u32Limit = pCpumctx16->regname##Hid.u32Limit; \
772 pVM->cpum.s.Guest.regname##Hid.Attr = pCpumctx16->regname##Hid.Attr;
773
774#define CPUMCTX16_LOADSEGREG(regname) \
775 pVM->cpum.s.Guest.regname = pCpumctx16->regname; \
776 CPUMCTX16_LOADHIDREG(regname);
777
778 pVM->cpum.s.Guest.fpu = pCpumctx16->fpu;
779
780 CPUMCTX16_LOADREG(rax);
781 CPUMCTX16_LOADREG(rbx);
782 CPUMCTX16_LOADREG(rcx);
783 CPUMCTX16_LOADREG(rdx);
784 CPUMCTX16_LOADREG(rdi);
785 CPUMCTX16_LOADREG(rsi);
786 CPUMCTX16_LOADREG(rbp);
787 CPUMCTX16_LOADREG(rsp);
788 CPUMCTX16_LOADREG(rip);
789 CPUMCTX16_LOADREG(rflags);
790
791 CPUMCTX16_LOADSEGREG(cs);
792 CPUMCTX16_LOADSEGREG(ds);
793 CPUMCTX16_LOADSEGREG(es);
794 CPUMCTX16_LOADSEGREG(fs);
795 CPUMCTX16_LOADSEGREG(gs);
796 CPUMCTX16_LOADSEGREG(ss);
797
798 CPUMCTX16_LOADREG(r8);
799 CPUMCTX16_LOADREG(r9);
800 CPUMCTX16_LOADREG(r10);
801 CPUMCTX16_LOADREG(r11);
802 CPUMCTX16_LOADREG(r12);
803 CPUMCTX16_LOADREG(r13);
804 CPUMCTX16_LOADREG(r14);
805 CPUMCTX16_LOADREG(r15);
806
807 CPUMCTX16_LOADREG(cr0);
808 CPUMCTX16_LOADREG(cr2);
809 CPUMCTX16_LOADREG(cr3);
810 CPUMCTX16_LOADREG(cr4);
811
812 CPUMCTX16_LOADREG(dr0);
813 CPUMCTX16_LOADREG(dr1);
814 CPUMCTX16_LOADREG(dr2);
815 CPUMCTX16_LOADREG(dr3);
816 CPUMCTX16_LOADREG(dr4);
817 CPUMCTX16_LOADREG(dr5);
818 CPUMCTX16_LOADREG(dr6);
819 CPUMCTX16_LOADREG(dr7);
820
821 pVM->cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
822 pVM->cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
823 pVM->cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
824 pVM->cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
825
826 CPUMCTX16_LOADREG(ldtr);
827 CPUMCTX16_LOADREG(tr);
828
829 pVM->cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
830
831 CPUMCTX16_LOADREG(msrEFER);
832 CPUMCTX16_LOADREG(msrSTAR);
833 CPUMCTX16_LOADREG(msrPAT);
834 CPUMCTX16_LOADREG(msrLSTAR);
835 CPUMCTX16_LOADREG(msrCSTAR);
836 CPUMCTX16_LOADREG(msrSFMASK);
837 CPUMCTX16_LOADREG(msrKERNELGSBASE);
838
839 CPUMCTX16_LOADHIDREG(ldtr);
840 CPUMCTX16_LOADHIDREG(tr);
841
842#undef CPUMCTX16_LOADHIDREG
843#undef CPUMCTX16_LOADSEGREG
844#undef CPUMCTX16_LOADREG
845}
846
847/**
848 * Execute state load operation.
849 *
850 * @returns VBox status code.
851 * @param pVM VM Handle.
852 * @param pSSM SSM operation handle.
853 * @param u32Version Data layout version.
854 */
855static DECLCALLBACK(int) cpumR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
856{
857 /*
858 * Validate version.
859 */
860 if ( u32Version != CPUM_SAVED_STATE_VERSION
861 && u32Version != CPUM_SAVED_STATE_VERSION_VER1_6)
862 {
863 AssertMsgFailed(("cpuR3Load: Invalid version u32Version=%d!\n", u32Version));
864 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
865 }
866
867 /* Set the size of RTGCPTR for SSMR3GetGCPtr. */
868 if (u32Version == CPUM_SAVED_STATE_VERSION_VER1_6)
869 SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR32));
870 else
871 SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR));
872
873 /*
874 * Restore.
875 */
876 uint32_t uCR3 = pVM->cpum.s.Hyper.cr3;
877 uint32_t uESP = pVM->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
878 SSMR3GetMem(pSSM, &pVM->cpum.s.Hyper, sizeof(pVM->cpum.s.Hyper));
879 pVM->cpum.s.Hyper.cr3 = uCR3;
880 pVM->cpum.s.Hyper.esp = uESP;
881 if (u32Version == CPUM_SAVED_STATE_VERSION_VER1_6)
882 {
883 CPUMCTX_VER1_6 cpumctx16;
884 memset(&pVM->cpum.s.Guest, 0, sizeof(pVM->cpum.s.Guest));
885 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
886
887 /* Save the old cpumctx state into the new one. */
888 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
889 }
890 else
891 SSMR3GetMem(pSSM, &pVM->cpum.s.Guest, sizeof(pVM->cpum.s.Guest));
892
893 SSMR3GetU32(pSSM, &pVM->cpum.s.fUseFlags);
894 SSMR3GetU32(pSSM, &pVM->cpum.s.fChanged);
895
896 uint32_t cElements;
897 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
898 /* Support old saved states with a smaller standard cpuid array. */
899 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
900 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
901 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
902
903 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
904 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
905 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
906 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
907
908 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
909 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
910 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
911 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
912
913 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
914
915 /*
916 * Check that the basic cpuid id information is unchanged.
917 */
918 uint32_t au32CpuId[8] = {0};
919 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
920 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
921 uint32_t au32CpuIdSaved[8];
922 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
923 if (VBOX_SUCCESS(rc))
924 {
925 /* Ignore APIC ID (AMD specs). */
926 au32CpuId[5] &= ~0xff000000;
927 au32CpuIdSaved[5] &= ~0xff000000;
928 /* Ignore the number of Logical CPUs (AMD specs). */
929 au32CpuId[5] &= ~0x00ff0000;
930 au32CpuIdSaved[5] &= ~0x00ff0000;
931
932 /* do the compare */
933 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
934 {
935 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
936 LogRel(("cpumR3Load: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
937 "Saved=%.*Vhxs\n"
938 "Real =%.*Vhxs\n",
939 sizeof(au32CpuIdSaved), au32CpuIdSaved,
940 sizeof(au32CpuId), au32CpuId));
941 else
942 {
943 LogRel(("cpumR3Load: CpuId mismatch!\n"
944 "Saved=%.*Vhxs\n"
945 "Real =%.*Vhxs\n",
946 sizeof(au32CpuIdSaved), au32CpuIdSaved,
947 sizeof(au32CpuId), au32CpuId));
948 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
949 }
950 }
951 }
952
953 return rc;
954}
955
956
957/**
958 * Formats the EFLAGS value into mnemonics.
959 *
960 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
961 * @param efl The EFLAGS value.
962 */
963static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
964{
965 /*
966 * Format the flags.
967 */
968 static struct
969 {
970 const char *pszSet; const char *pszClear; uint32_t fFlag;
971 } s_aFlags[] =
972 {
973 { "vip",NULL, X86_EFL_VIP },
974 { "vif",NULL, X86_EFL_VIF },
975 { "ac", NULL, X86_EFL_AC },
976 { "vm", NULL, X86_EFL_VM },
977 { "rf", NULL, X86_EFL_RF },
978 { "nt", NULL, X86_EFL_NT },
979 { "ov", "nv", X86_EFL_OF },
980 { "dn", "up", X86_EFL_DF },
981 { "ei", "di", X86_EFL_IF },
982 { "tf", NULL, X86_EFL_TF },
983 { "nt", "pl", X86_EFL_SF },
984 { "nz", "zr", X86_EFL_ZF },
985 { "ac", "na", X86_EFL_AF },
986 { "po", "pe", X86_EFL_PF },
987 { "cy", "nc", X86_EFL_CF },
988 };
989 char *psz = pszEFlags;
990 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
991 {
992 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
993 if (pszAdd)
994 {
995 strcpy(psz, pszAdd);
996 psz += strlen(pszAdd);
997 *psz++ = ' ';
998 }
999 }
1000 psz[-1] = '\0';
1001}
1002
1003
1004/**
1005 * Formats a full register dump.
1006 *
1007 * @param pVM VM Handle.
1008 * @param pCtx The context to format.
1009 * @param pCtxCore The context core to format.
1010 * @param pHlp Output functions.
1011 * @param enmType The dump type.
1012 * @param pszPrefix Register name prefix.
1013 */
1014static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
1015{
1016 /*
1017 * Format the EFLAGS.
1018 */
1019 uint32_t efl = pCtxCore->eflags.u32;
1020 char szEFlags[80];
1021 cpumR3InfoFormatFlags(&szEFlags[0], efl);
1022
1023 /*
1024 * Format the registers.
1025 */
1026 switch (enmType)
1027 {
1028 case CPUMDUMPTYPE_TERSE:
1029 if (CPUMIsGuestIn64BitCode(pVM, pCtxCore))
1030 {
1031 pHlp->pfnPrintf(pHlp,
1032 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1033 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1034 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1035 "%sr14=%016RX64 %sr15=%016RX64\n"
1036 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1037 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1038 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1039 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1040 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1041 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1042 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1043 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
1044 }
1045 else
1046 pHlp->pfnPrintf(pHlp,
1047 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1048 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1049 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1050 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1051 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1052 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1053 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
1054 break;
1055
1056 case CPUMDUMPTYPE_DEFAULT:
1057 if (CPUMIsGuestIn64BitCode(pVM, pCtxCore))
1058 {
1059 pHlp->pfnPrintf(pHlp,
1060 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1061 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1062 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1063 "%sr14=%016RX64 %sr15=%016RX64\n"
1064 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1065 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1066 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%VGv:%04x %sldtr=%04x\n"
1067 ,
1068 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1069 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1070 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1071 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1072 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1073 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
1074 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1075 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
1076 }
1077 else
1078 pHlp->pfnPrintf(pHlp,
1079 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1080 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1081 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1082 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%VGv:%04x %sldtr=%04x\n"
1083 ,
1084 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1085 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1086 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1087 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
1088 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1089 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
1090 break;
1091
1092 case CPUMDUMPTYPE_VERBOSE:
1093 if (CPUMIsGuestIn64BitCode(pVM, pCtxCore))
1094 {
1095 pHlp->pfnPrintf(pHlp,
1096 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1097 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1098 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1099 "%sr14=%016RX64 %sr15=%016RX64\n"
1100 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1101 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1102 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1103 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1104 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1105 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1106 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1107 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
1108 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
1109 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
1110 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1111 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1112 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1113 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
1114 ,
1115 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1116 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1117 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1118 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1119 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
1120 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
1121 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
1122 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
1123 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
1124 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
1125 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1126 pszPrefix, pCtx->dr0, pszPrefix, pCtx->dr1, pszPrefix, pCtx->dr2, pszPrefix, pCtx->dr3,
1127 pszPrefix, pCtx->dr4, pszPrefix, pCtx->dr5, pszPrefix, pCtx->dr6, pszPrefix, pCtx->dr7,
1128 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1129 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
1130 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
1131 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1132 }
1133 else
1134 pHlp->pfnPrintf(pHlp,
1135 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1136 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1137 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
1138 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
1139 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
1140 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
1141 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
1142 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
1143 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1144 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1145 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1146 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1147 ,
1148 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1149 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1150 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr0, pszPrefix, pCtx->dr1,
1151 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr2, pszPrefix, pCtx->dr3,
1152 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr4, pszPrefix, pCtx->dr5,
1153 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr6, pszPrefix, pCtx->dr7,
1154 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
1155 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1156 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1157 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
1158 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
1159 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1160
1161 pHlp->pfnPrintf(pHlp,
1162 "FPU:\n"
1163 "%sFCW=%04x %sFSW=%04x %sFTW=%02x\n"
1164 "%sres1=%02x %sFOP=%04x %sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x\n"
1165 "%sFPUDP=%04x %sDS=%04x %sRsvrd2=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
1166 ,
1167 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW,
1168 pszPrefix, pCtx->fpu.huh1, pszPrefix, pCtx->fpu.FOP, pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
1169 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2,
1170 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK);
1171
1172
1173 pHlp->pfnPrintf(pHlp,
1174 "MSR:\n"
1175 "%sEFER =%016RX64\n"
1176 "%sPAT =%016RX64\n"
1177 "%sSTAR =%016RX64\n"
1178 "%sCSTAR =%016RX64\n"
1179 "%sLSTAR =%016RX64\n"
1180 "%sSFMASK =%016RX64\n"
1181 "%sKERNELGSBASE =%016RX64\n",
1182 pszPrefix, pCtx->msrEFER,
1183 pszPrefix, pCtx->msrPAT,
1184 pszPrefix, pCtx->msrSTAR,
1185 pszPrefix, pCtx->msrCSTAR,
1186 pszPrefix, pCtx->msrLSTAR,
1187 pszPrefix, pCtx->msrSFMASK,
1188 pszPrefix, pCtx->msrKERNELGSBASE);
1189
1190 break;
1191 }
1192}
1193
1194
1195/**
1196 * Display all cpu states and any other cpum info.
1197 *
1198 * @param pVM VM Handle.
1199 * @param pHlp The info helper functions.
1200 * @param pszArgs Arguments, ignored.
1201 */
1202static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1203{
1204 cpumR3InfoGuest(pVM, pHlp, pszArgs);
1205 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
1206 cpumR3InfoHyper(pVM, pHlp, pszArgs);
1207 cpumR3InfoHost(pVM, pHlp, pszArgs);
1208}
1209
1210
1211/**
1212 * Parses the info argument.
1213 *
1214 * The argument starts with 'verbose', 'terse' or 'default' and then
1215 * continues with the comment string.
1216 *
1217 * @param pszArgs The pointer to the argument string.
1218 * @param penmType Where to store the dump type request.
1219 * @param ppszComment Where to store the pointer to the comment string.
1220 */
1221static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
1222{
1223 if (!pszArgs)
1224 {
1225 *penmType = CPUMDUMPTYPE_DEFAULT;
1226 *ppszComment = "";
1227 }
1228 else
1229 {
1230 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
1231 {
1232 pszArgs += 5;
1233 *penmType = CPUMDUMPTYPE_VERBOSE;
1234 }
1235 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
1236 {
1237 pszArgs += 5;
1238 *penmType = CPUMDUMPTYPE_TERSE;
1239 }
1240 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
1241 {
1242 pszArgs += 7;
1243 *penmType = CPUMDUMPTYPE_DEFAULT;
1244 }
1245 else
1246 *penmType = CPUMDUMPTYPE_DEFAULT;
1247 *ppszComment = RTStrStripL(pszArgs);
1248 }
1249}
1250
1251
1252/**
1253 * Display the guest cpu state.
1254 *
1255 * @param pVM VM Handle.
1256 * @param pHlp The info helper functions.
1257 * @param pszArgs Arguments, ignored.
1258 */
1259static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1260{
1261 CPUMDUMPTYPE enmType;
1262 const char *pszComment;
1263 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
1264 pHlp->pfnPrintf(pHlp, "Guest CPUM state: %s\n", pszComment);
1265 cpumR3InfoOne(pVM, &pVM->cpum.s.Guest, CPUMCTX2CORE(&pVM->cpum.s.Guest), pHlp, enmType, "");
1266}
1267
1268/**
1269 * Display the current guest instruction
1270 *
1271 * @param pVM VM Handle.
1272 * @param pHlp The info helper functions.
1273 * @param pszArgs Arguments, ignored.
1274 */
1275static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1276{
1277 char szInstruction[256];
1278 int rc = DBGFR3DisasInstrCurrent(pVM, szInstruction, sizeof(szInstruction));
1279 if (VBOX_SUCCESS(rc))
1280 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
1281}
1282
1283
1284/**
1285 * Display the hypervisor cpu state.
1286 *
1287 * @param pVM VM Handle.
1288 * @param pHlp The info helper functions.
1289 * @param pszArgs Arguments, ignored.
1290 */
1291static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1292{
1293 CPUMDUMPTYPE enmType;
1294 const char *pszComment;
1295 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
1296 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
1297 cpumR3InfoOne(pVM, &pVM->cpum.s.Hyper, pVM->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
1298 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
1299}
1300
1301
1302/**
1303 * Display the host cpu state.
1304 *
1305 * @param pVM VM Handle.
1306 * @param pHlp The info helper functions.
1307 * @param pszArgs Arguments, ignored.
1308 */
1309static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1310{
1311 CPUMDUMPTYPE enmType;
1312 const char *pszComment;
1313 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
1314 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
1315
1316 /*
1317 * Format the EFLAGS.
1318 */
1319 PCPUMHOSTCTX pCtx = &pVM->cpum.s.Host;
1320#if HC_ARCH_BITS == 32
1321 uint32_t efl = pCtx->eflags.u32;
1322#else
1323 uint64_t efl = pCtx->rflags;
1324#endif
1325 char szEFlags[80];
1326 cpumR3InfoFormatFlags(&szEFlags[0], efl);
1327
1328 /*
1329 * Format the registers.
1330 */
1331#if HC_ARCH_BITS == 32
1332# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
1333 if (!(pCtx->efer & MSR_K6_EFER_LMA))
1334# endif
1335 {
1336 pHlp->pfnPrintf(pHlp,
1337 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
1338 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
1339 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
1340 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
1341 "dr0=%08RX64 dr1=%08RX64x dr2=%08RX64 dr3=%08RX64x dr6=%08RX64 dr7=%08RX64\n"
1342 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
1343 ,
1344 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
1345 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
1346 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
1347 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
1348 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
1349 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
1350 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1351 }
1352# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
1353 else
1354# endif
1355#endif
1356#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1357 {
1358 pHlp->pfnPrintf(pHlp,
1359 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
1360 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
1361 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
1362 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
1363 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1364 "r14=%016RX64 r15=%016RX64\n"
1365 "iopl=%d %31s\n"
1366 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
1367 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
1368 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
1369 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64\n"
1370 "dr3=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1371 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
1372 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
1373 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
1374 ,
1375 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
1376 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
1377 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
1378 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
1379 pCtx->r11, pCtx->r12, pCtx->r13,
1380 pCtx->r14, pCtx->r15,
1381 X86_EFL_GET_IOPL(efl), szEFlags,
1382 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
1383 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
1384 pCtx->cr4, pCtx->ldtr, pCtx->tr,
1385 pCtx->dr0, pCtx->dr1, pCtx->dr2,
1386 pCtx->dr3, pCtx->dr6, pCtx->dr7,
1387 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
1388 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
1389 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
1390 }
1391#endif
1392}
1393
1394
1395/**
1396 * Get L1 cache / TLS associativity.
1397 */
1398static const char *getCacheAss(unsigned u, char *pszBuf)
1399{
1400 if (u == 0)
1401 return "res0 ";
1402 if (u == 1)
1403 return "direct";
1404 if (u >= 256)
1405 return "???";
1406
1407 RTStrPrintf(pszBuf, 16, "%d way", u);
1408 return pszBuf;
1409}
1410
1411
1412/**
1413 * Get L2 cache soociativity.
1414 */
1415const char *getL2CacheAss(unsigned u)
1416{
1417 switch (u)
1418 {
1419 case 0: return "off ";
1420 case 1: return "direct";
1421 case 2: return "2 way ";
1422 case 3: return "res3 ";
1423 case 4: return "4 way ";
1424 case 5: return "res5 ";
1425 case 6: return "8 way "; case 7: return "res7 ";
1426 case 8: return "16 way";
1427 case 9: return "res9 ";
1428 case 10: return "res10 ";
1429 case 11: return "res11 ";
1430 case 12: return "res12 ";
1431 case 13: return "res13 ";
1432 case 14: return "res14 ";
1433 case 15: return "fully ";
1434 default:
1435 return "????";
1436 }
1437}
1438
1439
1440/**
1441 * Display the guest CpuId leaves.
1442 *
1443 * @param pVM VM Handle.
1444 * @param pHlp The info helper functions.
1445 * @param pszArgs "terse", "default" or "verbose".
1446 */
1447static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1448{
1449 /*
1450 * Parse the argument.
1451 */
1452 unsigned iVerbosity = 1;
1453 if (pszArgs)
1454 {
1455 pszArgs = RTStrStripL(pszArgs);
1456 if (!strcmp(pszArgs, "terse"))
1457 iVerbosity--;
1458 else if (!strcmp(pszArgs, "verbose"))
1459 iVerbosity++;
1460 }
1461
1462 /*
1463 * Start cracking.
1464 */
1465 CPUMCPUID Host;
1466 CPUMCPUID Guest;
1467 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
1468
1469 pHlp->pfnPrintf(pHlp,
1470 " RAW Standard CPUIDs\n"
1471 " Function eax ebx ecx edx\n");
1472 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
1473 {
1474 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
1475 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1476
1477 pHlp->pfnPrintf(pHlp,
1478 "Gst: %08x %08x %08x %08x %08x%s\n"
1479 "Hst: %08x %08x %08x %08x\n",
1480 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
1481 i <= cStdMax ? "" : "*",
1482 Host.eax, Host.ebx, Host.ecx, Host.edx);
1483 }
1484
1485 /*
1486 * If verbose, decode it.
1487 */
1488 if (iVerbosity)
1489 {
1490 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
1491 pHlp->pfnPrintf(pHlp,
1492 "Name: %.04s%.04s%.04s\n"
1493 "Supports: 0-%x\n",
1494 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
1495 }
1496
1497 /*
1498 * Get Features.
1499 */
1500 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
1501 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
1502 pVM->cpum.s.aGuestCpuIdStd[0].edx);
1503 if (cStdMax >= 1 && iVerbosity)
1504 {
1505 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
1506 uint32_t uEAX = Guest.eax;
1507
1508 pHlp->pfnPrintf(pHlp,
1509 "Family: %d \tExtended: %d \tEffective: %d\n"
1510 "Model: %d \tExtended: %d \tEffective: %d\n"
1511 "Stepping: %d\n"
1512 "APIC ID: %#04x\n"
1513 "Logical CPUs: %d\n"
1514 "CLFLUSH Size: %d\n"
1515 "Brand ID: %#04x\n",
1516 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
1517 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
1518 ASMGetCpuStepping(uEAX),
1519 (Guest.ebx >> 24) & 0xff,
1520 (Guest.ebx >> 16) & 0xff,
1521 (Guest.ebx >> 8) & 0xff,
1522 (Guest.ebx >> 0) & 0xff);
1523 if (iVerbosity == 1)
1524 {
1525 uint32_t uEDX = Guest.edx;
1526 pHlp->pfnPrintf(pHlp, "Features EDX: ");
1527 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
1528 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
1529 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
1530 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
1531 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
1532 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
1533 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
1534 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
1535 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
1536 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
1537 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
1538 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
1539 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
1540 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
1541 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
1542 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
1543 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
1544 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
1545 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
1546 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
1547 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
1548 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
1549 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
1550 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
1551 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
1552 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
1553 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
1554 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
1555 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
1556 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
1557 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
1558 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
1559 pHlp->pfnPrintf(pHlp, "\n");
1560
1561 uint32_t uECX = Guest.ecx;
1562 pHlp->pfnPrintf(pHlp, "Features ECX: ");
1563 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
1564 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " 1");
1565 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " 2");
1566 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
1567 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
1568 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
1569 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " 6");
1570 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
1571 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
1572 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " 9");
1573 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
1574 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
1575 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " 12");
1576 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
1577 for (unsigned iBit = 14; iBit < 32; iBit++)
1578 if (uECX & RT_BIT(iBit))
1579 pHlp->pfnPrintf(pHlp, " %d", iBit);
1580 pHlp->pfnPrintf(pHlp, "\n");
1581 }
1582 else
1583 {
1584 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1585
1586 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
1587 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
1588 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
1589 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
1590
1591 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
1592 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
1593 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
1594 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
1595 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
1596 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
1597 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
1598 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
1599 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
1600 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
1601 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
1602 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
1603 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
1604 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
1605 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
1606 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
1607 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
1608 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
1609 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
1610 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
1611 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
1612 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
1613 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
1614 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
1615 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
1616 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
1617 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
1618 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
1619 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
1620 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
1621 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
1622 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
1623 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
1624
1625 pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
1626 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u2Reserved1, EcxHost.u2Reserved1);
1627 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
1628 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
1629 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
1630 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
1631 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
1632 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
1633 pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
1634 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
1635 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved4, EcxHost.u2Reserved4);
1636 pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
1637 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
1638 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u17Reserved5, EcxHost.u17Reserved5);
1639 }
1640 }
1641 if (cStdMax >= 2 && iVerbosity)
1642 {
1643 /** @todo */
1644 }
1645
1646 /*
1647 * Extended.
1648 * Implemented after AMD specs.
1649 */
1650 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
1651
1652 pHlp->pfnPrintf(pHlp,
1653 "\n"
1654 " RAW Extended CPUIDs\n"
1655 " Function eax ebx ecx edx\n");
1656 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
1657 {
1658 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
1659 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1660
1661 pHlp->pfnPrintf(pHlp,
1662 "Gst: %08x %08x %08x %08x %08x%s\n"
1663 "Hst: %08x %08x %08x %08x\n",
1664 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
1665 i <= cExtMax ? "" : "*",
1666 Host.eax, Host.ebx, Host.ecx, Host.edx);
1667 }
1668
1669 /*
1670 * Understandable output
1671 */
1672 if (iVerbosity && cExtMax >= 0)
1673 {
1674 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
1675 pHlp->pfnPrintf(pHlp,
1676 "Ext Name: %.4s%.4s%.4s\n"
1677 "Ext Supports: 0x80000000-%#010x\n",
1678 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
1679 }
1680
1681 if (iVerbosity && cExtMax >= 1)
1682 {
1683 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
1684 uint32_t uEAX = Guest.eax;
1685 pHlp->pfnPrintf(pHlp,
1686 "Family: %d \tExtended: %d \tEffective: %d\n"
1687 "Model: %d \tExtended: %d \tEffective: %d\n"
1688 "Stepping: %d\n"
1689 "Brand ID: %#05x\n",
1690 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
1691 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
1692 ASMGetCpuStepping(uEAX),
1693 Guest.ebx & 0xfff);
1694
1695 if (iVerbosity == 1)
1696 {
1697 uint32_t uEDX = Guest.edx;
1698 pHlp->pfnPrintf(pHlp, "Features EDX: ");
1699 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
1700 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
1701 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
1702 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
1703 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
1704 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
1705 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
1706 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
1707 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
1708 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
1709 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
1710 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
1711 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
1712 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
1713 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
1714 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
1715 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
1716 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
1717 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
1718 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
1719 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
1720 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
1721 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
1722 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
1723 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
1724 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
1725 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
1726 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
1727 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
1728 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
1729 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
1730 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
1731 pHlp->pfnPrintf(pHlp, "\n");
1732
1733 uint32_t uECX = Guest.ecx;
1734 pHlp->pfnPrintf(pHlp, "Features ECX: ");
1735 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
1736 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
1737 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
1738 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
1739 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
1740 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
1741 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
1742 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
1743 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
1744 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
1745 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
1746 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
1747 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
1748 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
1749 for (unsigned iBit = 5; iBit < 32; iBit++)
1750 if (uECX & RT_BIT(iBit))
1751 pHlp->pfnPrintf(pHlp, " %d", iBit);
1752 pHlp->pfnPrintf(pHlp, "\n");
1753 }
1754 else
1755 {
1756 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1757
1758 uint32_t uEdxGst = Guest.edx;
1759 uint32_t uEdxHst = Host.edx;
1760 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
1761 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
1762 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
1763 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
1764 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
1765 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
1766 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
1767 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
1768 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
1769 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
1770 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
1771 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
1772 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
1773 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
1774 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
1775 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
1776 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
1777 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
1778 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
1779 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
1780 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
1781 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
1782 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
1783 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
1784 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
1785 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
1786 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
1787 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
1788 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
1789 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
1790 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
1791 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
1792 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
1793
1794 uint32_t uEcxGst = Guest.ecx;
1795 uint32_t uEcxHst = Host.ecx;
1796 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
1797 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
1798 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
1799 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
1800 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
1801 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
1802 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
1803 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
1804 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
1805 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
1806 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
1807 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
1808 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
1809 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
1810 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
1811 }
1812 }
1813
1814 if (iVerbosity && cExtMax >= 2)
1815 {
1816 char szString[4*4*3+1] = {0};
1817 uint32_t *pu32 = (uint32_t *)szString;
1818 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
1819 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
1820 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
1821 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
1822 if (cExtMax >= 3)
1823 {
1824 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
1825 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
1826 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
1827 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
1828 }
1829 if (cExtMax >= 4)
1830 {
1831 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
1832 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
1833 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
1834 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
1835 }
1836 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
1837 }
1838
1839 if (iVerbosity && cExtMax >= 5)
1840 {
1841 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
1842 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
1843 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
1844 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
1845 char sz1[32];
1846 char sz2[32];
1847
1848 pHlp->pfnPrintf(pHlp,
1849 "TLB 2/4M Instr/Uni: %s %3d entries\n"
1850 "TLB 2/4M Data: %s %3d entries\n",
1851 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
1852 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
1853 pHlp->pfnPrintf(pHlp,
1854 "TLB 4K Instr/Uni: %s %3d entries\n"
1855 "TLB 4K Data: %s %3d entries\n",
1856 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
1857 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
1858 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
1859 "L1 Instr Cache Lines Per Tag: %d\n"
1860 "L1 Instr Cache Associativity: %s\n"
1861 "L1 Instr Cache Size: %d KB\n",
1862 (uEDX >> 0) & 0xff,
1863 (uEDX >> 8) & 0xff,
1864 getCacheAss((uEDX >> 16) & 0xff, sz1),
1865 (uEDX >> 24) & 0xff);
1866 pHlp->pfnPrintf(pHlp,
1867 "L1 Data Cache Line Size: %d bytes\n"
1868 "L1 Data Cache Lines Per Tag: %d\n"
1869 "L1 Data Cache Associativity: %s\n"
1870 "L1 Data Cache Size: %d KB\n",
1871 (uECX >> 0) & 0xff,
1872 (uECX >> 8) & 0xff,
1873 getCacheAss((uECX >> 16) & 0xff, sz1),
1874 (uECX >> 24) & 0xff);
1875 }
1876
1877 if (iVerbosity && cExtMax >= 6)
1878 {
1879 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
1880 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
1881 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
1882
1883 pHlp->pfnPrintf(pHlp,
1884 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
1885 "L2 TLB 2/4M Data: %s %4d entries\n",
1886 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
1887 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
1888 pHlp->pfnPrintf(pHlp,
1889 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
1890 "L2 TLB 4K Data: %s %4d entries\n",
1891 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
1892 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
1893 pHlp->pfnPrintf(pHlp,
1894 "L2 Cache Line Size: %d bytes\n"
1895 "L2 Cache Lines Per Tag: %d\n"
1896 "L2 Cache Associativity: %s\n"
1897 "L2 Cache Size: %d KB\n",
1898 (uEDX >> 0) & 0xff,
1899 (uEDX >> 8) & 0xf,
1900 getL2CacheAss((uEDX >> 12) & 0xf),
1901 (uEDX >> 16) & 0xffff);
1902 }
1903
1904 if (iVerbosity && cExtMax >= 7)
1905 {
1906 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
1907
1908 pHlp->pfnPrintf(pHlp, "APM Features: ");
1909 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
1910 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
1911 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
1912 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
1913 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
1914 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
1915 for (unsigned iBit = 6; iBit < 32; iBit++)
1916 if (uEDX & RT_BIT(iBit))
1917 pHlp->pfnPrintf(pHlp, " %d", iBit);
1918 pHlp->pfnPrintf(pHlp, "\n");
1919 }
1920
1921 if (iVerbosity && cExtMax >= 8)
1922 {
1923 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
1924 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
1925
1926 pHlp->pfnPrintf(pHlp,
1927 "Physical Address Width: %d bits\n"
1928 "Virtual Address Width: %d bits\n",
1929 (uEAX >> 0) & 0xff,
1930 (uEAX >> 8) & 0xff);
1931 pHlp->pfnPrintf(pHlp,
1932 "Physical Core Count: %d\n",
1933 (uECX >> 0) & 0xff);
1934 }
1935
1936
1937 /*
1938 * Centaur.
1939 */
1940 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
1941
1942 pHlp->pfnPrintf(pHlp,
1943 "\n"
1944 " RAW Centaur CPUIDs\n"
1945 " Function eax ebx ecx edx\n");
1946 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
1947 {
1948 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
1949 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1950
1951 pHlp->pfnPrintf(pHlp,
1952 "Gst: %08x %08x %08x %08x %08x%s\n"
1953 "Hst: %08x %08x %08x %08x\n",
1954 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
1955 i <= cCentaurMax ? "" : "*",
1956 Host.eax, Host.ebx, Host.ecx, Host.edx);
1957 }
1958
1959 /*
1960 * Understandable output
1961 */
1962 if (iVerbosity && cCentaurMax >= 0)
1963 {
1964 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
1965 pHlp->pfnPrintf(pHlp,
1966 "Centaur Supports: 0xc0000000-%#010x\n",
1967 Guest.eax);
1968 }
1969
1970 if (iVerbosity && cCentaurMax >= 1)
1971 {
1972 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1973 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
1974 uint32_t uEdxHst = Host.edx;
1975
1976 if (iVerbosity == 1)
1977 {
1978 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
1979 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
1980 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
1981 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
1982 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
1983 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
1984 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
1985 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
1986 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
1987 /* possibly indicating MM/HE and MM/HE-E on older chips... */
1988 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
1989 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
1990 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
1991 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
1992 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
1993 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
1994 for (unsigned iBit = 14; iBit < 32; iBit++)
1995 if (uEdxGst & RT_BIT(iBit))
1996 pHlp->pfnPrintf(pHlp, " %d", iBit);
1997 pHlp->pfnPrintf(pHlp, "\n");
1998 }
1999 else
2000 {
2001 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2002 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
2003 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
2004 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
2005 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
2006 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
2007 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
2008 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
2009 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
2010 /* possibly indicating MM/HE and MM/HE-E on older chips... */
2011 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
2012 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
2013 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
2014 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
2015 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
2016 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
2017 for (unsigned iBit = 14; iBit < 32; iBit++)
2018 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
2019 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
2020 pHlp->pfnPrintf(pHlp, "\n");
2021 }
2022 }
2023}
2024
2025
2026/**
2027 * Structure used when disassembling and instructions in DBGF.
2028 * This is used so the reader function can get the stuff it needs.
2029 */
2030typedef struct CPUMDISASSTATE
2031{
2032 /** Pointer to the CPU structure. */
2033 PDISCPUSTATE pCpu;
2034 /** The VM handle. */
2035 PVM pVM;
2036 /** Pointer to the first byte in the segemnt. */
2037 RTGCUINTPTR GCPtrSegBase;
2038 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
2039 RTGCUINTPTR GCPtrSegEnd;
2040 /** The size of the segment minus 1. */
2041 RTGCUINTPTR cbSegLimit;
2042 /** Pointer to the current page - HC Ptr. */
2043 void const *pvPageHC;
2044 /** Pointer to the current page - GC Ptr. */
2045 RTGCPTR pvPageGC;
2046 /** The lock information that PGMPhysReleasePageMappingLock needs. */
2047 PGMPAGEMAPLOCK PageMapLock;
2048 /** Whether the PageMapLock is valid or not. */
2049 bool fLocked;
2050 /** 64 bits mode or not. */
2051 bool f64Bits;
2052} CPUMDISASSTATE, *PCPUMDISASSTATE;
2053
2054
2055/**
2056 * Instruction reader.
2057 *
2058 * @returns VBox status code.
2059 * @param PtrSrc Address to read from.
2060 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
2061 * @param pu8Dst Where to store the bytes.
2062 * @param cbRead Number of bytes to read.
2063 * @param uDisCpu Pointer to the disassembler cpu state.
2064 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
2065 */
2066static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
2067{
2068 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
2069 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
2070 Assert(cbRead > 0);
2071 for (;;)
2072 {
2073 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
2074
2075 /* Need to update the page translation? */
2076 if ( !pState->pvPageHC
2077 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
2078 {
2079 int rc = VINF_SUCCESS;
2080
2081 /* translate the address */
2082 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
2083 if (MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
2084 {
2085 pState->pvPageHC = MMHyperGC2HC(pState->pVM, pState->pvPageGC);
2086 if (!pState->pvPageHC)
2087 rc = VERR_INVALID_POINTER;
2088 }
2089 else
2090 {
2091 /* Release mapping lock previously acquired. */
2092 if (pState->fLocked)
2093 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
2094 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVM, pState->pvPageGC, &pState->pvPageHC, &pState->PageMapLock);
2095 pState->fLocked = RT_SUCCESS_NP(rc);
2096 }
2097 if (VBOX_FAILURE(rc))
2098 {
2099 pState->pvPageHC = NULL;
2100 return rc;
2101 }
2102 }
2103
2104 /* check the segemnt limit */
2105 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
2106 return VERR_OUT_OF_SELECTOR_BOUNDS;
2107
2108 /* calc how much we can read */
2109 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
2110 if (!pState->f64Bits)
2111 {
2112 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
2113 if (cb > cbSeg && cbSeg)
2114 cb = cbSeg;
2115 }
2116 if (cb > cbRead)
2117 cb = cbRead;
2118
2119 /* read and advance */
2120 memcpy(pu8Dst, (char *)pState->pvPageHC + (GCPtr & PAGE_OFFSET_MASK), cb);
2121 cbRead -= cb;
2122 if (!cbRead)
2123 return VINF_SUCCESS;
2124 pu8Dst += cb;
2125 PtrSrc += cb;
2126 }
2127}
2128
2129
2130/**
2131 * Disassemble an instruction and return the information in the provided structure.
2132 *
2133 * @returns VBox status code.
2134 * @param pVM VM Handle
2135 * @param pCtx CPU context
2136 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
2137 * @param pCpu Disassembly state
2138 * @param pszPrefix String prefix for logging (debug only)
2139 *
2140 */
2141CPUMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
2142{
2143 CPUMDISASSTATE State;
2144 int rc;
2145
2146 const PGMMODE enmMode = PGMGetGuestMode(pVM);
2147 State.pCpu = pCpu;
2148 State.pvPageGC = 0;
2149 State.pvPageHC = NULL;
2150 State.pVM = pVM;
2151 State.fLocked = false;
2152 State.f64Bits = false;
2153
2154 /*
2155 * Get selector information.
2156 */
2157 if ( (pCtx->cr0 & X86_CR0_PE)
2158 && pCtx->eflags.Bits.u1VM == 0)
2159 {
2160 if (CPUMAreHiddenSelRegsValid(pVM))
2161 {
2162 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
2163 State.GCPtrSegBase = pCtx->csHid.u64Base;
2164 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
2165 State.cbSegLimit = pCtx->csHid.u32Limit;
2166 pCpu->mode = (State.f64Bits)
2167 ? CPUMODE_64BIT
2168 : pCtx->csHid.Attr.n.u1DefBig
2169 ? CPUMODE_32BIT
2170 : CPUMODE_16BIT;
2171 }
2172 else
2173 {
2174 SELMSELINFO SelInfo;
2175
2176 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
2177 if (!VBOX_SUCCESS(rc))
2178 {
2179 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%VGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
2180 return rc;
2181 }
2182
2183 /*
2184 * Validate the selector.
2185 */
2186 rc = SELMSelInfoValidateCS(&SelInfo, pCtx->ss);
2187 if (!VBOX_SUCCESS(rc))
2188 {
2189 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%VGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
2190 return rc;
2191 }
2192 State.GCPtrSegBase = SelInfo.GCPtrBase;
2193 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
2194 State.cbSegLimit = SelInfo.cbLimit;
2195 pCpu->mode = SelInfo.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
2196 }
2197 }
2198 else
2199 {
2200 /* real or V86 mode */
2201 pCpu->mode = CPUMODE_16BIT;
2202 State.GCPtrSegBase = pCtx->cs * 16;
2203 State.GCPtrSegEnd = 0xFFFFFFFF;
2204 State.cbSegLimit = 0xFFFFFFFF;
2205 }
2206
2207 /*
2208 * Disassemble the instruction.
2209 */
2210 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
2211 pCpu->apvUserData[0] = &State;
2212
2213 uint32_t cbInstr;
2214#ifndef LOG_ENABLED
2215 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
2216 if (VBOX_SUCCESS(rc))
2217 {
2218#else
2219 char szOutput[160];
2220 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
2221 if (VBOX_SUCCESS(rc))
2222 {
2223 /* log it */
2224 if (pszPrefix)
2225 Log(("%s: %s", pszPrefix, szOutput));
2226 else
2227 Log(("%s", szOutput));
2228#endif
2229 rc = VINF_SUCCESS;
2230 }
2231 else
2232 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%VGv rc=%Vrc\n", pCtx->cs, GCPtrPC, rc));
2233
2234 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
2235 if (State.fLocked)
2236 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
2237
2238 return rc;
2239}
2240
2241#ifdef DEBUG
2242
2243/**
2244 * Disassemble an instruction and dump it to the log
2245 *
2246 * @returns VBox status code.
2247 * @param pVM VM Handle
2248 * @param pCtx CPU context
2249 * @param pc GC instruction pointer
2250 * @param prefix String prefix for logging
2251 * @deprecated Use DBGFR3DisasInstrCurrentLog().
2252 *
2253 */
2254CPUMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PCPUMCTX pCtx, RTGCPTR pc, char *prefix)
2255{
2256 DISCPUSTATE cpu;
2257
2258 CPUMR3DisasmInstrCPU(pVM, pCtx, pc, &cpu, prefix);
2259}
2260
2261/**
2262 * Disassemble an instruction and dump it to the log
2263 *
2264 * @returns VBox status code.
2265 * @param pVM VM Handle
2266 * @param pCtx CPU context
2267 * @param pc GC instruction pointer
2268 * @param prefix String prefix for logging
2269 * @param nrInstructions
2270 *
2271 */
2272CPUMR3DECL(void) CPUMR3DisasmBlock(PVM pVM, PCPUMCTX pCtx, RTGCPTR pc, char *prefix, int nrInstructions)
2273{
2274 for(int i=0;i<nrInstructions;i++)
2275 {
2276 DISCPUSTATE cpu;
2277
2278 CPUMR3DisasmInstrCPU(pVM, pCtx, pc, &cpu, prefix);
2279 pc += cpu.opsize;
2280 }
2281}
2282
2283#endif /* DEBUG */
2284
2285#ifdef DEBUG
2286/**
2287 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
2288 *
2289 * @internal
2290 */
2291CPUMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
2292{
2293 pVM->cpum.s.GuestEntry = pVM->cpum.s.Guest;
2294}
2295#endif /* DEBUG */
2296
2297
2298/**
2299 * API for controlling a few of the CPU features found in CR4.
2300 *
2301 * Currently only X86_CR4_TSD is accepted as input.
2302 *
2303 * @returns VBox status code.
2304 *
2305 * @param pVM The VM handle.
2306 * @param fOr The CR4 OR mask.
2307 * @param fAnd The CR4 AND mask.
2308 */
2309CPUMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
2310{
2311 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
2312 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
2313
2314 pVM->cpum.s.CR4.OrMask &= fAnd;
2315 pVM->cpum.s.CR4.OrMask |= fOr;
2316
2317 return VINF_SUCCESS;
2318}
2319
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette